高分子材料阻燃技术的应用分析

合集下载

高分子碳酸钙功能复合材料的阻燃性能研究

高分子碳酸钙功能复合材料的阻燃性能研究

高分子碳酸钙功能复合材料的阻燃性能研究摘要:高分子材料广泛应用于各个领域,但其易燃特性限制了其在某些特殊场景下的应用。

为了提高高分子材料的阻燃性能,研究人员引入了碳酸钙(CaCO3)作为功能填料进行复合改性。

本文就高分子碳酸钙功能复合材料的阻燃性能进行了综述。

1. 引言高分子材料因其轻质、柔韧、耐磨、耐腐蚀等特点,在包装、电子、汽车、建筑等领域得到广泛应用。

然而,高分子材料易燃的特性限制了其在某些领域的应用。

因此,研究人员一直在探索提高高分子材料阻燃性能的方法。

2. 高分子碳酸钙功能复合材料的制备方法高分子碳酸钙功能复合材料的制备方法一般分为两种:直接共混法和溶液法。

直接共混法是将碳酸钙颗粒与高分子材料直接混合,然后通过热压或注射成型得到复合材料。

溶液法则是将碳酸钙颗粒与高分子材料溶于有机溶剂中,然后通过溶液混合、溶剂蒸发和成型得到复合材料。

3. 高分子碳酸钙功能复合材料的阻燃机理碳酸钙填料在高分子材料中起到了阻燃的作用。

一方面,碳酸钙颗粒可以吸收部分热量,减少高分子材料的燃烧速率和温升;另一方面,碳酸钙颗粒可以与燃烧产物中的H·、HO·等自由基发生反应,抑制燃烧链反应的扩展。

4. 影响高分子碳酸钙功能复合材料阻燃性能的因素高分子碳酸钙功能复合材料的阻燃性能受多种因素的影响。

首先,碳酸钙颗粒的形态和尺寸对阻燃性能有重要影响,通常较小的颗粒尺寸更有利于阻燃效果。

其次,碳酸钙含量的增加可以提高阻燃性能,但增加到一定程度后会导致材料的力学性能下降。

此外,高分子基体和碳酸钙颗粒的界面粘结强度也会影响阻燃性能。

5. 高分子碳酸钙功能复合材料的阻燃性能评价方法为了客观评价高分子碳酸钙功能复合材料的阻燃性能,研究人员提出了各种评价方法,如热重分析(TGA)、垂直燃烧测试(UL-94)、氧指数测试等。

