发酵条件及过程控制
第二节_发酵过程影响因素及过程控制

17:44
22
2.固体发酵
当发酵温度不足时可通入蒸汽保温或水浴保温, 也可用堆积的办法保温,一般采用通入蒸汽保 温较为简单 当发酵温度过高时,采用风机连续通风,可达 到冷却降温的目的
17:44
23
(二)pH对发酵的影响及其控制
1. 发酵对pH的影响 2. pH值对发酵过程的影响 3. 最适pH的选择 4. 发酵过程中pH的调节与控制
17:44
43
根据和氧的关系分为: 专性好氧微生物 好氧微生物 (必需有氧) 微好氧微生物 兼性好氧微生物 耐氧微生物 厌氧微生物
17:44
(可有可无)
(不需) 严格厌氧微生物
温度太低:使原生质膜处于凝固状态,不能正常进行营养物质的 运输或形成质子梯度。 温度太高:蛋白质、核酸和细胞的其他组成发生不可逆的变形作 用。
微生物对低温的适应性又比高温强,在低温往往停 止生长发育,而在高温下易死亡。
4
17:44
17:44
5
小结:
1.嗜冷微生物能够在低温条件下生长的原因是:其所含 的酶在低温能有效地催化生化反应;在低温下主动运输 仍能正常进行,有效的吸收必须的营养物质,是其原生 质膜中含有较多的不饱和脂肪酸,在低温下仍可维持膜 的流动性。 2.嗜高温微生物在高温条件下生长的原因是:其酶和其 他蛋白质在高温时更稳定;其蛋白质合成机构和细胞 质膜(富含饱和脂肪酸等)等结构成分是热稳定。
第三,PH的改变往往引起某些酶的激活或抑制,使生物合成途 径发生改变,代谢产物发生变化。
二、pH对发酵的影响
1、实例
例
pH对林可霉素发酵的影响
林可霉素发酵开始,葡萄糖转化为有机酸类中间产物,发
发酵工程发酵过程控制

发酵工程发酵过程控制1. 引言发酵工程是利用微生物的生理代谢过程来生产有机化合物的一种工程技术。
而发酵过程控制则是在发酵工程中对发酵过程进行调控和监控,以确保发酵过程能够稳定进行,并获得高产率和良好的产品质量。
发酵过程控制通过对微生物与培养基、发酵设备和操作条件等方面进行控制,研究微生物的生长规律和代谢产物的生成规律,实现对发酵过程的调控,以实现最佳的发酵效果。
本文将介绍发酵工程发酵过程控制的主要内容和方法。
2. 发酵过程控制的目标发酵过程控制的主要目标是实现以下几个方面的调控:1.生物量的控制:调控微生物的生长速率和生物量,使其在适宜的培养基和环境条件下获得最佳生长,提高产酶或产物的产量;2.代谢产物的控制:调控微生物代谢过程中的关键反应步骤,实现选择性产物的生成,并提高产量;3.溶氧的控制:调控发酵过程中的溶氧浓度,提高氧传递效率,防止氧的限制性产物的堆积;4.pH的控制:调控发酵过程中的pH值,维持合适的酸碱环境,促进微生物的生长和代谢;5.温度的控制:调控发酵过程中的温度,提供适宜的环境条件,促进微生物的生长和代谢。
3. 发酵过程控制的方法发酵过程控制主要采用以下几种方法:3.1 反馈控制反馈控制是一种基于对发酵过程变量的测量和反馈,通过调节控制器输出量,实现对发酵过程的调控。
常见的反馈控制方法包括:•温度控制:通过测量发酵容器内的温度,控制加热或降温设备的输出,以维持适宜的温度;•pH控制:通过测量发酵液的pH值,控制酸碱调节器的输出,以维持适宜的酸碱环境;•溶氧控制:通过测量发酵液中的溶氧浓度,控制气体供应设备的输出,以维持适宜的溶氧浓度。
