浙江省宁波市十校联考高三数学3月模拟试卷理(含解析)

合集下载

2020届 浙江省 宁波市 十校高三下学期 3月联考数学试题(解析版)

2020届 浙江省 宁波市 十校高三下学期 3月联考数学试题(解析版)

2020届浙江省宁波市十校高三下学期3月联考数学试题一、单选题1.已知{|11}P x x =-<<,{|02}Q x x =<<,则P Q =I ( )A .(1,2)-B .(0,1)C .(1,0)-D .(1,2)【答案】B【解析】直接根据交集的定义计算P Q I 即可得到答案.【详解】因为{|11}P x x =-<<,{|02}Q x x =<<,所以{|01}P Q x x =<<I .故选:B.【点睛】本题考查集合的交运算,考查基本运算求解能力,属于容易题.2.双曲线22194x y -=离心率是( )A .133B .53C .23D .59【答案】A【解析】由标准方程求出c 和a ,继而可求离心率.【详解】解:2229413c a b =+=+=,所以13c =. 由29a = 可知3a =.13c e a ∴==. 故选:A.【点睛】本题考查了双曲线的标准方程,考查了离心率的求解.3.若x y ,满足约束条件0262x y x y x y -≥⎧⎪+≤⎨⎪+≥⎩,则3z x y =+的最小值是( )A .4-B .2-C .2D .4【答案】B【解析】由约束条件画出可行域,通过平移13y x =-分析即可得最优解,代回3z x y =+中即可求出最小值.【详解】解:画出可行域为如图所示的阴影部分.由3z x y =+可知1133y x z =-+.则当1133y x z =-+过()4,2C -时,min 462z =-=-.故选:B.【点睛】本题考查了线性规划.一般情况下,首先画出可行域,然后根据目标函数的几何意义,分析出最优解.这里在画可行域时应注意,边界线是实线还是虚线.4.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是( )A .343cm B .32cmC .383cmD .34cm【答案】C【解析】由三视图还原出几何体,依据锥体体积的公式即可求解.【详解】解:由三视图可知,该几何体为底面是正方形的四棱锥,高为2.所以体积为3118222333V Sh cm ==⨯⨯⨯=. 故选:C.【点睛】本题考查了几何体体积的求解,考查了三视图.5.函数()()22x b af x -=的图像如图所示,则( )A .0,01a b ><<B .0,10.4a b >-<≤C .0,10a b <-<<D .0,01a b <<≤【答案】D【解析】由解析式及图像判断出01b <≤,结合复合函数单调性,可知0a <.【详解】解:由()()22x b af x -=可知,()()22x af x b f b x +=-= ,所以函数对称轴为x b =,由图可知01b <≤.设()2x b u a-=,则()2uf u =.由图可知,函数先增后减.因为()2uf u =单调递增,所以()2x b u a-=应先增后减,故0a <.故选:D.【点睛】本题考查了函数的图像,考查了复合函数的单调性.若()()f x a f b x +=-,则该函数的对称轴为2a bx +=;对于复合函数的单调性,遵循同增异减的原则.6.设a R ∈,则“2a =-”关于x 的方程“20x x a ++=有实数根”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】以2a =-为条件,判断20x x a ++=有实数根是否成立;以20x x a ++=有实数根为条件,判断2a =-是否成立,即可选出正确答案.【详解】解:当2a =-时,1490a ∆=-=> ,此时20x x a ++=有实数根;当20x x a ++=有实数根时,140a ∆=-≥,即14a ≤. 故选:A.【点睛】本题考查了命题的充分必要条件的判断.一般此类问题分为两步,若p q ⇒,则p 是q 的充分条件;若q p ⇒,则p 是q 的必要条件.7.正方体1111ABCD A B C D -,P 是线段1BD (不含端点)上的点.记直线PC 与直线AB 所成角为α,直线PC 与平面ABC 所成角为β,二面角PBC A -的平面角为γ,则( )A .βγα<<B .αβγ<<C .γβα<<D .γαβ<<【答案】A【解析】不妨设P 为1A C 的中点,连接,AC BD 交于O ,做BC 的中点为K ,连接,,,,PO PK PC PD KO ,经过分析,,PCD PKO PCO αγβ=∠=∠=∠,从而可求出tan ,tan ,tan αβγ,进而可比较三个角的大小.【详解】解:如图,不妨设P 为1A C 的中点,连接,AC BD 交于O ,做BC 的中点为K , 连接,,,,PO PK PC PD KO ,则PO ⊥面ABCD .设正方体的边长为2a . 由题意知,,PCD PKO PCO αγβ=∠=∠=∠.KO PO a ==,2CO a =3PC CD a ==,则tan 1a a γ==;2223cos 232a aα==⋅⋅ 则tan 2α=; 2tan 22PO CO aβ===.因为tan tan tan βγα<<,所以βγα<<. 故选:A.【点睛】本题考查了线线角,考查了线面角,考查了二面角.对于空间中角的问题,在求解时有两种思路,一是按定义直接找到所求角,结合正弦定理、余弦定理、三角函数等求解;二是结合空间向量求解.8.已知随机变量的分布列如下102a ⎛<<⎫ ⎪⎝⎭:ξ1 2Pb a - ba则( )A .()E ξ有最小值12B .()E ξ有最大值32C .()D ξ有最小值0 D .()D ξ有最大值12【答案】D【解析】由所有概率之和为1求出12b =,进而可求()122E a ξ=+,()211442D a ξ⎛⎫--+ ⎪⎝⎭=,结合102a <<,可求最值. 【详解】解:由题意知,21b a b a b -++==,即12b =.则()()113022,222b a b a a E ξ⎛⎫=⋅-++=+∈ ⎪⎝⎭,所以()E ξ没有最值. ()()222111021222222a b a a D b a a ξ⎛⎫⎛⎫⎛⎫=---+--+-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭22111424442a a a ⎛⎫=-++=--+ ⎪⎝⎭.由102a <<可知,当14a =时,()D ξ有最大值为12. 故选:D.【点睛】本题考查了分布列,考查了数学期望,考查了方差.对于分布列的题目,隐藏条件为,所有概率之和为1.本题的难点是计算化简.9.从1,3,5,7中任取2个数字,从0,2,4,6,8中任取2个数字,组成没有重复数字的四位数,这样的四位数一共有( )个.A .576B .1296C .1632D .2020【答案】B【解析】分成两种情况:取出数字中无0和取出数字中有0.第一种情况全排列即可;第二种情况下,千位有3种可能,再乘对剩余数字的全排列.两种情况的结果相加即可.【详解】解:当取出的4个数字中没0时,再组成四位数,这样的四位数有224444864C C A ⋅⋅=个;当取出的4个数字中有0时,共有214424C C ⋅=中组合,这四位数字所组成的四位数有223318A ⨯⨯=个,所以这种情况下的四位数共有2418432⨯=个.4328641296+=故选:B.【点睛】本题考查了排列与组合的综合应用.本题的易错点是忽略这个四位数,千位不能为零.10.数列{}n a 满足21121,n n n a a a a n N ++==-+∈,,则( )A .存在k N +∈,使1122k k k a --<<B .存在m ,k N +∈,m k a ka =C .存在m ,,m k k N a ma +∈=D .121111na a a ++⋅⋅⋅+< 【答案】D【解析】由数列单调性的定义作差可得10n n a a +->,可得{}n a 为递增数列,又()2111n n n n n a a a a a +=--=-,两边取到数,结合裂项求和以及不等式的性质可选出正确选项.【详解】解:由题意知, ()221211n n n n n a a a a a +-=-+=-.由于120a => ,所以()210n a ->,则10n n a a +->,所以{}n a 为递增数列. 211n n n a a a +=-+Q ,()2111n n n n n a a a a a +∴-=-=-,()11111111n n n n n a a a a a +∴==----.即111111n n n a a a +=---,则12122311111111111111 (11111111)n n n n a a a a a a a a a a a +++++=-+-++-=---------1111n a +=--.由{}n a 为递增数列,可得1101n a +>-,则11111n a +-<-. 即121111na a a ++⋅⋅⋅+<故选:D.【点睛】本题考查了数列递推式的应用,考查数列的单调性,考查了裂项求和,考查了化简运算能力和推理能力.本题的难点是对递推公式进行处理.二、填空题11.欧拉公式cos sin ix e x i x =+(i 是虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数域,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数字中的天桥”根据欧拉公式可知,2020i e π=___________【答案】1【解析】由已知可知2020cos2020sin2020i e i πππ=+,运用诱导公式可求出cos20201π=,以及sin20200π=,继而可求2020i e π.【详解】解:由题意知,2020cos2020sin2020i e i πππ=+,()cos2020cos 021010cos01ππ=+⋅==,同理,sin2020sin00π==.故2020cos2020sin20201i e i πππ=+=.故答案为:1.【点睛】本题考查了诱导公式,考查了三角函数求值,考查了推理能力和计算能力. 12.()()421x x ++的展开式中项3x 的系数为___________【答案】14【解析】由二项式定理写出()()421x x ++的通向,求出通项中3x ,即可求系数.