这些评价方法可以从各个方面对材料的阻燃性能进行评价,并为材料的进一步改性提供指导。

6. 高分子碳酸钙功能复合材料的应用前景高分子碳酸钙功能复合材料由于其优异的阻燃性能,在电子、建筑、交通等领域具有广阔的应用前景。

高分子材料的阻燃技术探讨

高分子材料的阻燃技术探讨

高分子材料的阻燃技术探讨范春晖摘㊀要:高分子材料的价格低廉且性能优异ꎬ因而被广泛应用在生产生活中ꎬ但因为多数的高分子材料有着热值高㊁易燃㊁燃烧后产生有毒气体的特点ꎬ导致极易对人体健康和生命安全造成威胁ꎬ提升高分子材料的阻燃性能尤为关键ꎮ文章重点从CNT(碳纳米管)材料阻燃技术㊁微胶囊技术㊁膨胀阻燃技术㊁化学反应阻燃技术四个方面来分析论述高分子材料的阻燃技术ꎮ关键词:高分子材料ꎻ阻燃技术ꎻ膨胀阻燃技术㊀㊀高分子材料属于一种聚合物材料ꎬ其燃烧过程是一个较为复杂的热氧化反应ꎬ当聚合物质与空气中的氧气发生反应后ꎬ可燃物质的浓度与温度会在短时间内扩散ꎬ继而引发大型火灾ꎮ基于此ꎬ高分子材料的阻燃问题一直被高度重视ꎬ旨在研发出新型的阻燃材料技术ꎮ就当前阶段高分子材料阻燃技术的研究进展来看ꎬ在长期的研究过程中ꎬ已经掌握了较多的实用性技术ꎬ如微胶囊技术㊁膨胀阻燃技术等ꎬ均具有良好的应用效果ꎬ可以很好地保障高分子材料的使用安全性ꎮ文章重点对CNT(碳纳米管)材料阻燃技术㊁微胶囊技术㊁膨胀阻燃技术㊁化学反应阻燃这四种技术作一分析探讨ꎬ现作如下的论述ꎮ一㊁CNT材料阻燃技术的应用纳米技术在高分子材料中的应用十分广泛ꎬ为高分子材料阻燃带来了新的技术突破ꎬ比如PS/OMMT纳米复合阻燃技术便是在纳米基础上所研发出的一种新型技术ꎮ长期的实践研究发现ꎬ将纳米结构加入至高分子材料时ꎬ会使高分子材料的内部结构发生较大的变化ꎬ可以很好地提升阻燃性能ꎮ就目前应用于纳米添加剂的材料来看ꎬ最为普遍的是石墨㊁层状硅酸盐㊁碳纳米管ꎮ以其中的碳纳米管为例ꎬ其是一种由碳原子二维六方晶格组成的纳米材料ꎬ是碳的同素异形体之一ꎮ因为碳纳米管特殊的纳米结构和原子间键合强度ꎬ让其有着良好的化学稳定性能和高导电性能ꎬ应用范围较为广泛ꎮ有研究发现ꎬ若是可以在高分子材料中添加PS和OMMTꎬ并将这两种元素制作成PS/OMMTꎬ则可以很好的提升高分子材料的阻燃性能ꎬ尤其是PS在燃烧过程中的放热率可以快速下降ꎬ能够有效避免热反馈现象的发生ꎬ这对于控制火焰燃烧与扩散均有十分重要的意义ꎮ目前来看ꎬCNT材料阻燃技术在多个行业中均有良好的应用效果ꎬ尤其是在汽车制造行业的应用更为普遍ꎬ值得推广应用ꎮ二㊁微胶囊技术的应用微胶囊技术属于一种重要的高分子材料阻燃技术ꎬ其是依托于单壁碳纳米管相关结构成分所得出的结果ꎬ微粒囊式的阻燃剂在当前有着十分广泛的应用ꎮ目前来看ꎬ微粒囊阻燃主要是将阻燃剂放置到胶囊中ꎬ这种胶囊往往都