3.2 前馈控制前馈控制是一种基于对发酵过程中外部输入变量的预测,通过调节控制器输出量,实现对发酵过程的调控。
常见的前馈控制方法包括:•溶氧前馈控制:根据发酵微生物对溶氧需求的特性,通过对气体供应设备输出的调节,提前调整溶氧浓度,以满足微生物的需求;•pH前馈控制:根据发酵产物对酸碱环境的敏感性,通过对酸碱调节器输出的调节,提前调整pH值,以维持合适的酸碱环境。
做泡菜发酵过程中控制杂菌的方法

做泡菜发酵过程中控制杂菌的方法
在泡菜发酵过程中,控制杂菌的方法主要有以下几个方面:
1. 发酵条件控制:利用无氧发酵和酸性环境抑制杂菌繁殖。
无氧环境可以抑制好氧菌,而乳酸菌发酵、酒精发酵形成的酸性环境可以抑制杂菌繁殖。
2. 食材选择:选择幼嫩、不新鲜的蔬菜,因为它们所含亚硝酸盐比较重。
腌制泡菜得蔬菜不要久放,不能堆积,加工前经过水洗、晾干,可以把绝大部分亚硝酸盐分解掉。
3. 容器消毒:装泡菜的容器彻底消毒,消灭细菌,减少有害生物和杂菌的污染。
4. 盐量控制:泡菜使用的盐水太少会使亚硝酸盐含量增多,盐量保持在15%左右,大部分腐败细菌不会滋生,产生的亚硝酸盐就少。
5. 温度控制:温度控制在20度适中,有利于乳酸菌发酵。
6. 避免搅动:泡菜过程中不要经常打开盖子搅动,乳酸菌只有在没有氧气的情况下才会正常繁衍,有效抑制有害细菌的生成。
如卤水表面长霉,不要轻易搅动打捞,以免杂菌下沉,污染泡菜导致腐烂。
这些方法仅供参考,可根据具体情况进行调整。
另外请注意,自制泡菜时一定要注意卫生和安全。
发酵工艺过程及控制介绍

发酵工艺过程及控制介绍1. 引言发酵是一种常见的生物过程,广泛应用于食品、饮料、药品等行业。
掌握发酵工艺的相关知识和控制方法对于提高产品品质、减少生产成本具有重要意义。
本文将介绍发酵工艺的基本过程和常见的控制方法,希望能为读者提供一些有用的信息。
2. 发酵工艺的基本过程发酵工艺是利用微生物在一定条件下进行生物代谢产生有用产物的过程。
其基本过程可以分为以下几个阶段:2.1 发酵前处理发酵前处理包括原料准备、消毒灭菌和接种等步骤。
原料准备是根据产品的不同需求选择合适的原料,并进行加工处理,如研磨、过滤等。
消毒灭菌是为了杀死微生物,防止杂菌污染。
接种是将合适的微生物菌种引入到发酵系统中,以促进发酵的进行。
2.2 发酵主过程发酵主过程是指微生物在适宜的环境条件下,利用碳源、氮源和能源进行代谢活动。
这个阶段主要包括菌种适应期、生长期和产物积累期。
在菌种适应期,微生物适应新的环境条件,准备进入生长期。
在生长期,微生物通过吸收和利用外部营养物质,进行生物合成和生长增殖。
在产物积累期,微生物代谢产物开始积累,并趋于稳定。
2.3 发酵后处理发酵后处理主要包括产物分离、精制、贮存等步骤。
产物分离是将发酵液中的固体和液体分离开来,常用的分离方法包括离心、膜分离等。
精制是对分离得到的产物进行纯化和提纯,以满足产品的要求。
贮存是将产物储存起来,以便日后销售和使用。
3. 发酵工艺的控制方法为了保证发酵工艺的顺利进行和产物的高质量,需要采用一些控制方法。
以下是常见的发酵工艺控制方法的介绍:3.1 温度控制温度是影响微生物生长和代谢的重要因素之一。
合适的温度可以提高微生物代谢活性,促进产物的积累。