【详解】解:()41+x 展开式中的第1k + 项为414kkk T C x-+=,则()()54444221k k k k x C x x x C --=+++当2k =时,246C =;当1k =时,1428C =,8614+=.故答案为:14.【点睛】本题考查了二项式定理.做题关键是掌握二项展开式通项公式.13.设向量()()1122,,,a x y b x y ==r r ,记1212*a b x x y y =-r r ,若圆22:240C x y x y +-+=上的任意三点123A A A ,,,且1223A A A A ⊥,则1223**OA OA OA OA +u u u r u u u u r u u u u r u u u u r的最大值是___________【答案】16【解析】设()()()111222333,,,,,A x y A x y A x y ,根据条件得13131,222x x y y ++==-,则 ()()122321321322**24OA OA OA OA x x x y y y x y +=+-+=+u u u v u u u u v u u u u v u u u u v,所以当直线240x y b ++= 与圆相切时,24x y + 有最大值,利用圆与直线的位置关系可求出最大值.【详解】解:由圆的方程得()()22125x y -++=,则圆心()1,2C -,半径5r =.设()()()111222333,,,,,A x y A x y A x y ,由1223AA A A ⊥得13A A 为直径, 由此可得13131,222x x y y ++==-,即13132,4x x y y +=+=-. 则()()122321321322**24OA OA OA OA x x x y y y x y +=+-+=+u u u v u u u u v u u u u v u u u u v,2A 为圆上的一点,当直线240x y b ++=与圆相切时,24x y + 有最大值.则圆心到直线的距离28520b d -+==,解得16b =或4-.则当16b =时,24x y + 有最大值为16.故答案为:16.【点睛】本题考查了直线与圆的位置关系,考查平面向量的运算,考查转化的思想.本题的难点在于将24x y +的最值问题转化为直线与圆相切的问题.三、双空题14.在四边形ABCD 中,12,34AB BC CD AD ====,,,且120ABC ∠=︒,则AC =___________,cos BCD ∠=___________7 2114-【解析】利用余弦定理求出AC 的值,利用勾股定理逆定理判断90ACD ∠=o ,由正弦定理和诱导公式即可求出cos BCD ∠的值.【详解】解:在ABC ∆中,由余弦定理可知2222cos AC AB BC AB BC ABC =+-⋅⋅∠即21422cos1207AC =+-⨯⨯=o ,7AC ∴=又2227916AC CD AD +=+==,所以90ACD ∠=o.由sin sin AB AC ACB B =∠∠,可知21sin 147ACB ∠==o . ()21cos cos 90sin BCD ACB ACB ∴∠=∠+=-∠=o 故答案为:7;21. 【点睛】本题考查了余弦定理,考查了正弦定理,考查了诱导公式.本题的关键是判断90ACD ∠=o .在解三角形时,已知两边及其夹角或已知三边,一般套用余弦定理求解;已知两角及一角的对边,常用正弦定理解三角形.15.已知直线()():10l y k x k =+≠,椭圆22:143x yC +=,点()1,0F ,若直线和椭圆有两个不同交点A B ,,则ABF V 周长是___________,ABF V 的重心纵坐标的最大值是___________【答案】83【解析】由椭圆的定义可求出三角形的周长为224a a a +=;设()()1122,,,A x y B x y ,联立直线与椭圆的方程,消去y ,即可求出122643ky y k +=+,进而可知重心纵坐标为1202334y y y k k+==+,分0,0k k >< 两种情况,结合基本不等式,即可求出033y ⎡⎫⎛∈⋃⎪ ⎢⎣⎭⎝⎦,从而可求出重心纵坐标的最大值.【详解】解:由题意知,可知()():10l y k x k =+≠恒过定点()1,0-,此点为椭圆的左焦点,记为'F .则'24,'24AF AF a BF BF a +==+==.所以ABF ∆的周长为''448AB AF BF AF AF BF BF ++=+++=+=.设()()1122,,,A x y B x y设ABF V 的重心纵坐标为0y .则12120033y y y y y +++== .联立直线与椭圆方程得 ()221431x y y k x ⎧+=⎪⎨⎪=+⎩,整理得2236490y y k k ⎛⎫+--= ⎪⎝⎭.则222363136414410k k k ⎛⎫⎛⎫∆=++=+> ⎪ ⎪⎝⎭⎝⎭,1222663434k ky y k k+==++ 所以12022233434y y k y k k k+===++.当0k > 时,3424343k k+≥⨯=,当且仅当34k k =,即3k = 时,等号成立,此时03643y ≤=; 当k 0<时,()333442443k k k k k k ⎛⎫⎛⎫+=---≤--⋅-=- ⎪ ⎪⎝⎭⎝⎭,当且仅当34k k-=-,即3k =时,等号成立,此时0343y ≥=. 综上所述:033y ⎡⎫⎛∈⋃⎪ ⎢⎣⎭⎝⎦.所以ABF V 的重心纵坐标的最大值是36. 故答案为: 83【点睛】本题考查了椭圆的定义,考查了直线与椭圆的位置关系,考查了基本不等式.对于椭圆中的三角形问题,常结合椭圆的定义、性质以及解三角形的思路求解.本题的易错点是求出重心纵坐标的表达式时,未对k 进行讨论.应用基本不等式时,一定要注意一正二定三相等.16.()121f x x x =--+的值域为___________;若函数()()g x f x a =-的两个不同零点12,x x ,满足12210x x ≤-≤,则实数a 的取值范围是___________【答案】(],2-∞ 15,2⎡⎤-⎢⎥⎣⎦【解析】将函数化为分段函数的形式,作出图像,即可求出值域;依题意,()f x a =的零点必然在(],1-∞-和[]1,1-上或者(],1-∞-和[)1,+∞上,分类讨论结合已知即可求出.【详解】解:()3,131,113,1x x f x x x x x +≤-⎧⎪=---<<⎨⎪--≥⎩,作出图像如下,由图像可知,函数的值域为(],2-∞.由()0g x =得()f x a =,显然,零点必然在(],1-∞-和[]1,1-上或(],1-∞-和[)1,+∞上,令12331x a x a +=⎧⎨--=⎩,解得12313x a a x =-⎧⎪+⎨=-⎪⎩,又12210x x ≤-≤,则111719,,2222a ⎡⎤⎡⎤∈-⋃⎢⎥⎢⎥⎣⎦⎣⎦,由121,11x x ≤--≤≤,可得14,2a ⎡⎤∈-⎢⎥⎣⎦;令1233x a x a +=⎧⎨--=⎩,解得1233x a x a =-⎧⎨=--⎩,又12210x x ≤-≤,则[][]5,11,5a ∈--⋃,同时121,1x x ≤-≥,得[]5,4a ∈--. 综上所述:15,2a ⎡⎤∈-⎢⎥⎣⎦.故答案为:(],2-∞;15,2a ⎡⎤∈-⎢⎥⎣⎦.【点睛】本题考查了函数值域的求法,考查函数零点与方程根的关系,考查不等式的求解,考查数形结合的思想,考查分类讨论思想以及运算求解的能力.求函数的值域时,一般采用的思路有:图像法、导数法、结合函数的性质等.17.已知双曲线221:1C x y -=,曲线222:x yC x y y x+=-,则曲线12,C C 的交点个数是___________个,原点O 与曲线2C 上的点之间的距离最小值是___________【答案】0 2【解析】联立曲线12,C C 的方程,通过配方法,解方程可判断交点个数;由两点的距离公式和三角换元,结合同角公式和二倍角公式,以及正弦函数的值域,可得所求最小值.【详解】解:联立方程组22221x y x y x y y x ⎧-=⎪⎨+=-⎪⎩,整理可得,22x y xy +=,即2213024x y y ⎛⎫-+=⎪⎝⎭, 由0xy ≠可知方程无解,即两条曲线没有交点.设曲线2C 上的点为(),x y ,则原点与2C 上的点之间的距离为22r x y =+设cos ,sin x r y r αα==,02απ≤<,代入2C 得()()()222222cos sin cos sin cossin r r r r r r αααααα+=⋅-整理得24411sin 2cos2sin 424r r r ααα==.由sin41α≤,可得241r≤,解得2r ≥ 当sin41α= 时,r 取最小值为2.故答案为: 0;2.【点睛】本题考查曲线方程的关系,考查两曲线的交点个数,考查了两点的距离公式.应注意运用方程思想和三角换元.本题计算量较大,计算容易出错.四、解答题18.设函数()sin cos ,R f x x x x =+∈.(1)已知[]0,2θπ∈,函数()f x θ+是奇函数,求θ的值;(2)若()2f α=3f πα⎛⎫+ ⎪⎝⎭.【答案】(1)34πθ=或74π(2)23f πα⎛⎫+= ⎪⎝⎭【解析】(1)由三角恒等变换求得()24f x x πθθ⎛⎫+=++⎪⎝⎭,再由奇函数可知,4k k Z πθπ+=∈,结合[]0,2θπ∈可求出符合题意的θ的值.(2)由()2f α可求出1sin 42πα⎛⎫+= ⎪⎝⎭,3cos 4πα⎛⎫+= ⎪⎝⎭,则所求26344f a πππαα⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即可求出值.【详解】解:(1)()sin cos 2sin 4f x x x x π⎛⎫ ⎪⎝==+⎭+,()24f x x πθθ⎛⎫+=++ ⎪⎝⎭因为()f x θ+为奇函数,所以,4k k Z πθπ+=∈,解得,4k k Z πθπ=-+∈∵02θπ≤≤∴当0k =或1 时,34πθ=或74π. (2)因为()2f α=,所以22sin 4πα⎛⎫+= ⎪⎝⎭,即1sin 42πα⎛⎫+= ⎪⎝⎭,可得3cos 4πα⎛⎫+=± ⎪⎝⎭所以262sin sin cos 34344f a πππππααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=++=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 当3cos 4πα⎛⎫+= ⎪⎝⎭时,23f πα⎛⎫+= ⎪⎝⎭;当3cos 4πα⎛⎫+=- ⎪⎝⎭时,23f πα⎛⎫+=- ⎪⎝⎭.