是以纳米为单位ꎬ材料则以两种为主ꎬ即人工高分子材料和天然高分子材料ꎮ人工高分子材料的代表是聚苯乙烯和聚酯ꎬ天然高分子材料的代表是纤维素和蛋白质这两种ꎮ当高分子材料在使用过程中发生燃烧现象后ꎬ胶囊中的阻燃剂可以在高温状态下溢出ꎬ继而阻止燃烧反应ꎮ需要注意的一点是ꎬ微胶囊技术涉及较多的专业知识ꎬ其中很多的细节性因素会直接影响和决定阻燃效果ꎬ比如胶囊壁的厚度㊁体积和阻燃剂的量ꎮ因此ꎮ在实际制备微胶囊时要对诸多因素均加以考量ꎬ严格控制制备过程中的细节因素ꎬ以此确保微胶囊技术可以发挥最佳的阻燃效果ꎮ三㊁膨胀阻燃技术的应用膨胀阻燃技术在高分子材料阻燃中的应用较为广泛ꎬ对降低火灾悲剧发生风险有十分关键的意义ꎮ就膨胀阻燃技术的原理来说ꎬ当发泡剂和炭化剂等高分子材料处于受热状态时ꎬ会在自身表面快速形成一层炭层ꎬ这一炭层可有效隔离高温和熔化ꎮ随着近年来膨胀阻燃技术的发展ꎬ其在建筑行业中的应用越来越广泛ꎬ可以与建筑装修中的装饰材料㊁涂料及电缆防护线等融合起来ꎬ对控制高分子材料燃烧和降低火灾影响力有重要的意义ꎮ四㊁化学反应阻燃技术的应用化学反应阻燃技术是指通过特殊物质的化学反应来改变高分子材料的分子链结构ꎬ可确保分子链结构中含有阻燃因素ꎬ能够最大限度降低高分子燃烧风险ꎮ目前来看ꎬ化学反应阻燃技术最为常用的技术种类是辐射交联ꎬ这一技术可以通过射线来对高分子材料形成辐射作用ꎬ继而实现改变高分子材料分子链的目的ꎬ应用效果十分显著ꎮ在近年来的发展中ꎬ化学反应阻燃技术的实用性得到了很大程度的提升ꎬ除交联方式之外ꎬ还可以通过共聚技术和接枝技术来加以应用ꎮ一旦发生火灾后ꎬ高分子材料可以在化学反应作用下形成起防护作用的炭层ꎬ将整个材料由内而外地包裹起来ꎬ可确保高分子材料不被继续燃烧ꎮ在长期的实践应用中发现ꎬ化学反应阻燃技术的应用较为方便ꎬ在多种环境下均可以有效使用ꎬ且可以降低对周围环境的污染与破坏ꎬ这让其应用范围日益广泛ꎮ五㊁结语高分子材料的阻燃技术可以很好的抵御火灾隐患ꎬ目前所使用的CNT材料阻燃技术㊁微胶囊技术㊁膨胀阻燃技术㊁化学反应阻燃技术均有良好的应用效果ꎬ值得进一步推广和应用ꎮ为进一步发挥相关阻燃技术的优势ꎬ后续要进一步加大研究力度ꎬ掌握更多有关于高分子材料的阻燃技术ꎬ以此更好的抵御火灾隐患ꎬ保障人民群众的生命财产安全ꎮ参考文献:[1]林修煌ꎬ李治农ꎬ陈明锋ꎬ等.含磷聚硅氮烷聚合物的制备及热稳定性能与阻燃应用[J].高分子材料科学与工程ꎬ2019ꎬ36(9):54-58.[2]张元ꎬ黄秋洁.低烟无卤阻燃电缆料的研究现状分析[J].广州化工ꎬ2019ꎬ48(19):27-28.[3]魏平.高分子材料阻燃技术运用与发展探究[J].化工管理ꎬ2018ꎬ576(33):116-117.作者简介:范春晖ꎬ扬州天启新材料股份有限公司ꎮ851。