过高或过低的温度都会对发酵产物的质量和产量产生不良影响。
因此,在发酵过程中,需要对发酵系统进行温度控制,保持适宜的温度范围。
3.2 pH控制pH是微生物生长和代谢的另一个重要因素。
微生物对不同pH值的适应能力有所不同,因此,在发酵过程中,需要控制发酵液的pH值,使其保持在适宜的范围内。
课用第五章_发酵条件及过程控制

◊ 微生物的酶的组成和特性也受到温度的控制
例如:用米曲霉制曲时,温度控制在低限,有利于蛋白酶 的合成,α-淀粉酶的活性受到抑制。
2、影响发酵温度的因素
• 发酵热:指的是发酵过程中释放出来的净热量,以J/(m3· h) 为单位表示。 • 发酵热的通式可表示为: Q发酵=Q生物+Q搅拌-Q蒸发±Q辐射 (1)生物热(Q生物):指微生物在生长繁殖中,培养基质 中的碳水化合物、脂肪和蛋白质被氧化分解为二氧化碳、 水和其他物质时释放出的热。这些释放出来的能量一部分 用于合成和代谢活动,另一部分用于合成代谢产物,其余 部分则以热的形式散失。
☺基础培养基中采用适量的浓度给予控制,以保证菌 体的正常生长所需;
代谢缓慢:补加磷酸盐。举例:在四环素发酵中,间歇,微量 添加磷酸二氢钾,有利于提高四环素的产量。
(四)菌体浓度的影响及控制
1、菌体浓度(cell concentration)指单位体积中菌体
的含量,是发酵工业中的一个重要参数。它不仅代 表菌体细胞的多少,而且反应菌体细胞生理特性不 完全相同的分化阶段。在发酵动力学研究中,常采 用菌体浓度来计算菌体的比生长速率和产物的比生 产速率等动力学参数及相互关系。
► 发酵热的计算:
(5)发酵热(Q发酵)
①通过测量一定时间内冷却水的流量和冷却水进出口温度来计算: Q发酵=qvc(t2-t1)/V
式中,qv——冷却水的体积流量,L/h;
c——水的比热容,kJ/(kg•℃); t2,t1——进、出冷却水的温度;
V——发酵液体积,m3。
②通过罐温度的自动控制,先使罐温达到恒定,再关闭自动装置,测 量温度随时间上升的速率,按下式求出发酵热: Q发酵=(M1c1+M2c2)u
式中,M1——发酵液的质量,kg;
发酵工艺的过程控制

发酵工艺的过程控制引言发酵工艺是一种将有机物质通过微生物的作用转化为需要的产物的过程。
在发酵过程中,微生物通过吸收养分、产生代谢产物和释放能量,完成了物质的转化。
为了保证发酵过程的高效和稳定,控制发酵过程至关重要。
本文将介绍发酵工艺的过程控制,包括控制参数和控制策略。
1. 发酵过程的控制参数发酵过程的控制参数是指影响发酵过程的参数,包括温度、pH值、溶氧量、搅拌速度、发酵菌种等等。
这些控制参数对于发酵过程的高效和稳定起到了重要的作用。
1.温度:发酵过程中适宜的温度可以促进微生物的生长和代谢活动。
不同的发酵过程需要不同的温度,一般在微生物的最适生长温度附近,通常在25-42摄氏度之间。
2.pH值:发酵过程中的pH值对微生物的生长和代谢活动有重要影响。
不同的微生物对于pH值的需求不同,一般在微生物最适生长pH值的附近维持。
3.溶氧量:溶氧量是指发酵液中的氧气饱和度。
微生物在发酵过程中需要氧气进行呼吸和代谢活动。
合适的溶氧量可以提高发酵效率和产物质量。
4.搅拌速度:搅拌速度对于发酵液中的微生物的分散性和氧气气液传递有着重要影响。