【点睛】本题考查了辅助角公式,考查了三角恒等变换,考查了同角三角函数的基本关系,考查了正弦函数的奇偶性.若已知()()sin f x A x ωϕ=+ 为奇函数,则,k k Z ϕπ=∈;若已知()()sin f x A x ωϕ=+为偶函数,则,2k k Z πϕπ=+∈.19.如图,三棱锥P ABC -中,PAC V 是正三角形,ABC V 是直角三角形,点D 是PB 的中点,且APB CPB ∠=∠,2PA PB =.(1)求证:PB AC ⊥;(2)求AD 与平面PAC 所成角的正弦值.【答案】(1)证明见解析(211【解析】(1)取AC 的中点O ,连接OB OP ,,通过证明OP AC OB AC ⊥⊥,,则可证AC ⊥面PBO ,从而证明线线垂直.(2)由AC ⊥面PBO 可知二面角B PO A --为直二面角,作DT OP ⊥于T ,则DT ⊥ 平面PAC ,连接TA ,则DAT ∠ 是AD 和平面PAC 所成的角,由此能求出AD 和平面PAC 所成的角的正弦值.【详解】解:(1)证明:在APB △和CPB △中,∵APB CPB PA PC PB PB ∠=∠==,,,∴APB CPB △≌△,∴AB CB =.∴ABC V 为等腰直角三角形 取AC 的中点O ,连接OB OP ,,则OP AC OB AC ⊥⊥,, ∴AC ⊥面PBO ,PB ⊂面PBO ,∴PB AC ⊥(2)∵AC ⊥面PBO ,∴二面角B PO A --为直二面角,作DT OP ⊥于T ,则DT ⊥平面PAC ,连接TA ,则DAT ∠为AD 和平面PAC 所成的角. 设2PB =,则PAC V 的边长为4,22BA BC ==PBO V 中,12232PB OB OP DT ====,,APB △中,4222PA AB BP ===,,,D 为PB 的中点,∴11AD =在Rt ADT △中,11sin DT DAT AD ∠==AD 与平面PAC 11【点睛】本题考查了线线垂直的证明,考查了线面角的正弦值求法.证明线线垂直时,可利用勾股定理、等腰三角形三线合一或者线面角的性质.求二面角时,有两种思路,一是直接找到二面角,在三角形内进行求解;二是建立空间直角坐标系,结合空间向量进行求解. 20.设等差数列{}n a 的前n 项和为n S ,4324,a a S ==.数列{}n b 的前n 项和为n T ,1n n T b +=,*n N ∈.(1)求数列{}n a ,{}n b 的通项公式;(2)记,n n nn a c b n =⎩为奇数为偶数,数列{}n c 的前n 项和为n W ,证明:13n W n <.【答案】(1)n a n =;12nn b ⎛⎫= ⎪⎝⎭(2)证明见解析 【解析】(1)结合基本量法,将已知4324,a a S ==用首项和公差表示出来,即可求出通项公式;由1n n T b +=推出111n n T b --+=,两式相减进行整理可求出{}n b 的通项公式.(2)求出n c ,分别讨论n 为奇数和偶数,结合数列的分组求和,以及裂项法、放缩法,结合等比数列的求和公式和不等式的性质可证明.【详解】解:(1)∵4324a a S ==,∴111a d ==,,∴n a n =∵1n n T b +=,∴111n n T b --+=,两式相减得112b =,112n n b b -=,则12nn b ⎛⎫= ⎪⎝⎭(2)①当2n m =时,则形211421kmmn mk k W W k ==⎛⎫==+ ⎪-⎝⎭∑∵111144111111434314mkm mk =⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎛⎫⎣⎦==-<⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦-∑,当2k ≥21232121212123k k k k k k k =<=----+--+-∴(2121232121mmk k k k m k ==<+--=--∑112133n W m n <-.②当21n m =-时,21213n m m W W W n -=<<成立.综上①②得:13n W n 【点睛】本题考查了等差数列通项公式,考查了等比数列的通项公式,考查了裂项求和,考查了分组求和,考查了放缩法.本题易错点在于第二问没对n 取奇数和偶数进行讨论.21.已知点()0,A a ,0a >,抛物线()220x py P =>上点B 处的切线交x 轴于点P ,且直线AB 交抛物线于另一个点C ,过点C 作AP 的平行线x 轴于点Q .(1)证明://AQ BP ;(2)记直线BP ,CQ 与x 轴围成的三角形面积为1S ,BOC V的面积为2S ,是否存在实数λ,使12S S λ=?若存在,求实数λ的值若不存在,请说明理.【答案】(1)证明见解析(2)存在;12λ= 【解析】(1)设()2002,2B pt pt ,()2112,2C p pt ,则可知直线BC 的方程,由()0,A a 在BC 可知012a t t p=,求出22x Py =在B 处的切线的方程可得()0,0P pt ,从而可求出直线CQ的方程,继而可得()1,0Q pt ,由012AQ BP ak t k pt =-==可证明平行. (2)设直线,BP CQ 相交于点T ,则1PQT S S ∆= ,四边形AQTP 为平行四边形,由此推导出存在12λ=使得12S S λ=. 【详解】解:(1)证明:设()2002,2B pt pt ,()2112,2C p pt ,则直线BC 的方程为()01012y t t x pt t =+-由()0,A a 在BC 可知,012a t t p=,又22x Py =在B 处的切线的方程为20022y t x pt =-, 令0y =可得0p x Pt =即()0,0P pt ∴0AP ak pt =-.直线CQ 的方程为 ()()2111102222ay pt x pt t x pt pt -=--=-,令0y =可得1Q x pt =即()1,0Q pt ∴012AQ BP ak t k pt =-==即AQ BP ∥ (2)设BP 和CQ 相交于点T 则1PQT S S =△,由(1)可知,四边形AQTP 为平行四边形∴1101122PQT AQP Q P S S S OA x x ap t t ===-=-V V , ∵21011222OBC B C S S OA x x a p t t ==-=⋅-V ,∴1212=S S ,即存在12λ=【点睛】本题考查了线线平行的证明,考查了直线方程,考查了直线与抛物线的关系.本题计算量较大,应注意计算的准确性,避免出错.在解析几何中,若证明两条直线平行,通常的思路是利用斜率相等或者两条直线斜率都不存在.22.已知函数()()2112xf x x e x -=+-,其中 2.71828e ≈为自然对数的底.(1)试求函数()f x 的单调区;(2)若函数()212x e g x x x a+=++的定义域为R ,且存在极小值b .①求实数a 的取值范围;②证明:1325b e <.(参考数据:1.64 1.65e <) 【答案】(1)函数()f x 在区间(,0]-∞上单调递增,在区间(0,)+∞上单调递减(2)①()1,4a ∈②证明见解析【解析】(1)求出导数为()(1)x xf x xe x x e --'=--=-+,令导数为零,解方程,结合函数的定义域,可探究'(),()f x f x 随x 的变化情况,即可求出单调区间.(2)①由定义域为R 可知220x x a ++≠恒成立,所以440a =-<△,可求出1a >,求出()()()()22222212x x a e x g x x x a +--+'=++,令()0g x '=得()22a f x -=,结合第一问的单调性可知()2202a f -<=,即14a <<.②由()2112f a -=-<-及3359222 1.644f a ⎛⎫<-<- ⎪⎝⎭可知存在()1231,00,2x x ∈-∈⎛⎫ ⎪⎝⎭,,使()0g x '=,则极小值()()()2222222222221122221x x x e e e b g x x x a x x f x x ++====+++++.结合导数可证明()()21x e h x x =+在302x <<上递增,从而可求13255e b e e <【详解】(1)求导得()(1)x xf x xe x x e --'=--=-+,由()0f x '=,解得0x =.当0x <时,()0f x '≥;当0x >时,()0f x '<.又因为函数()f x 的定义域为R , 故函数()f x 在区间(,0]-∞上单调递增,在区间(0,)+∞上单调递减. (2)①因为函数()g x 的定义域为R ,则220x x a ++≠恒成立故440a =-<△,即1a >又()()()()()()()()2222222221122122x x x x x a x e x a e x g x xx a xx a e ++-+++--+'==++++则()0g x '=等价于()()22212x a x e x f x --=+-=,由(1)知()2y f x =在(,0]-∞上递增,在(0,)+∞上递减, 故函数()g x 存在极小值,必有()2202a f -<=,即14a <<.②又()2112f a -=-<-,339592224 1.644f a e e⎛⎫-<-<- ⎪⎝⎭,故对任意()1,4a ∈, 存在()1231,00,2x x ∈-∈⎛⎫⎪⎝⎭,,使()0g x '=,即()22,1,2i a f x i -==,因此,()g x 在12(,),(,)x x -∞+∞上递增,在()12,x x 上递减,所以,极小值()()()2222222222221122221x x x e e e b g x x x a x x f x x ++====+++++.记函数()()21x e h x x =+,302x <<,则()()2021x xe h x x '=>+,即()h x 在30,2⎛⎫ ⎪⎝⎭上递增, 故()()320h h x h ⎛<<⎫⎪⎝⎭,即13255e b e e <1325b e <.【点睛】本题考查了函数的单调区间的求解,考查了结合导数证明不等式,考查了极值的求解,考查了不等式恒成立问题.。