高分子材料的阻燃技术探讨

高分子材料的阻燃技术探讨

高分子材料的阻燃技术探讨高分子材料广泛应用于工业、建筑、电子设备、汽车以及航空航天等领域,然而在使用过程中,高分子材料可能会遭受火灾等安全事件的侵袭,因此阻燃技术是必要的研究领域之一。

本文将探讨高分子材料的阻燃技术。

一、阻燃技术概述阻燃技术指的是在材料中添加一定量的阻燃剂,使其在火灾遇到高温时,可以减缓火势蔓延的速度,降低火灾对现场及生命财产的危害程度。

阻燃剂一般分为无机阻燃剂和有机阻燃剂两种类型。

无机阻燃剂分为磷系、氮系、硅酸铝系等,有机阻燃剂分为溴系、氯系等。

高分子材料是一种易燃材料,当受到火源的侵入时,容易燃烧并产生高热、大量的烟雾和有毒气体。

阻燃技术的引入可以有效地减少高分子材料的这些缺点,防止火灾的发生。

阻燃剂的选择很重要,因为添加不当可能会影响材料的力学性能。

此外,阻燃剂与高分子材料之间的相容性对阻燃效果也有影响。

对于一些阻燃剂,例如PA6材料,氧化铝和氢氧化铝会影响材料的强度和熔点;而对于PP材料,三氯乙磷的相容性较差。

在阻燃剂的选择方面,溴系、氯系阻燃剂常常被用于高分子材料的阻燃,但由于其会产生有毒气体,已被禁止在一些领域使用。

因此,磷系阻燃剂在近几年被广泛使用,磷系阻燃剂可以使材料形成炭化层,形成阻燃壳,避免氧气进入,从而实现阻燃效果。

对于临床应用的高分子材料,比如医用注射器和输注器,除了需要阻燃材料之外,还需要考虑其对人体的影响。

因此,应选用对人体安全无影响的阻燃剂。

三、阻燃技术的应用阻燃技术在许多领域都有广泛应用,下面我们以电子设备、车辆、建筑等作为例子,阐述阻燃技术在不同领域的作用。

1、电子设备:随着电子设备在生活中的广泛应用,一些电子产品在使用过程中会发热,因此,对于电子产品的阻燃技术至关重要。

特别是在电池充电器、移动电源等电子产品中,阻燃材料的耐热性要求更高。

2、车辆:汽车应用阻燃技术的主要原因是为了保证乘客的安全,在车内或发动机舱处出现火灾的可能性都很大。

汽车阻燃技术的发展包括内饰材料的阻燃、电线材料的阻燃等,其中座椅材料、天花板等逐渐成为重点研究领域。

浅析高分子材料的阻燃技术

浅析高分子材料的阻燃技术

浅析高分子材料的阻燃技术随着工业技术的迅速发展,高分子材料材质的抗破坏能力和阻燃性能也越来越强。

但由于高分子燃料在燃烧过程中无法在很短的时间里释放出热量,有时候还可能产生很多的有毒物质,所以因高分子的阻燃性能仍然较低所造成的火灾事故还很频繁,由此而造成的各项经济损失也很大。

因此,如何进一步增强高分子材料的阻燃性能,还需要加大对其的研究力度。

本文将从高分子材料的燃烧及阻燃机理入手,通过分析高分子阻燃剂的种类,探讨高分子阻燃技术的实际应用以及未来的发展方向。

标签:高分子材料;阻燃技术;实际应用;发展方向1 高分子材料的燃烧和阻燃机理1.1 高分子材料的燃烧机理由于热量的影响,高分子材料的化学性质会产生极大的变化,能够分解挥发出许多可燃物质,受热分解的产物在固相和气相环境下又迅速分解。

若燃烧未遵守热平衡的原理,那么高分子就会伴随其产生的热量和燃烧的热量的改变而产生质的变化。

1.2 高分子材料的阻燃机理高分子材料的阻燃技术是针对于其燃烧机理而研发的。

如果高分子材料稳定燃烧,那么必须具有可燃性、稳定性,可以把重质物质隔离起来。

因而阻燃技术就是冷却、稀释材料进而达到阻燃的最终目的。

当前的高分子材料阻燃技术的主要方法是添加型,反应型利用较少,所以在阻燃材料的研究过程中,添加剂的应用成为重中之重。

2 高分子材料阻燃添加剂的种类2.1 磷系阻燃剂含卤磷酸醋在磷系阻燃剂中应用的最为广泛,它是在高分子受热降解的过程中促使高分子材料发生脱水碳化反应,一方面减少可燃气体,另一方面利用磷化合物不挥发的特性,隔绝或凝结碳化物,限制其与外界热量和空气的接触。

2.2 卤系阻燃剂卤系阻燃剂是目前世界上产量最大的有机阻燃剂之一,添加量少、阻燃效果显著。

含氯的阻燃剂主要有氯化石蜡、氯化聚乙烯等;含溴阻燃剂因阻燃效果较好,应用极为广泛,逐渐取代氯系阻燃剂。

卤系阻燃剂阻燃机理比较清楚,但其阻燃的同时,也带来了一些严重的问题,放出大量的有毒气体(如HCl,HBr等),卤化氢气体易吸收空气中的水分形成氢卤酸,具有很強的腐蚀作用,并产生大量的烟雾,这些烟雾、有毒气体和腐蚀性气体给灭火、逃离和恢复工作带来很大的困难。