适当的搅拌速度可以保证发酵液中的微生物充分接触营养物质和氧气。
5.发酵菌种:选择适宜的发酵菌种对于发酵过程的控制至关重要。
合适的发酵菌种应具备高发酵活力、产物合成能力和抗污染能力。
2. 发酵过程的控制策略为了实现对发酵过程的有效控制,需要采取相应的控制策略。
以下是几种常见的发酵过程控制策略。
1.反馈控制:反馈控制是根据实时的监测数据对发酵过程进行调节。
通过监测发酵过程中的温度、pH值、溶氧量等参数,将实际参数与设定值进行比较,根据误差进行反馈调整,以维持发酵过程的稳定性。
2.前馈控制:前馈控制是根据预期的发酵过程需求提前对控制参数进行调整。
通过事先设定好的控制策略,根据发酵过程中的状态进行预测和计算,提前对控制参数进行调整,以达到预期的控制效果。
3.比例积分控制:比例积分控制是通过调整控制器的比例参数和积分参数来改变控制器的工作方式。
发酵操作规程

发酵操作规程一、引言发酵是一种生物技术,用于转化有机物质为有用产物。
在食品加工、酿酒、酸奶等行业中,发酵是一个重要的步骤。
为了确保发酵的效果和安全性,需要遵循一些操作规程。
本文将介绍发酵操作规程,包括发酵前的准备工作、发酵过程中的控制和监测,以及发酵后的处理措施。
二、发酵前的准备工作1. 确定发酵的目标和产物:在开始发酵前,需要明确发酵的目的和预期产物,以便进行后续的操作和监测。
2. 选择发酵菌种:不同的产物需要不同的发酵菌种,根据目标产物的要求选择合适的菌种,并进行培养和增殖。
3. 准备发酵基质:- 根据菌种的生长需要,选择合适的基质,如麦芽、淀粉等。
- 对基质进行适当的处理,如研磨、消毒等,以保证基质的质量和卫生。
- 按照配方准确称量和混合基质的组分。
4. 准备发酵容器:- 选择合适的发酵容器,如发酵罐、培养皿等,并进行清洗和消毒。
- 确保容器的密封性和通气性,以便控制发酵过程中的气体交换。
5. 准备发酵环境:- 根据菌种的需求,调节适宜的温度、湿度和酸碱度等环境条件。
- 保持发酵环境的清洁和卫生,以防止有害微生物的污染。
三、发酵过程的控制和监测1. 控制发酵条件:- 在发酵过程中,根据菌种的需求,控制恰当的温度、湿度和pH值等条件,以促进菌种的生长和代谢。
- 定期检查和调整发酵环境,确保环境条件的稳定性。
2. 监测发酵进程:- 定期取样并测量关键参数,如菌种数量、产物浓度、酸碱度等,以了解发酵进程的变化。
- 根据监测结果,及时调整操作参数,以确保发酵的顺利进行。
3. 防止污染:- 严格控制发酵容器和设备的卫生状况,定期清洗和消毒。
- 在操作过程中,避免外界的污染,如杂菌、灰尘等。
- 采取适当的防护措施,如穿戴干净的工作服、戴口罩等,以防止人员对发酵过程的污染。
四、发酵后的处理措施1. 停止发酵:- 在达到预期产物或发酵结束的时候,停止提供发酵菌种所需要的营养物质和环境条件。
- 停止搅拌或通气等操作,以防止污染和产物的破坏。
发酵工程第六章 发酵条件及过程控制

3、菌体浓度对产物的影响
♦ 在适当的比生长速率下,发酵产物的产率与菌浓成正比 关系,即
式中, P ——发酵产物的产率(产物最大生成速率或生率),g/(L· h); QPm ——产物最大比生成速率,h-1; ♦初级代谢产物的产率与菌体浓度成正比; c(X) ——菌体浓度,g/L.