2024届宁波十校高三3月联考数学试题答案

2024届宁波十校高三3月联考数学试题答案

宁波“十校”2024届高三3月联考数学参考答案一、选择题(本大题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项符合题目要求)二、选择题(本大题共3小题,每小题6分,共18分. 在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.)三、填空题(本大题共3小题,每小题5分,共15分.)12.725 13.16 14 四、解答题(本大题共5小题,共77分. 解答应写出必要的文字说明,证明过程或演算步骤.) 15.(本题共13分)解:(1)由题意:()()sin cos cos sin cos cos sin cos cos sin A B A B C B A C A C -=⋅-,------------2分整理得()()cos cos sin sin cos cos sin 0A B C B C A C B ⋅-=⋅-=, 故cos 0A =或()sin 0C B -=,当cos 0A =时,π2A =,ABC 为直角三角形,----------------------------------------------3分 当()sin 0CB -=时,B C =,ABC 为等腰三角形.---------------------------------------5分 (2)由正弦定理sin sin a bA B =得sin sin 1a B b A ==,-------------------------------------------7分 ∴1,sin a B =∴222112sin sin 22B A a b c ++=+-----------------------------------------------9分又,πB C A B C =++=,22sin sin 1cos2sin21)4B A B B Bπ∴+=-+=+-,---------------------------11分因为ABC 为锐角三角形,所以π02π0π22B A B ⎧<<⎪⎪⎨⎪<=-<⎪⎩,解得ππ42B <<,∴当242B ππ-=时,即38B π=1.1.----------------------------------------------------------------------------13分16.(本题共15分)解: (1)证明:由四边形ABCD 是直角梯形,BC=2AD=2,AB ⊥BC ,可得DC =2,∠BCD =3π,从而△BCD 是等边三角形,BD=2,BD 平分∠ADC. ∵E 为CD 的中点,∴DE=AD=1,∴BD ⊥AE ,-----------------------------------3分 又∵PB ⊥AE ,PB ∩BD=B ,∴AE ⊥平面PBD.又∵AE ⊂平面ABCD ∴平面PBD ⊥平面ABCD.----------------------------------------------6分 (2)在平面PBD 内作PO ⊥BD 于O ,连接OC ,又∵平面PBD ⊥平面ABCD ,平面PBD ∩平面ABCD=BD ,∴PO ⊥平面ABCD ,∴∠PCO 为PC 与平面ABCD 所成的角,则∠PCO=3π∴易得OP =3.-----------------------------------------------------------------------------------------8分又OC PB=PD ,PO ⊥BD ,所以O 为BD 的中点,OC ⊥BD.以OB ,OC ,OP 所在的直线分别为x ,y ,z 轴建立空间直角坐标系,则B (1,0,0),C ()D (-1,0,0),P (0,0,3)----------------------------------------------------------------------------------10分设PN PD PC λμ=+,易得(,3(1))N λλμ--+-由00BN PC BN PD ⎧⋅=⎪⎨⋅=⎪⎩得56,1313λμ==,满足题意,所以N 点到平面ABCD 的距离为63(1)13λμ-+-=--------------------------------------15分 17.(本题共15分)解:(1)()1l 1e n x f x k x x x ⎛⎫=-+ ⎪⎝⎭,则()1222e 1()(1)11xxx f x k e k x xx x x ⎛⎫'=-+=⋅- -⎪-⎝⎭------1分 当0k >时,1()0f x '=的两根为11x =,2ln x k =.①若e k =,()1f x 在(0,)+∞上单调递增;-------------------------------------------------2分 ②若e k >,则21ln 1x k x =>=,则()1f x 在(0,1)上单调递增,在(1ln )k ,上单调递减,在(ln ,)k +∞上单调递增;---------------------------------------------------------4分③若0e k <<,则21ln 1x k x =<=,则()1f x 在(0,ln )k 上单调递增,在(ln ,1)k 上单调递减,在(1,)+∞上单调递增.综上,当e k =时,无单调减区间,单调增区间为(0,)+∞; 当e k >时,单调减区间为(1ln )k ,,单调增区间为(0,1)和(ln ,)k +∞;当0e k <<时,单调减区间为(ln ,1)k ,单调增区间为(0,ln )k 和(1,)+∞.-------------6分 (2)根据题意可知,函数()f x 的定义域为()0,∞+,则()()232264e 133e 3e x x xf x k x x x k x x x x x ⎛⎫'=--+⋅-⋅- -=⎭⋅⎪⎝, 由函数()f x 有三个极值点123,,x x x 可知()()2403e x x f x x x k '-=⋅=-在()0,∞+上至少有三个实数根;显然()30f '=,则需方程24e 0x kx x -=, 也即2e 0x kx -=有两个不等于3的不相等的实数根;--------------------------------------8分由2e 0x kx -=可得2e x k x=,()0,x ∈+∞,令()()2e ,0,xg x x x =∈+∞,则()()()3e 2,0,x x g x x x -'=∈+∞,-----------------------------10分显然当()0,2x ∈时,()0g x '<,即()g x 在()0,2上单调递减; 当()2,x ∈+∞时,()0g x '>,即()g x 在()2,+∞上单调递增;所以()()2e 24g x g ≥=,----------------------------------------------------------------------------12分画出函数()()2e ,0,xg x x x =∈+∞与函数y k =在同一坐标系下的图象,由图可得2e 4k >且3e 9k ≠时,2e xk x=在()0,∞+上有两个不等于3的相异的实数根,经检验可知当233e e e ,,499k ⎛⎫⎛⎫∈⋃+∞ ⎪ ⎪⎝⎭⎝⎭时,导函数()()2403e x x f x x x k '-=⋅=-在123,,x x x 左右符号不同,即123,,x x x 均是()0f x '=的变号零点,满足题意;因此实数k 的取值范围是233e e e ,,499k ⎛⎫⎛⎫∈⋃+∞ ⎪ ⎪⎝⎭⎝⎭-------------------------------------------15分(注:未去掉3e 9,扣1分)18.(本题共17分)解:(1)依题意,21~5,X B ⎛⎫⎪⎝⎭,则521(0)132P X ⎛⎫=== ⎪⎝⎭,4511522321(1)C P X ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭, 322511105(2)C 223216P X ⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭,52331(3)C 152216P X ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ 4451522321(4)C P X ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭,5211(5)32P X ⎛⎫=== ⎪⎝⎭,故X----------------------------------------------5分故2(5)215E X =⨯=.-----------------------------------------------------------------7分(2)事件“Y n =”表示前n 1-次试验只成功了1次,且第n 次试验成功,故122112112()C ()()33393n n n n P Y n ----==⨯⨯⨯=⨯,-------------------------------------------9分 当n 为偶数时,所以0221()(2)(4)()[1()3()(1)()]2223339n P AB P P P n n -=+++=⋅+⋅+-⋅………+,令022222331()3()(1)()3n n S n -=⋅+⋅+-⋅…+则24341()3()(922(23))31n n S n =⋅+⋅+-⋅…+, 两式相减得:242512[()()2222333()](1)()93n n n S n -=+++--⋅…+ -----------------------13分则11721179()()253255n n S n =-⋅+.即131312()()()252553n P AB n =-+⋅.当n 为奇数时,同理可得023111318()(2)(4)(1)[1()3()2222333(2)()]()()9255325n n P AB P P P n n n --=+++-=⋅+⋅+-⋅=-+⋅………+综上,11318()(),25525()13113()(),255522233n n n n P AB n n -⎧-+⋅⎪⎪=⎨⎪-+⋅⎪⎩为奇数为偶数--------------------------------------------17分(注:只考虑n 是奇数或偶数,且答案正确扣2分)19.(本题共17分)解:(1)由双曲线方程222214x y a a -=-,则2240a a ⎧>⎪⎨->⎪⎩,得到(0,2)a ∈, 联立抛物线与双曲线方程222221444x y a a y x ⎧⎪⎨⎪=--=⎩-,得到2224(4)40a x a x a --+=,-----2分记222422()(4)4[(2)][(2)]f x a x a x a a x a a x a =--+=+---,可知()0f x =有两个根22a a +和22a a-,其中212a a <+,则212a a >-,解得(1,2)a ∈.-----------------------------6分 又直线AF 分别交12,C C 于,C D (不同于,A B 点),即,,A B F 三点不共线,当2x =时,代入抛物线方程得到(2,2)A ,将(2,2)A 代入双曲线方程得到224414a a-=-,解得26a =-,故1a =.综上,1)1,2)a ∈⋃------------------------------------------------------------------7分(2)由()()1122,,,A x y C x y 是直线AF 与抛物线21:44C y x =-的两个交点,显然直线AF 不垂直y 轴,点()2,0F ,故设直线AF 的方程为2x my =+,由2244x my y x =+⎧⎨=-⎩消去x 并整理得2440y my --=,所以124y y =-为定值. 设()11,B x y -,直线BC 的斜率21212221212144444y y y y y y x x y y ++==++---,方程为()11214y y x x y y +=--,令0y =,得点P 的横坐标()2121112440444P y y y y y y x -++=+==,-------------10分设()33,D x y ,由2222214x my x y a a =+⎧⎪⎨-=⎪-⎩消去x 得22222222(444(40)())m m a a y m a y a --+-+-=, 2222222222222222240Δ16(4)4(4)(4)4(1)(4)0m m a a m a a m m a a a m a ⎧--≠⎨=-----=+->⎩, 222222222221313,44(4())44y m a a m m a a m m a a y y y ----+==---,而直线BD 的方程为113131()y y y y x x x x ++=--,依题意0m ≠,令0y =,得点Q 的横坐标13113111313133113113(()())Q y x x y x x x y y y x y x x x y y y y y y --+++=+==+++ 2222222222213113132131322223)2()(2)(4842)22()444(4()4m a m a y y y y my y y y m m m a a m m a a m a y y y y a m m m a ---++++----===-+-++-+-22(4)4122a a --==-,----------------------------------------------------------------------13分因此21||22QF a =-,21||2PQ a =.联立抛物线与双曲线方程222224414x x y a a y ⎧⎪⎨⎪---=⎩=,得到2224(4)40a x a x a --+=,解得点A的坐标2(2a a -,由124y y =-,214y y -=. 根据123S S =,则121||||231||||2A CQF y S S PQ y ⋅==⋅,代入得到21221(2)||231||2a y a y -⋅=⋅,即221212(4)3||a y a y y -⋅=⋅,化简得22(2)(1)(4)4122a a a a a+--⋅=-解得34a =,故a 分。