高分子材料的热稳定性与阻燃性能研究

高分子材料的热稳定性与阻燃性能研究

高分子材料的热稳定性与阻燃性能研究高分子材料一直是工业发展中不可或缺的材料之一。

它们以其良好的加工性能和丰富的性能特点,在各个领域得到广泛应用。

然而,由于高分子材料在高温和火灾条件下的性能表现不佳,阻碍了它们在一些关键领域的应用。

因此,研究高分子材料的热稳定性和阻燃性能就显得尤为重要。

首先,热稳定性是高分子材料在高温环境下性能稳定的能力。

在高温下,高分子材料很容易发生降解、氧化、老化等反应,导致性能下降甚至失效。

因此,研发具有良好热稳定性的高分子材料对提高材料的耐用性和可靠性至关重要。

在研究高分子材料的热稳定性时,人们一直致力于寻找适合的稳定剂。

通常,稳定剂可以通过两种方式提供热稳定性。

首先,稳定剂可以作为自由基的捕获剂,阻止高分子材料在高温下发生自由基反应。

其次,稳定剂还可以通过抑制高分子材料中的氧化反应或粘接反应来提高其热稳定性。

随着科学技术的不断发展,一些新型的稳定剂逐渐被发现和应用,例如有机锡化合物、富勒烯及其衍生物等。

这些稳定剂在增强高分子材料的热稳定性方面表现出良好的应用前景。

与此同时,高分子材料的阻燃性能也是研究的焦点之一。

高分子材料在遭遇火灾时,容易燃烧并释放有毒气体和大量热量,给人身和环境带来极大的危害。

因此,提高高分子材料的阻燃性能具有重要意义。

阻燃材料的研究可以分为三个方向:阻止火焰的形成、减缓火焰的蔓延和降低火焰的热释放。

研究者们通过调整高分子材料的结构和添加阻燃剂来提高其阻燃性能。

常用的阻燃剂包括无机阻燃剂和有机阻燃剂。

无机阻燃剂通常在高温下,通过吸热分解形成非燃性产物,从而降低火焰的温度和热释放速率。

而有机阻燃剂则通过抑制高分子材料燃烧的化学反应链或在高温下分解,生成难燃气体来达到阻燃的目的。

但是,目前绝大部分阻燃剂都存在着对环境的毒性和难降解性等问题,因此研发环境友好型的阻燃剂已成为当下的研究热点。

热稳定性和阻燃性能往往是密不可分的。

在提高高分子材料的阻燃性能时,研究人员通常也要考虑其热稳定性。

阻燃剂在高分子材料中的作用机理与应用

阻燃剂在高分子材料中的作用机理与应用

愈 发 受 到 人 们 重 视 , 电 线 电 缆 用 高 分 子 聚 合 材 料 大 部 分 是 热 传 导后 的② — — ⑥ 环 节 中 的任 一 环 节 达 到 阻 燃 效 果 : 由碳 、 氧 、 氧 等 元 素 组 成 , 基 本 属 于 易 燃 、 可 燃 材 料 , 并
a 、 阻燃 剂 发生 吸热 反应 阻断② ③环 节 的热辐 射 与热
且 燃 烧 过 程 中 热 量 释 放 速 率 大 、 热 值 高 、 火 焰 传 播 快 、 不 传 导 ;
易熄 灭 ,从 而使 高分子 聚合 材料用 阻燃 剂和 阻燃材料 的研
b 、 提 高高分 子树 脂 本身 的耐热 性从 而抑 制环 节④ 的
制 生 产 及 其 推 广 应 用 得 以迅 速 发 展 。 本 文 试 图 从 燃 烧 四要 热 裂 解 ; 素 着 手 ,通 过 分 析 阻 燃 剂 作 用 机 理 及 其 在 线 缆 材 料 中 的 作 用,希望能给读者一定的参考价值 。
效 粜 及 埘 材 料 体 能 的 影 响 。A 厅。 t l 力 口 入 无 卤 阻 燃 剂 总 称 。 聚烯 烃 材 料 也 u 以简 . 定 义 为 以 聚 乙 烯 、聚 烯 为 M g ( O t t ) ,B 办- { 卜嘤J J l l 入 肉 系 燃 剂 中 溴系 阻燃 剂 及 少 量 主 的 一 切 均 聚 物 、共 聚 物 、泄 介 物 的 总 称 。 尢岗 燃 剂M l g ( 0 1 1 ) , 体添 J J l l 比例 卜 2 。 我 们 知 道 聚 烯 烃 术 添 加 燃 利 时 的 氧 指 数 为 I 5 % 左
” 。 。
企业专栏
Com pan y Wi nd ow
l 几 {I ; I l 燃 剂