P=QPmc(X)
♦次级代谢产物的生产中,控制菌体的比生长速率μ比μ临略高 一点的水平,即c(X) ≤c(X)临时,菌体浓度越大,产物的产量 才越大。 ♦c(X)过高,摄氧率增加,溶氧成为限制因素,使产量降低。
(三)磷酸盐浓度的影响及控制
☺ 磷是构成蛋白质、核酸和ATP的必要元素,是微生物 生长繁殖所必需的成分,合成产物所必需的营养。 控制方式: ☺ 在基础培养基中采用适量的浓度给予控制,以保证菌 体的正常生长所需;
代谢缓慢:补加磷酸盐。举例:在四环素发酵中,间歇,微量添加磷
酸二氢钾,有利于提高四环素的产量。
(二)氮源
2、不同种类氮源对发酵的影响及控制 ☺ 培养基中某些氮源的添加有利于该发酵过程中产物的积累, 这些主要是培养基中的有机氮源作为菌体生长繁殖的营养 外,还有作为产物的前体。 如:缬氨酸、半胱氨酸和ɑ-氨基己二酸等是合成青霉素和头 孢霉素的主要前体。
☺ 无机氮源利用会快于有机氮源,但是常会引pH值的变化, 这必须注意随时调整。如:
(三)磷酸盐浓度的影响及控制
☺ 微生物生长良好时,所允许的磷酸盐浓度为0.32~ 300mmol/L,但次级代谢产物合成良好时所允许的磷 酸盐最高水平浓度仅为1mmol/L。 ☺ 因此,在许多抗生素,如链霉素、新霉素、四环素、 土霉素、金霉素和万古霉素等的合成中要以亚适量添 加。
举例:四环素发酵:菌体生长最适的磷浓度为65~70
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)pH对产物合成的影响(续)
• pH对青霉素发酵的影响:
在不同pH范围内加糖,青霉素产量和糖耗不一样。
pH范围
糖耗 残糖 青霉素相对单位
pH6.0~6.3加糖 10% 0.5%
较高
pH6.6~6.9加糖
7% 0.2%
高
pH7.3~7.6 加糖 7% >0.5%
低
pH6.8控制加糖
<7% <0.2%
第六章
发酵条件 及过程控制
1
第一节 营养基质和菌体浓度的影响及其控制 第二节 温度的影响及其控制 第三节 pH的影响和控制 第四节 通气和搅拌 第五节 泡沫的影响和控制 第六节 二氧化碳和呼吸商 第七节 发酵终点的判断 第八节 发酵的优化控制 第九节 发酵过程的计算机控制 第十节 发酵过程的精确检测
qP / qPm
1.0-
μ < μC qP随μ减小而减小
μC 1.0 μ / μm
要保证生产菌获得最大的比生产速率,就必须维持较大的比生 长速率。
但是,过高的比生长速率造成过高的菌体浓度,造成不利影响:
19
过高的比生长速率和过高的菌体浓度造成的不利影响:
1、 μ过高,S消耗过快,有限的营养基质只能用于生长, 而不足于产物合成。
22
第二节 温度的影响及控制
一、温度对发酵的影响:
酶活
影响各种酶促反应的速度
发改酵变温发度酵升高液,的生物长理代性谢质加快:,生
产期提前。
温度
发温改酵度变温影菌度响体太基高代质,和谢菌氧产体的物容吸的易收合衰速老成度,方发向
酵周期缩短。
多影例响组:饱分温和次度溶小级氧于代浓3谢度0℃产,物合的成组金分霉素比的例能力强 如同:温黄毒一青度曲素霉微G等霉1素和生于毒最B3素物15适比,的℃生例在,生长分2只0长温别℃合度和为、成332代0:5四1℃℃、谢环,和1产素:2产3、0物生℃1:积青发1。霉酵累素所的的产最最生适适的温温黄度度曲为霉不2同5℃。
24
三、最适发酵温度的选择