浙江省宁波“十校”2022届高三下学期3月联考数学试题(高频考点版)

浙江省宁波“十校”2022届高三下学期3月联考数学试题(高频考点版)

一、单选题二、多选题1.在复平面内,对应的点分别为,则对应的点为( )A.B.C.D.2. 正方体的棱长为2,的中点分别是P ,Q ,直线与正方体的外接球O 相交于M ,N 两点点G 是球O 上的动点则面积的最大值为( )A.B.C.D.3.把弧度化成角度是( )A.B.C.D.4. “”是“关于的函数单调递减”的( )A .充分不必要条件B .必要不充分条件C .既不充分也不必要条件D .充要条件5. 已知集合,,则( )A.B.C.D.6.设为非零实数,则:是:成立的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7. 已知一个样本容量为7的样本的平均数为6,方差为2,现在样本中插入三个新数据5,6,7,若新样本的平均数为,方差为,则( )A .,B .,C .,D .,8. 全集,集合,则( )A.B.C.D.9. 下列结论正确的是( )A .数据20,21,7,31,14,16的50%分位数为16B.若随机变量服从正态分布,则C.在线性回归分析中决定系数用来刻画回归的效果,若值越小,则模型的拟合效果越好D.以拟合一组数据,经代换后的线性回归方程为,则10. 已知实数a ,b ,c满足,且,则下列结论正确的有( )A.B.C.的最大值为D .当时,的最大值为7,最小值为11. 下列结论正确的是( )A .数据64,91,72,75,85,76,78,86,79,92的第60百分位数为79B.若随机变量服从二项分布,则C .若随机变量服从正态分布,,则浙江省宁波“十校”2022届高三下学期3月联考数学试题(高频考点版)浙江省宁波“十校”2022届高三下学期3月联考数学试题(高频考点版)三、填空题四、解答题D .某校三个年级,高一有400人,高二有360人.现用分层抽样的方法从全校抽取57人,已知从高一抽取了20人,则应从高三抽取19人12. 已知函数,则( )A .当时,有极小值B .当时,有极大值C .若,则D .函数的零点最多有1个13. 设是公差非零的等差数列,,,依次成等比数列,,,依次成等差数列,则的前n 项和为______.14. 已知正四棱锥的底面边长为2,过棱上点作平行于底面的截面若截面边长为1,则截得的四棱锥的体积为______.15. 函数,的反函数为,则________16. 已知,(1)求的值;(2)求的值;(3)求的值.17. 已知函数(常数).(1)求函数的单调区间;(2)若曲线与直线相切,证明:.18. 已知椭圆的焦距为2,且经过点.(1)求椭圆C 的方程;(2)经过椭圆右焦点F 且斜率为的动直线l 与椭圆交于A 、B 两点,试问x 轴上是否存在异于点F 的定点T,使恒成立?若存在,求出T 点坐标,若不存在,说明理由.19.已知正项等比数列满足,.(1)求数列的通项公式;(2)记,求数列的前项和.20. 在直三棱柱中,,.(1)求异面直线与所成角的大小;(2)若与平面所成角为,求三棱锥的体积.21. 在四棱锥中,平面,,.(1)证明:平面平面PAC;(2)若F是PC的中点,求证:平面PAD.。

浙江省宁波市高考数学三模试卷(理科)

浙江省宁波市高考数学三模试卷(理科)

浙江省宁波市高考数学三模试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2019高三上·沈阳月考) 设全集为,集合,则()A .B .C .D .2. (2分)(2019·大庆模拟) 若复数满足(其中是虚数单位),则()A .B .C .D .3. (2分)在中,,,点P在AM上且满足,则等于()A .B .C .D .4. (2分)双曲线mx2+y2=1的虚轴长是实轴长的2倍,则m的值为().A . -B . -4C . 4D .5. (2分)(2017·温州模拟) 设(1+x)6=a0+a1x+a2x2+…+a6x6 ,其中x、ai∈R,i=0,1,…,6,则a1+a3+a5=()A . 16B . 32C . 64D . 1286. (2分) (2015高二下·上饶期中) 下列命题是真命题的为()A . 若x=y,则 =B . 若x2=1,则x=1C . 若 = ,则x=yD . 若x<y,则x2<y27. (2分)已知幂函数f(x)=x2+m是定义在区间[﹣1,m]上的奇函数,则f(m+1)=()A . 8B . 4C . 2D . 18. (2分)已知二次函数的导数为,>0,对任意实数x都有≥0,则的最小值为()A . 4B . 3C . 8D . 29. (2分)执行右边程序语句的过程中,执行循环体的次数是()i=1Doi=i+1i=i*iLoop while i<10输出iA . 0B . 1C . 2D . 310. (2分)把数列的各项按顺序排列成如下的三角形状,记A(m,n)表示第m行的第n个数,,则m+n=()A . 122B . 123C . 124D . 12511. (2分)(2016·湖南模拟) 已知数列{an}的通项公式an=5﹣n,其前n项和为Sn ,将数列{an}的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{bn}的前3项,记{bn}的前n项和为Tn ,若存在m∈N* ,使对任意n∈N* ,总有Sn<Tn+λ恒成立,则实数λ的取值范围是()A . λ≥2B . λ>3C . λ≥3D . λ>212. (2分) R上的奇函数满足,当时,,则()A .B . 2C .D .二、填空题 (共4题;共6分)13. (2分)点P(x,y)满足条件则P点坐标为________时,z=4﹣2x+y取最大值________.14. (1分) (2016高一下·江阴期中) 数列{an}满足a1=3,﹣ =5(n∈N+),则an=________.15. (2分) (2017高三上·西湖开学考) 已知,某几何体的三视图(单位:cm)如图所示,则该几何体的体积为________(cm3);表面积为________(cm2).16. (1分)若椭圆的焦点在x轴上,焦距为2,且经过,则椭圆的标准方程为________三、解答题 (共7题;共60分)17. (10分)(2020·上饶模拟) 已知,的内角的对边分别为,为锐角,且 .(1)求角的大小;(2)若,,求的面积.18. (5分) (2017高二下·濮阳期末) 一个袋子里装有7个球,其中有红球4个,编号分别为1,2,3,4;白球3个,编号分别为2,3,4.从袋子中任取4个球(假设取到任何一个球的可能性相同).(Ⅰ)求取出的4个球中,含有编号为3的球的概率;(Ⅱ)在取出的4个球中,红球编号的最大值设为X,求随机变量X的分布列和数学期望.19. (10分) (2018高三上·赣州期中) 如图,已知多面体中,为菱形,,平面,,, .(1)求证:平面平面;(2)求二面角的余弦值.20. (10分) (2015高二上·福建期末) 已知抛物线C:y2=x,过点M(2,0)作直线l:x=ny+2与抛物线C 交于A,B两点,点N是定直线x=﹣2上的任意一点,分别记直线AN,MN,BN的斜率为k1 , k2 , k3 .(1)求的值;(2)试探求k1,k2,k3之间的关系,并给出证明.21. (10分)(2017·沈阳模拟) 已知函数f(x)=(x﹣2)lnx﹣ax+1.(1)若f(x)在区间(1,+∞)上单调递增,求实数a的取值范围;(2)若存在唯一整数x0,使得f(x0)<0成立,求实数a的取值范围.22. (10分)(2020·河南模拟) 在直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴,建立极坐标系.已知点的直角坐标为,过的直线与曲线相交于,两点.(1)若的斜率为2,求的极坐标方程和曲线的普通方程;(2)求的值.23. (5分)(2017·泉州模拟) 已知函数f(x)=|x﹣a|+| x+1|的最小值为2.(Ⅰ)求实数a的值;(Ⅱ)若a>0,求不等式f(x)≤4的解集.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共6分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共60分)17-1、17-2、18-1、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、。