阻燃高分子材料

阻燃高分子材料

阻燃高分子材料
阻燃高分子材料是一种具有阻燃性能的新型材料,它在高温下不易燃烧,能够有效地阻止火焰的蔓延,具有很强的火灾安全性能。

这种材料在各种工业领域和日常生活中有着广泛的应用,对于提高材料的防火性能和保障人们的生命财产安全起着重要作用。

首先,阻燃高分子材料的主要特点是其具有很高的阻燃性能。

它在遭受火焰侵袭时,能够迅速形成一层保护膜,阻止氧气和燃烧物质的进一步接触,有效地抑制火焰的蔓延。

这种特性使得阻燃高分子材料在建筑、交通工具、电子产品等领域得到广泛的应用,为人们的生命和财产安全提供了有力的保障。

其次,阻燃高分子材料具有良好的加工性能和稳定性。

它可以通过各种成型工艺进行加工,可以制成各种形状和规格的制品,适用于不同的工程需求。

同时,阻燃高分子材料的稳定性也非常好,不易受到外界环境的影响,能够长时间保持其阻燃性能和物理性能,具有很高的可靠性和持久性。

另外,阻燃高分子材料还具有很好的环保性能。

它在生产过程中不会产生有害物质,不会对环境造成污染,符合现代社会对于绿色环保产品的需求。

同时,由于其阻燃性能能够有效地减少火灾事故的发生,可以降低资源的浪费和环境的破坏,对于可持续发展具有积极的意义。

总的来说,阻燃高分子材料具有很高的阻燃性能、良好的加工性能和稳定性,以及良好的环保性能,对于提高材料的防火性能和保障人们的生命财产安全具有重要意义。

未来,随着科技的不断进步和材料工程的发展,相信阻燃高分子材料将会得到更广泛的应用,并为人们的生活带来更多的便利和安全。

高分子材料阻燃技术研究

高分子材料阻燃技术研究

燃 及抑 制 火 焰传 播 的助 剂 。按 阻 燃剂 与被 阻 燃基 材
的关 系 , 燃 剂 可 分 为 添 加 型 及 反 应 型 两 大 类 。 前 者 阻
与基 材 的其 他组 分不 发生 化学 反 映 , 只是 以物理 方式 分散 于 基材 中 , 多用 于热 塑性 高分 子 材料 。后者 或者 为 高分 子材 料 的单体 . 者作 为辅 助试 剂 而参 与合成 或
高 分 子 材 料 的 化 学 反 应 , 后 成 为 高 分 子 材 料 的 结 构 最
单元 , 多用 于热 固性 高 分 子材 料 。按 阻燃 元 素 种类 . 阻燃 剂 常 分 为 卤 系 、 机 磷 系及 卤一 系 、 系 、 一 有 磷 氮 磷 氮系 、 系 、 一 系 、 锑 铝 镁 无机 磷 系 、 系 、 系等 。 硼 钼 2 1 卤系阻 燃剂 .