选择既适合菌体生长又适合代谢产物合成的温度 可实行变温控制:在生长阶段选择适合菌体生长的温 度,在产物合成阶段,选择适合代谢产物合成的温度。 确定最适发酵温度还应参考其它发酵条件: 在较差通气条件下,降低发酵温度对发酵有利 培养基成分较易被利用或较稀薄时,降低发酵温度有利
(NaOH、HCl、CaCO3); • 发酵过程中加入生理酸性或碱性基质,通过代谢调节pH;
33
(2)pH对产物合成的影响
• pH影响代谢方向: pH不同,往往引起菌体代谢过程不同, 使代谢产物的质量和比例发生改变。 e.g. 黑曲霉发酵:pH2~3, 柠檬酸;pH接近中性,草酸 酵母菌发酵:pH4.5~5.0,酒精;pH8.0,酒精、醋酸 和甘油 谷氨酸发酵:pH7.0~8.0,谷氨酸;pH5.0~5.8, 谷酰胺 和N-乙酰谷酰胺
3
第一节 营养基质和菌体浓度的影响及控制
一、碳源
(一)碳源种类的影响及控制
迅速利用的碳源
缓慢利用的碳源
• 种类:葡萄糖
种类:淀粉、乳糖、蔗糖、
• 优点:
麦芽糖、玉米油
吸收快,利用快,能迅速参 优点:
加代谢合成菌体和产生能量 不易产生分解产物阻遏效
• 缺点: 有些品种产生分解产物 阻
应。有利于延长次级代谢 产物的分泌期
11
二、氮源的影响和控制
(一)氮源的种类影响
迅速利用的氮源
缓慢利用的氮源
• 种类:氨水、铵盐和玉米浆 种类:黄豆饼粉、花生饼粉、
• 优点:
和棉子饼粉
易被菌体利用,明显促进菌 优点:
体生长
利用缓慢,有利于延长次
• 缺点: 对于有些品种高浓度的铵离
级代谢产物的分泌期。 防止早衰。
子抑制产物合成
OUR
XC X / Xm 1.0 在发酵过程中,控制目标为保持稳定的临界菌体浓度和 临界比生长速率,以维持呼吸临界溶氧浓度为前提的耗氧 速率与供氧速率的平衡,从而使产物合成速率和比速率达 到最大值。
21
生长速度和菌体浓度的控制方法 • 确定基础培养基的适当配比,防止培养基
过于丰富或过于稀薄。 • 通过调节中间补料的速度和量来控制。
28
1)发酵液中pH变化的基本原理(续)
• 引起发酵液中pH上升的因素 (1)C/N过低(N源过多),氨基氮(NH4+)释放; (2)中间补料中氨水或尿素等碱性物质加入过多; (3)生理碱性盐的利用; (4)碱性产物形成。
29
2)发酵过程中pH的变化规律
• 生长阶段:pH相对于起始pH有上升或下降的趋势 • 生产阶段:pH趋于稳定,维持在最适于产物合成
缺点:
溶解度低,发酵液粘度大。
12
(二)氮源种类的控制 发酵工业中常采用含迅速利用的氮源和缓慢利用 的氮源的混合氮源。
迅速利用的氮源促进菌体生长繁殖,缓慢利用的氮源, 满足产物合成,可延长合成期,延缓自溶期。
13
(三)氮源浓度的影响控制 氮源浓度对菌体生长和产物合成的量与方向都有影响。 氮源浓度的控制: 控制基础培养基中的配比。 通过补加氮源。
成。 (10mM以下) • 一般在基础培养基中采用适宜浓度。 对于初级代谢产物,磷酸盐浓度采用足量。 对于次级代谢产物,磷酸盐浓度采用生长亚适量。 • 一般磷酸盐采用单消,防止发生沉淀反应使溶磷量
达不到最适量。 • 要控制有机氮源中的磷含量,以防溶磷量超过最适
量。 • 当菌体生长缓慢时,可适当补加适量的磷,促进菌
影响微生物的代谢机制
23
二、影响发酵温度变化的因素
发酵热 = 生物热 + 搅拌热 - 蒸发热 - 显热 - 辐射热