宁波十校3月联考-数学答案

宁波十校3月联考-数学答案

宁波“十校”2023届高三3月联考数学参考答案题号 1 2 3 4 5 6 7 8 答案 BACDCDBB题号 9 10 11 12 答案BDABCACDBCD13.120︒ 14.132 15.424y x =+ 16.3 8.解法一:设00(,),(,)I I P x y I x y ,设圆与12,,PF PF x 轴相切于点,,M N T1122,,PM PN F M FT F N F T ===12FT PN NF a c ∴++=+即12FT PF a c +=+10()I FT x c a c a ex ∴=+=+−− 0I x ex ∴= 011(22)222I a c y cy += 0I c y y a c ∴=+ 1232k k = 000032cy y a c c x x a +∴=2a c ∴=即得12e =解法二:延长PI 交x 轴于D ,则12121PI PF PF a ID F F c e+===,设00(,)P x y ,则01I ey y e =+ 由1232k k =,得003(,)2(1)1e e I x y e e ++ 由11022F D PF a ex DF PF a ex +==−,20(,0)D e x ∴ 由,,P I D 三点共线,2211312(1)ee e e ee +=−−+,解得12e = 解法三:取P 为特殊点,如右焦点上方,则222(,),(,)b b b P c I a c a a a a−+−由1232k k =得1(1)(21)0,2e e e −−==12.428624684,12,16a a a a a a a a +=+=∴+++=且3153752,6,10a a a a a a −=−=−=,3151712,8,18a a a a a a ∴=+=+=+由868S =,得16a =,A 答案错;B 正确显然;442424444484,88,4n n n n n n a a n a a n a a −−−−+=−+=−∴−=,C 正确;22315321212112,6,42,262n n n a a a a a a n a a n n +−+−=−=−=−∴=+=+ 22222142326n n n a a n a n n n+++==++,2n =时取最大值47,D 正确 16.提示:当小球与正四面体棱相切且大球是正四面体外接球时R 最小。

2025届浙江省宁波市十校高三3月份模拟考试数学试题含解析

2025届浙江省宁波市十校高三3月份模拟考试数学试题含解析

2025届浙江省宁波市十校高三3月份模拟考试数学试题注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知函数()22018tan 1xx m f x x x m =+++()0,1m m >≠,若()13f =,则()1f -等于( )A .-3B .-1C .3D .02.已知二次函数2()f x x bx a =-+的部分图象如图所示,则函数()'()xg x e f x =+的零点所在区间为( )A .(1,0)-B .(0,1)C .(1,2)D .(2,3)3.已知抛物线22(0)y px p =>上的点M 到其焦点F 的距离比点M 到y 轴的距离大12,则抛物线的标准方程为( )A .2y x =B .22y x =C .24y x =D .28y x =4.正项等比数列{}n a 中的1a 、4039a 是函数()3214633f x x x x =-+-的极值点,则20206log a =( ) A .1-B .1C 2D .25.在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为(),0F c ,若F 到直线20bx ay -=的2,则E 的离心率为( ) A 3B .12C 2D .236.已知双曲线()2222:10,0x y C a b a b-=>>的实轴长为2,离心率为2,1F 、2F 分别为双曲线C 的左、右焦点,点P在双曲线C 上运动,若12F PF △为锐角三角形,则12PF PF +的取值范围是( ) A .()27,8B .()25,7C .()25,8D .()27,77.元代数学家朱世杰的数学名著《算术启蒙》是中国古代代数学的通论,其中关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.下图是源于其思想的一个程序图,若32a =,12b =,则输出的n =( )A .3B .4C .5D .68.已知复数11iz i+=-,则z 的虚部是( ) A .i B .i - C .1-D .19.抛物线的焦点是双曲线的右焦点,点是曲线的交点,点在抛物线的准线上,是以点为直角顶点的等腰直角三角形,则双曲线的离心率为( ) A .B .C .D .10.如图,在四边形ABCD 中,1AB =,3BC =,120ABC ∠=︒,90ACD ∠=︒,60CDA ∠=︒,则BD 的长度为( )A .533B .3C .33D .3311.在平行六面体1111ABCD A B C D -中,M 为11A C 与11B D 的交点,若,AB a AD b ==,1AA c =,则与BM 相等的向量是( )A .1122a b c ++ B .1122a b c --+ C .1122a b c -+ D .1122-++a b c 12.已知集合{}22|A x y x ==-,2{|}10B x x x =-+≤,则A B =( ) A .[12]-, B .[12]-, C .(12]-,D .2,2⎡⎤-⎣⎦二、填空题:本题共4小题,每小题5分,共20分。

浙江省宁波市宁波十校2025届高考数学三模试卷含解析

浙江省宁波市宁波十校2025届高考数学三模试卷含解析

浙江省宁波市宁波十校2025届高考数学三模试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知()f x 是定义在[]2,2-上的奇函数,当(]0,2x ∈时,()21x f x =-,则()()20f f -+=( ) A .3- B .2C .3D .2-2.已知复数,则的共轭复数在复平面对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.点(,)P x y 为不等式组+4x y y x y ≤⎧⎪≤⎨⎪≥⎩所表示的平面区域上的动点,则+22-y x 的取值范围是( )A .()(),21,-∞-⋃+∞B .(][),11,-∞-+∞ C .()2,1- D .[]2,1-4.已知l ,m 是两条不同的直线,m ⊥平面α,则“//l α”是“l ⊥m ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件5.三棱锥S ABC -的各个顶点都在求O 的表面上,且ABC ∆是等边三角形,SA ⊥底面ABC ,4SA =,6AB =,若点D 在线段SA 上,且2AD SD =,则过点D 的平面截球O 所得截面的最小面积为( ) A .3πB .4πC .8πD .13π6.某地区教育主管部门为了对该地区模拟考试成进行分析,随机抽取了200分到450分之间的2000名学生的成绩,并根据这2000名学生的成绩画出样本的频率分布直方图,如图所示,则成绩在[250,350]内的学生人数为( )A .800B .1000C .1200D .16007.已知函数()f x 的定义域为()0,∞+,且()()2224m f m f f n n ⎛⎫⎪⎝⎭⋅=,当01x <<时,()0f x <.若()42f =,则函数()f x 在[]1,16上的最大值为( ) A .4B .6C .3D .88.已知数列{}n a 为等差数列,n S 为其前n 项和,6353a a a +-=,则7S =( ) A .42B .21C .7D .39.已知函数()22cos sin 4f x x x π⎛⎫=++⎪⎝⎭,则()f x 的最小值为( ) A .21+B .12C .21D .2110.已知函数()2331x x f x x ++=+,()2g x x m =-++,若对任意[]11,3x ∈,总存在[]21,3x ∈,使得()()12f x g x =成立,则实数m 的取值范围为( ) A .17,92⎡⎤⎢⎥⎣⎦B .[)17,9,2⎛⎤-∞+∞ ⎥⎝⎦C .179,42⎡⎤⎢⎥⎣⎦ D .4179,,2⎛⎤⎡⎫-∞+∞ ⎪⎥⎢⎝⎦⎣⎭11.已知函数()3sin cos f x x m x =+,其图象关于直线3x π=对称,为了得到函数2()3g x m x =+的图象,只需将函数()f x 的图象上的所有点( ) A .先向左平移6π个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变B .先向右平移6π个单位长度,再把所得各点横坐标缩短为原来的12,纵坐标保持不变 C .先向右平移3π个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变 D .先向左平移3π个单位长度,再把所得各点横坐标缩短为原来的12,纵坐标保持不变 12.已知集合3{|0}2xA x Z x -=∈≥+,B ={y ∈N |y =x ﹣1,x ∈A },则A ∪B =( ) A .{﹣1,0,1,2,3}B .{﹣1,0,1,2}C .{0,1,2}D .{x ﹣1≤x ≤2}二、填空题:本题共4小题,每小题5分,共20分。

2025届浙江宁波市北仑区高三3月份模拟考试数学试题含解析

2025届浙江宁波市北仑区高三3月份模拟考试数学试题含解析

2025届浙江宁波市北仑区高三3月份模拟考试数学试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.在ABC 中,角,,A B C 的对边分别为,,a b c ,若cos (2)cos c a B a b A -=-,则ABC 的形状为( ) A .直角三角形 B .等腰非等边三角形 C .等腰或直角三角形D .钝角三角形2.521mx x ⎛⎫+ ⎪⎝⎭的展开式中5x 的系数是-10,则实数m =( ) A .2B .1C .-1D .-23.已知盒中有3个红球,3个黄球,3个白球,且每种颜色的三个球均按A ,B ,C 编号,现从中摸出3个球(除颜色与编号外球没有区别),则恰好不同时包含字母A ,B ,C 的概率为( ) A .1721B .1928C .79D .23284.已知数列{}n a 满足()12347324n a a a n a n ++++-=,则23342122a a a a a a +++=( )A .58B .34 C .54D .525.双曲线的渐近线与圆(x -3)2+y 2=r 2(r >0)相切,则r 等于( )A .B .2C .3D .66.已知复数31iz i-=-,则z 的虚部为( ) A .i -B .iC .1-D .17.阅读如图所示的程序框图,运行相应的程序,则输出的结果为( )A .1112B .6C .112D .2238.若2332a b a b +=+,则下列关系式正确的个数是( ) ①0b a << ②a b = ③01a b <<< ④1b a << A .1B .2C .3D .49.若[]1,6a ∈,则函数2x ay x+=在区间[)2,+∞内单调递增的概率是( )A .45 B .35 C .25 D .1510.过双曲线()2222:10,0x y C a b a b-=>>左焦点F 的直线l 交C 的左支于,A B 两点,直线AO (O 是坐标原点)交C 的右支于点D ,若DF AB ⊥,且BF DF =,则C 的离心率是( ) A 5B .2C 5D 1011.很多关于整数规律的猜想都通俗易懂,吸引了大量的数学家和数学爱好者,有些猜想已经被数学家证明,如“费马大定理”,但大多猜想还未被证明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的内容是:对于每一个正整数,如果它是奇数,则将它乘以3再加1;如果它是偶数,则将它除以2;如此循环,最终都能够得到1.下图为研究“角谷猜想”的一个程序框图.若输入n 的值为10,则输出i 的值为( )A .5B .6C .7D .812.设集合{}1,2,3A =,{}220B x x x m =-+=,若{3}A B ⋂=,则B =( )A .{}1,3-B .{}2,3-C .{}1,2,3--D .{}3二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年浙江省宁波市效实中学等十校联考高考数学模拟试卷(理科)(3月份)一、选择题:本大题共8小题,每小题5分,共40分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