成 为 当前 消 防工作 一个 急需 解决 的问题 。
1 高 分 子 材 料 的 燃 烧 及 阻 燃 机 理
种 阻燃体 系 往往 是几 种 阻燃机 理 同时起 作 用 。
高分 子材 料在 空气 中受 热 时 , 分解 生 成挥 发性 会 可燃物 , 当可燃 物 浓 度 和体 系 温 度 足够 高 时 , 即可 燃 烧 。所 以高 分 子材 料 的燃 烧 可分 为 热 氧 降 解 和燃 烧 两 个 过程 , 涉及 传 热 、 分子 材 料 在 凝 聚 相 的热 氧 降 高 解 、 解 产物 在 固相及 气 相 中 的扩 散 、 空 气混 合 形 分 与 成 氧 化 反应 场及 气 相 中的链 式 燃 烧 反 应 等 一 系列 环 节 。当高 分 子材 料 受 热 的热 源热 量 能 够 使 高分 子 材 源自21 世 纪 建 筑 材 料
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高分子材料阻燃技术的应用分析
随着科学技术的不断发展,纳米技术也逐步应用于高分子材料阻燃技术中,以下是搜集的一篇探究高分子材料阻燃技术应用的,供大家阅读查看。

原有阻燃技术在处理工艺方面存有一定的缺陷,出现排烟量大、滴落面积大、毒害气体,严重威胁着人们的身体健康。

而现有技术通过高分子加聚反应产生的化合物,不但能够降低反应温度,而且还不会产生有害产物。

为了降低物质易燃特性,笔者针对高分子材料阻燃技术进行了分析。

其中包括:无机阻燃剂、卤系阻燃剂以及磷系阻燃剂,这几种阻燃剂不但能够隔断物质与空气的接触面积,而且还能降低物质燃烧时的温度,以此达到较为理想的阻燃效果。

高分子材料的阻燃机理是破坏原有高分子成分,形成新的保护膜或隔离层,达到抑制分子燃烧的效果。

一般阻燃性质从两个原理中进行分析,分别为隔氧及温度,隔氧采用凝聚相阻燃机理,高分子阻燃材料在燃烧过程中,形成阻燃细微分子,中断该链式反应。

链式反应中断后,分子热分解的温度较高,所以燃烧后期会形成水蒸气,阻燃材料高分子中含有大量的氢氧元素,与空气接触后,便会形成水雾覆盖在材料表层。

其次便是能隔断与空气的接触,形成的水雾除了降低表层温度外,还能堵塞阻燃材料的气孔,形成密闭环境,隔断与空气的接触。

凝聚相在作用机理中有4种阻燃模式,阻
燃材料在燃烧过程中,会产生惰性气体,延缓阻燃材料的燃烧;燃烧期间会产生多碳气孔,使其阻燃材料难以燃烧;反应过程中会吸收大量的热量,降低反应温度;其次无机比热容较大的分子,在燃烧过程中,通过分子之间的氧化还原反应,使分子发生质变,促使反应中断停止。

该两种反应在作用机理中大致相同,但在反应中作用的机理很多,所以在划分高分子阻燃体系结构上仍十分复杂。

2.1 无机阻燃剂
无机阻燃剂作用机理便是通过无机化合物的热分解,产生保护膜或水蒸气,隔断与空气接触及降低燃烧温度。

无机阻燃剂在燃烧过程中会产生结晶水,温度升高后,吸收周围热量,降低其燃烧温度,阻断其物质的燃烧;另一种便是通过阻燃剂燃烧形成保护膜,例如:Al(OH)3燃烧过程中,产生致密的氧化层薄膜,隔断物质与空气的接触面积。