生物热:产生菌在生长繁殖过程中,释放的大量热量。 搅拌热:由于搅拌器的转动引起液体的摩擦产生的热量。 影蒸响发搅生热拌物:热热发=的酵P 因/液V素蒸36:发0水1(分k带J/走h)的热量。 与与显G菌菌热P3-空/6种龄:V0气-遗有发1通重-传关酵机气Q量特:排械蒸条流发性对气能件量=有数散转G下,关生(发变I单k出长带g为-位干I期进走热体空)生的能积气物热的发/热h量热酵;最。功液大当所。量消,耗K的j/功(率kw,·khw)/m3 与辐I进营射、养热I出基:-发质由酵有于罐关罐进内气外、的排温气差的,热辐焓射,带K走J/的Kg热干量空。气 与产量有关
8
补糖量的控制 经验法
• 根据经验,以最高产量的罐批的加糖率为指标,并依 据菌体浓度、一定时间内的糖比消耗速率和残糖等加 以修正。
例: 青霉素发酵开始补糖在残糖降至1.5%, pH开始回升时补 糖。补糖量以最高罐批经验量为参考。 每小时 前期0~40h 中期40~90h 后期90h以后 加糖量 0.08%-0.15% 0.15% - 0.18% 0.15% -0.18%
最高
速率恒定(0.055%/h)
*采用pH控制补糖速率的意义
35
3. 最适pH的选择
• 选择pH准则:获得最大比生产速率和合适的菌体量, 以获得最高产量。
配制不同初始pH的 培养基,摇瓶考察 发酵情况
pH对产海藻酸裂解酶的影响
36
(1)pH调节方法
• 配制合适的培养基,有很好的缓冲能力; • 发酵过程中加入非营养基质的酸碱调节剂
1)发酵液中pH变化的基本原理
• 微生物代谢对pH影响主要在两种情况下发生:①酸性 或碱性代谢产物的生成或释放;②菌体对培养基中生 理酸性或碱性物质的利用。
• 引起发酵液中pH下降的因素 (1)C/N过高,或中间补糖过多,溶氧不足,致使有机
酸积累,pH下降; (2)消泡剂加得过多:脂肪酸增加; (3)生理酸性盐的利用; (4)酸性产物形成:如有机酸发酵。
体生长。
16
四、 菌体生长速度和菌体浓度的影响及控制
影响菌体浓度的因素
• 菌体浓度的增加速度(生长速度)与微生物的种 类和自身的遗传特性有关
菌体浓度的增加速度(生长速度)与营养基质的 种类和浓度有关 ( μ 正比于S )
当存在基质抑制作用时或造成高渗透压时,高浓 度营养基质引起生长速率下降。
31
(1)pH对微生物生长的影响
pH对生长的影响机制
对E合成的影响
对对EA活TP性生的产影率响影响AT:P
, x
影响菌体细胞膜电荷状况,引起膜的渗透性的变化,
因而影响菌体对营养物质的吸收和代谢产物的分泌。
影响培养基某些重要营养物质和中间代谢产物的离
解,从而影响微生物对这些物质的利用
补氮的依据:残氮量、pH值、菌体量
14
补氮量的控制 • 经验法: 依据使pH升高0.1而通入氨水的量来计算。 依据残氮量和工艺控制残氮量来计算。 • 动力学方法; 通过qN、μ、 qP ,计算每小时的补氮量。
15
三、磷酸盐的影响和控制
• 磷酸盐能明显促进产生菌的生长。(0.32-300mM) • 对于次级代谢产物,高浓度的磷酸盐能抑制产物合
遏效应。
缺点:
溶解度低,发酵液粘度大。
4
碳源种类的控制
发酵工业中常采用含迅速利用的碳源和缓慢利用的碳源的 混合碳源。 迅速利用的碳源满足菌体生长的消耗, 缓慢利用的碳源,满足产物合成,可延长合成期,提高产 量,并可解除葡萄糖效应。
5
(二)碳源浓度的影响
S过小
μ < μC
qP随μ减小而减小
S过大
μ >> μC
OUR增大
X >> X C
CL < CL C
qP减小
粘度增大
Kla减小
产生分解产物阻遏作用的碳源浓度过大,会抑制产物合成。
6
(三)碳源浓度的控制
在发酵过程中,补加糖类控制碳源浓度 补料的类型:
1、流加 2、少量多次的加入 3、多量少次的加入