1.已知a∈R,则“a<1”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件2.已知集合M={x|x2+x﹣12≤0},N={y|y=3x,x≤1},则集合{x|x∈M且x∉N}为()A.(0,3]B.[﹣4,3]C.[﹣4,0)D.[﹣4,0]3.如图,某多面体的三视图中正视图、侧视图和俯视图的外轮廓分别为直角三角形、直角梯形和直角三角形,则该多面体的各条棱中,最长的棱的长度为()A.2B. C.2D.4.已知抛物线x2=4y,过焦点F的直线l交抛物线于A,B两点(点A在第一象限),若直线l的倾斜角为30°,则等于()A.3B. C.2D.5.已知命题p:函数f(x)=|2cos2x﹣1|的最小正周期为π;命题q:若函数f(x﹣2)为奇函数,则f(x)关于(﹣2,0)对称,则下列命题是真命题的是()A.p∧qB.p∨qC.(¬p)∧(¬q)D.p∧(¬q)6.设S n是公差为d(d≠0)的无穷等差数列{a n}的前n项和,则下列命题错误的是()A.若d<0,则数列{S n}有最大项B.若数列{S n}有最大项,则d<0C.若数列{S n}是递增数列,则对任意n∈N*,均有S n>0D.若对任意n∈N*,均有S n>0,则数列{S n}是递增数列7.已知O为三角形ABC内一点,且满足+λ+(λ﹣1)=.若△OAB的面积与△OAC的面积比值为,则λ的值为()A. B.2C. D.8.已知函数f(x)=x2﹣x﹣(x<0),g(x)=x2+bx﹣2(x>0),b∈R,若f(x)图象上存在A,B两个不同的点与g(x)图象上A′,B′两点关于y轴对称,则b的取值范围为()A.(﹣4﹣5,+∞)B.(4﹣5,+∞)C.(﹣4﹣5,1)D.(4﹣5,1)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分9.已知圆M:x2+y2+2x+2y﹣5=0,则圆心坐标为;此圆中过原点的弦最短时,该弦所在的直线方程为.10.已知单调递减的等比数列{a n}满足:a2+a3+a4=28,且a3+2是a2,a4是等差中项,则公比q= ,通项公式为a n= .11.已知函数f(x)=sinxcosx﹣cos2x﹣,x∈R,则函数f(x)的最小值为,函数f(x)的递增区间为.12.已知实数m,n,且点(1,1)在不等式组表示的平面区域内,则m+2n的取值范围为,m2+n2的取值范围为.13.已知x,y∈(0,),且有2sinx=siny,tanx=tany,则cosx= .14.已知双曲线﹣=1(a>0,b>0)的左右焦点分别为F1,F2,过F2的直线交双曲线的右支于P,Q两点,若|PF1|=|F1F2|,且3|PF2|=2|QF2|,则该双曲线的离心率为.15.正四面体ABCD的棱CD在平面α上,E为棱BC的中点,当正四面体ABCD绕CD旋直线AE与平面α所成最大角的正弦值为.三、解答题:本大题共5小题,共74分。

解答时应写出必要的文字说明、证明过程或演算步骤17.在△ABC中,角A,B,C的对边分别是a,b,c,且向量=(5a﹣4c,4b)与向量=(cosC,cosB)共线(Ⅰ)求cosB;(Ⅱ)若b=,c=5,a<c,且=2,求BD的长度.18.如图,三棱柱ABC﹣A1B1C1中,D,M分别为CC1和A1B的中点,A1D⊥CC1,侧面ABB1A1为菱形且∠BAA1=60°,AA1=A1D=2,BC=1,(Ⅰ)证明:直线MD∥平面ABC;(Ⅱ)求二面角B﹣AC﹣A1的余弦值.19.对于函数f(x),若存在区间A=[m,n](m<n),使得{y|y=f(x),x∈A}=A,则称函数f(x)为“可等域函数”,区间A为函数f(x)的一个“可等域区间”,已知函数f(x)=x2﹣2ax+b(a,b∈R).(I)若b=0,a=1,g(x)=|f(x)|是“可等域函数”,求函数g(x)的“可等域区间”;(Ⅱ)若区间[1,a+1]为f(x)的“可等域区间”,求a、b的值.20.已知椭圆E:=1(a>b>0)的左右顶点A1,A2,椭圆上不同于A1,A2的点P,A1P,A2P两直线的斜率之积为﹣,△PA1A2面积最大值为6.(I)求椭圆E的方程;(Ⅱ)若椭圆E的所有弦都不能被直线l:y=k(x﹣1)垂直平分,求k的取值范围.21.设各项均为正数的数列{a n}的前n项和S n满足=n+r.(1)若a1=2,求数列{a n}的通项公式;(2)在(1)的条件下,设b n=(n∈N*),数列{b n}的前n项和为T n.求证:T n≥.2016年浙江省宁波市效实中学等十校联考高考数学模拟试卷(理科)(3月份)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