无机阻燃剂化学性质稳定,不会产生较为污染有害气体,一般常用作防火无机阻燃剂。

2.2 卤系阻燃剂
在元素周期表中,卤系元素包括:氟、氯、溴、碘,该元素形成的化合物具有高效的阻燃效果。

化合物中含有氟利昂,该化合物易散发,破坏臭氧层。

在该物质中分别添加氯元素及氟元素,然后对
标准沸点进行比对。

其中添加氯元素标准沸点升高,化合物中含有3个氯分子时,标准沸点为61.2℃;其中添加氟元素标准沸点降低,化合物中含有3个氟分子时,标准沸点为-128℃,具体数据量如表1所示。

含氯化合物阻燃剂具有良好的阻燃性,化学性质稳定,能与多种高分子化合物相融,不影响化学反应。

溴元素阻燃化合物包括:十溴联苯醚、四溴苯酚、六溴环十二烷等,化学稳定性位于氯和碘元素之间,具有良好的`阻燃性。

卤系元素虽然具有良好的阻燃性,一般阻燃剂内都添加少量的卤系元素,保证达到阻燃效果。

2.3 磷系阻燃剂
磷系阻燃剂包括:红磷、白磷、磷酸氢二铵以及亚磷酸酯等化合物,磷系化合物在燃烧过程中会形成性碳膜,该膜除了降低外围温度外,还能起到隔断空气的作用,达到理想的阻燃效果。

其次红磷与白磷的混合,也能起到良好的阻燃性。

红磷在空气中燃烧发出淡蓝色的火焰,并产生大量白烟;白磷燃烧性质与红磷相似,最终产物都是五氧化二磷,两种磷在制备次磷酸阻燃剂中,能够提升与液体水的混合比例。

次磷酸(H3PO2),分子量60,与强氧化剂反应时,产生磷酸氢及氢气等,不会产生助燃气体成分。

针对磷系阻燃剂的配比关系,其中次磷酸中磷含量占有比例在35%,亚磷酸中磷含量占有比例在27%,保证磷系元素达到理想的阻燃效果。

3.1 纳米技术
随着科学技术的不断发展,纳米技术也逐步应用于高分子材料阻燃技术中,日本曾研发出纳米硅酸盐黏土纳米材料,这种材料具有优异的阻燃特性。

纳米材料在燃烧过程中,产生抑制剂,改变燃烧物质的内部结构,使其发生质变。

研制出的纳米硅酸盐黏土分子直径在0.4-0.5nm,产生的凝聚产物能够封闭其气孔,隔断与空气的接触面积。

其次在热释放速率上也具有延缓效应,保证有效时间内散发的热值最小。

3.2 接枝和交联改性技术
接枝和交联改性技术利用的是光敏技术与化学接枝,将多种无机化合物交织在一起,使其形成共聚化合物。

共聚化合物在燃烧过程中会产生无机绝缘层,吸收易燃物质内的高分子,减少助燃物质内的有效成分。

其次该技术也可用于减少燃烧物质后的产物,提高其阻燃性,最终达到理想状态。

3.3 膨胀技术
膨胀技术般采用发泡剂作为阻燃物质,发泡剂具有三个优点,包括:无排烟量、无毒气、无滴落。

原有技术在做阻燃处理工艺中,
产生大量的有毒气体,例如四溴苯酚在阻燃处理工艺中,产生大量的有毒气体,不但会污染环境,而且还对人体健康造成伤害。

无滴落主要体现在该阻燃剂不会产生腐蚀性液体,导致局部腐蚀。

通过对高分子材料阻燃技术的应用分析,使得笔者对此该技术有了更为深刻的认知。

这种技术不但能够对物质燃烧起到阻燃特性,而且也不会污染环境。

[1]王建祺.无卤阻燃聚合物基础与应用[M].北京:科学出版社,xx,34(17):33-34.
[2]张军.聚合物燃烧与阻燃技术[M].北京:化工工业出版社,xx,38(24):58-59.
[3]欧育湘.阻燃高分子材料[M].北京:国防工业出版社,xx,48(37):22-23.
模板,内容仅供参考。

相关文档
最新文档