1.已知a∈R,则“a<1”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据a<1,不一定能得到(如 a=﹣1时);但当,一定能推出a<1,从而得到答案.【解答】解:由a<1,不一定能得到(如 a=﹣1时);但当时,有0<a<1,从而一定能推出a<1,则“a<1”是“”的必要不充分条件,故选B.2.已知集合M={x|x2+x﹣12≤0},N={y|y=3x,x≤1},则集合{x|x∈M且x∉N}为()A.(0,3]B.[﹣4,3]C.[﹣4,0)D.[﹣4,0]【考点】集合的表示法.【分析】集合M为不等式的解集,集合N为指数函数的值域,分别求出,再根据新定义求集合{x|x∈M且x∉N}B即可.【解答】解:M={x|x2+x﹣12≤0}=[﹣4,3],N={y|y=3x,x≤1}=(0,3],所以集合{x|x∈M且x∉N}=[﹣4,0].故选:D.3.如图,某多面体的三视图中正视图、侧视图和俯视图的外轮廓分别为直角三角形、直角梯形和直角三角形,则该多面体的各条棱中,最长的棱的长度为()A.2B. C.2D.【考点】由三视图求面积、体积.【分析】由已知我们易判断出该几何体是一个底面为直角梯形,高为2的测放的四棱锥,根据底面上底为1,下底为2,高为2,我们计算出最大直角三角形的斜边,即可得到答案【解答】解:由三视图可得,这是一个四棱锥底面是一个上下底分别为1和2,高为2的直角梯形,高为2,如图,AB=BE=AD=2,BC=1,所以EC=,BC=AE=2,ED=;故该多面体的各条棱中,最长的棱的长度为:;故选C.4.已知抛物线x2=4y,过焦点F的直线l交抛物线于A,B两点(点A在第一象限),若直线l的倾斜角为30°,则等于()A.3B. C.2D.【考点】抛物线的简单性质.【分析】设出直线方程代入抛物线方程,求出A、B两点坐标,利用抛物线定义,即可得到结论.【解答】解:设A(x1,y1),B(x2,y2),直线l的方程为:x=(y﹣1)则:将直线方程代入抛物线方程,消去x可得12y2﹣40y+12=0,点A在第一象限,解得:y1=3,y2=,∴===3,故选:A.5.已知命题p:函数f(x)=|2cos2x﹣1|的最小正周期为π;命题q:若函数f(x﹣2)为奇函数,则f(x)关于(﹣2,0)对称,则下列命题是真命题的是()A.p∧qB.p∨qC.(¬p)∧(¬q)D.p∧(¬q)【考点】复合命题的真假.【分析】命题p:函数f(x)=|2cos2x﹣1|=|cos2x|,再利用函数的周期性即可判断出真假;命题q:利用平移变换与奇函数的性质即可判断出真假.【解答】解:命题p:函数f(x)=|2cos2x﹣1|=|cos2x|的最小正周期为,因此是假命题;命题q:若函数f(x﹣2)为奇函数,则f(x)关于(﹣2,0)对称,是真命题.则上述四个命题中真命题的是p∨q.故选:B.6.设S n是公差为d(d≠0)的无穷等差数列{a n}的前n项和,则下列命题错误的是()A.若d<0,则数列{S n}有最大项B.若数列{S n}有最大项,则d<0C.若数列{S n}是递增数列,则对任意n∈N*,均有S n>0D.若对任意n∈N*,均有S n>0,则数列{S n}是递增数列【考点】命题的真假判断与应用;数列的函数特性.【分析】由题意,可根据数列的类型对数列首项的符号与公差的正负进行讨论,判断出错误选项.【解答】解:A、当d<0时,如果首项小于等于0,则S1即为最大项,若首项为正,则所有正项的和即为最大项,故A正确;B、若d>0,数列{S n}为递增数列,数列{S n}不可能有最大项,要使前n项和有最大项,则必有公差小于0,故B正确;C、若首项为负,则有S1<0,故C错误;D、若数列{S n}为递减数列,即公差小于0,则一定存在某个实数k,当n>k时,以后所有项均为负项,不能保证对任意n∈N*,均有S n>0,因此,若要使任意n∈N*,均有S n>0,则数列{S n}必须是递增数列,故D正确.故选C.7.已知O为三角形ABC内一点,且满足+λ+(λ﹣1)=.若△OAB的面积与△OAC的面积比值为,则λ的值为()A. B.2C. D.【考点】平面向量的基本定理及其意义.【分析】取BC,AB的中点D,E,由向量加法的几何意义可得2λ=,故O在中位线DE 上,根据三角形的面积比得出λ的值.【解答】解:∵+λ+(λ﹣1)=.∴λ()==.取BC的中点D,AB的中点E,则2λ=,∴O在线段DE上.且2λOD=AC=2DE,∴λ=.设OD=1,则DE=λ,∴OE=λ﹣1.∵,S△ABD=S△AOC=,∴=,解得.故选A.8.已知函数f(x)=x2﹣x﹣(x<0),g(x)=x2+bx﹣2(x>0),b∈R,若f(x)图象上存在A,B两个不同的点与g(x)图象上A′,B′两点关于y轴对称,则b的取值范围为()A.(﹣4﹣5,+∞)B.(4﹣5,+∞)C.(﹣4﹣5,1)D.(4﹣5,1)【考点】函数与方程的综合运用;利用导数研究函数的极值.【分析】根据题意条件等价为f(﹣x)=g(x)在(0,+∞)上有两个不同的解,利用参数分离法,构造函数,求函数的导数,研究函数的单调性和极值,利用数形结合进行求解即可得到结论.【解答】解:由题意知,方程f(﹣x)=g(x)在(0,+∞)上有两个不同的解,即x2+x﹣=x2+bx﹣2,则b=+1﹣则b<1,又b=,设h(x)=,则h′(x)==,由h′(x)=0得x2﹣2x﹣1=0得x=1+或1﹣(舍),当0<x<1+时,h′(x)<0,函数h(x)递减,当x>1+时,h′(x)>0,函数h(x)递增,则当x=1+时,h(x)取得极小值,此时h(1+)=+1﹣=2(﹣1)+1﹣=2﹣2+1﹣=2﹣2+1﹣2(2﹣)=4﹣5,∴要使则b=+1﹣在(0,+∞)上有两个不同的交点,则4﹣5<b<1,即a的取值范围是(4﹣5,1)故选:D.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分9.已知圆M:x2+y2+2x+2y﹣5=0,则圆心坐标为(﹣1,﹣\sqrt{3});此圆中过原点的弦最短时,该弦所在的直线方程为x+\sqrt{3}y=0 .【考点】直线与圆的位置关系.【分析】由圆M:x2+y2+2x+2y﹣5=0,能求出圆心M的坐标;求出k OM,从而得到此圆中过原点的弦最短时,该弦所在的直线的斜率,由此能求出该弦所在的直线方程.【解答】解:∵圆M:x2+y2+2x+2y﹣5=0,∴圆心M的坐标为M(﹣1,﹣).∵k OM==,∴此圆中过原点的弦最短时,该弦所在的直线的斜率k=﹣,∴该弦所在的直线方程为y=﹣x,即x+y=0.故答案为:(﹣1,﹣),x+y=0.10.已知单调递减的等比数列{a n}满足:a2+a3+a4=28,且a3+2是a2,a4是等差中项,则公比q= \frac{1}{2} ,通项公式为a n= 26﹣n .【考点】等比数列的前n项和;等比数列的通项公式.【分析】设单调递减的等比数列{a n}的公比为q,根据a2+a3+a4=28,且a3+2是a2,a4是等差中项,可得=28,2(a3+2)=a2+a4,即2(a3+2)=+a3q,解出即可得出.【解答】解:设单调递减的等比数列{a n}的公比为q,∵a2+a3+a4=28,且a3+2是a2,a4是等差中项,∴=28,2(a3+2)=a2+a4,即2(a3+2)=+a3q,解得a3=8,q=,(q=2舍去).∴a n==8×=26﹣n.故答案分别为:;26﹣n.11.已知函数f(x)=sinxcosx﹣cos2x﹣,x∈R,则函数f(x)的最小值为﹣2 ,函数f(x)的递增区间为[﹣\frac{π}{6}+kπ,\frac{π}{3}+kπ],k∈Z .【考点】三角函数中的恒等变换应用.【分析】利用倍角公式降幂,再由辅助角公式化积,可得函数的最小值,再由相位在正弦函数的增区间内求得x的范围得到函数f(x)的递增区间.【解答】解:f(x)=sinxcosx﹣cos2x﹣==.∴f(x)的最小值为﹣2;由,解得.∴函数f(x)的递增区间为[],k∈Z.故答案为:﹣2;[],k∈Z.12.已知实数m,n,且点(1,1)在不等式组表示的平面区域内,则m+2n的取值范围为[\frac{3}{2},4] ,m2+n2的取值范围为[1,4] .【考点】简单线性规划.【分析】根据点与不等式组的关系建立关于m,n的不等式关系,利用目标函数的几何意义分别进行求解即可.【解答】解:∵点(1,1)在不等式组表示的平面区域内,∴作出不等式组对应的平面区域如图,设z=m+2n,则m=﹣2n+z,平移直线m=﹣2n+z,由图象,知当直线m=﹣2n+z经过B时直线截距最小,此时z最小,当直线经过C(2,0)时,直线的截距最大,此时z最大,由得,即B(1,﹣),则z的最小值为z=2﹣=,最大值z=2×2=4.即m+2n的取值范围为[,4],m2+n2的几何意义是区域内的点到原点的距离的平方,由图象知,(1,0)到原点的距离最小,为1,C(2,0)到原点的距离最d大,为4,则m2+n2的取值范围为[1,4],故答案为:[,4],[1,4].13.已知x,y∈(0,),且有2sinx=siny,tanx=tany,则cosx= \frac{1}{2} .【考点】同角三角函数基本关系的运用.【分析】已知等式利用同角三角函数基本关系变形,表示出cosx即可.【解答】解:∵x,y∈(0,),且有2sinx=siny,即sinx=siny,tanx==tany,∴cosx===cosy,∵sin2y+cos2y=1,∴sin2x+2cos2x=1,∵sin2x+cos2x=1,∴cos2x=,则cosx=,故答案为:14.已知双曲线﹣=1(a>0,b>0)的左右焦点分别为F1,F2,过F2的直线交双曲线的右支于P,Q两点,若|PF1|=|F1F2|,且3|PF2|=2|QF2|,则该双曲线的离心率为\frac{7}{5} .【考点】双曲线的简单性质.【分析】设出双曲线的焦点,运用双曲线的定义求得|PF2|=|PF1|﹣2a=2c﹣2a,结合条件可得|QF1|=|QF2|+2a=3c﹣a,在△PF1F2和△QF1F2中,分别运用余弦定理以及∠F1F2Q+∠F1F2P=π,得cos∠F1F2Q+cos∠F1F2P=0,化简整理,由离心率公式计算即可得到.【解答】解:设双曲线﹣=1(a>0,b>0)的左右焦点分别为F1(﹣c,0),F2(c,0),则|PF1|=|F1F2|=2c,由双曲线的定义可得|PF2|=|PF1|﹣2a=2c﹣2a,由3|PF2|=2|QF2|,可得|QF2|=3c﹣3a,由双曲线的定义可得|QF1|=|QF2|+2a=3c﹣a,在△PF1F2和△QF1F2中,cos∠F1F2P===,cos∠F1F2Q===,由∠F1F2Q+∠F1F2P=π,可得cos∠F1F2Q+cos∠F1F2P=0,即有+=0,即有5c=7a,即有e==.故答案为:.15.正四面体ABCD的棱CD在平面α上,E为棱BC的中点,当正四面体ABCD绕CD旋直线AE与平面α所成最大角的正弦值为\frac{\sqrt{33}}{6} .【考点】直线与平面所成的角.【分析】取CD的中点O为原点建立空间直角坐标系,则α的法向量为=(0,0,1),设平面BCD与平面α所成的二面角为θ,正四面体边长为2,用θ表示出的坐标,利用三角恒等变换计算|cos<,>|的最大值即可.【解答】解:取CD的中点O,在平面α内过O作y轴⊥CD,作z轴⊥平面α,以O为原点建立空间直角坐标系如图所示:作EM⊥CD,垂足为M,设平面BCD与平面α所成的二面角为θ,正四面体边长为2,则AO=BO=AE=,EM=BO=.OM=CD=.∴cos∠AOB==.∴E(,﹣cosθ,sinθ),A(0,﹣cos(θ+∠AOB),sin(θ+∠AOB),).∴=(,﹣cosθ+cos(θ+∠AOB),sinθ﹣sin(θ+∠AOB)).∵=(0,0,1)是平面α的一个法向量,∴=sinθ﹣sin(θ+∠AOB)=sinθ﹣cosθ=sin(θ+φ),∵||=,||=1,∴cos<>|==sin(θ+φ)∴直线AE与平面α所成最大角的正弦值为.故答案为.三、解答题:本大题共5小题,共74分。

相关文档
最新文档