两个随机变量的函数的分布-完整版

合集下载

两个随机变量的函数的分布

两个随机变量的函数的分布

f (x, z x)dx
fX (x) fY (z x)dx
f (z y, y)dy fX (z y) fY (y)dy
连续场合 的卷积公 式
类似可得: fX Y (z)
f (x, x z)dx
fX (x) fY (x z)dx
f (z y, y)dy
fX (z y) fY ( y)dy
(3) 当 1 < z 时,
fZ (z)
1 e(zx)dx ez (e 1).
0
1x
1 ez, 0 z 1
故 fZ (z) ez (e 1), z 1 .
0,
其他
例6 设 X与Y 是独立同分布的标准正态变量,求Z = X+Y 的分布.

fZ (z) fX (x) fY (z x)dx
fXY (z)
f (x, z ) 1 dx x | x |
fX
(x)
fY
(
z) x
|
1 x
|
dx
f ( z , y) 1 dy y | y |
z
1
fX
(
) y
fY
(
y)
|
y
|
dy
fX /Y (z)
f (yz, y) | y | dy
fX ( yz) fY ( y) | y | dy
应用:若 Xi b(1, p), i=1, 2, …, n且相互独立,则 Z = X1 + X2 + … + Xn b(n, p). 相互独立的0-1分布随机变量之和服从二项分布
二、两个连续型随机变量的和差积商概率密度公式
定理1 数为
设连续型随机变量X与Y 独立,则 Z=X+Y 的密度函

两个随机变量函数的分布

两个随机变量函数的分布
z
x 0 x 0
z
x
0
z
x
zx
0
x
fZ (z)
z xe x (z x)e(z x)dx,
0
当z 0
fZ (z) ez
z
x(z x)dx
0
fZ (z) ez
z (zx x2 )dx
0
z3ez 6
,
z0
0, z 0
作业中的问题
习题二 P70
5. (1) 设随机变量X的分布律为
P(Z 1) P( X 0,Y 1) 0
P(Z 2) P( X 1,Y 1) 3 8
P(Z 3) P(X 2,Y 1) P(X 0,Y 3)
314 88 8
Z123456 pk 0 3/8 4/8 0 0 1/8
例: (P73) 泊松分布的可加性
若X,Y相互独立, X~P(
1
x2
e 2,
x
2
1
y2
e 2,
y
2
求Z=X+Y的概率密度。
解:由卷积公式
fZ z
f
X
x
fY
z
x dx
1
x2 zx2
e 2 e 2 dx
2
( x2 zx z2 ) ( x z )2 z2
2
24
1
z2
e4
( x z )2
e 2 dx
2
令x z t
y0
试就以上三种联接方式分别写出L的寿命Z的概率密度.
解:(1)串联的情况: Z = min (X,Y) X,Y的分布函数分别为:
1 e x , x 0
FX
(
x)

两个随机变量函数的分布

两个随机变量函数的分布

解: X 0
1
P 1/2 1/2
Y0
1
P 1/2 1/2
(XP,{YZ)=的zk取} 值= P数{对g(为X,(Y0),0=),(z0k,}1=),(1,0),(1p,i1j ,),k 1,2,
Z=max(X,Y)的取值为:0,1
i, j
g( xi , y j )zk
P{Z=0}=P{X=0,Y=0}= P{X=0}P{Y=0} =1/4
(1)
1
f(x, y)dxdy
ke(xy)dxdy k k 1
00
(2)F(x,
y)
x 0
y e-(uv)dudv
0
(1 e-x )(1 ey ),0 x ,0 y
0, 其 它
( 3 )P( 0 X 1,0 Y 2 ) 1 2 e( x y )dxdy ( 1 e1 )( 1 e2 ) 00
e 2 dx
2
1
z2
e4
( x z )2
e 2 dx
2
fZ ( z ) fX ( x ) fY ( z x )dx
1
x2
e2
2
1
( z x )2
e 2 dx
2
1
z2
e4
( x z )2
e 2 dx
2
令 t x z ,得
2
fZ (
z
)
1
2
z2
e4
et2 dt
1
z2
g( xi , y j )zk
概率 1/10 2/10 3/10 2/10 1/10 1/10
(X,Y)(-1,-1) (-1,1) (-1,2) (2,-1) (2,1) (2,2)

两个随机变量的函数的分布

两个随机变量的函数的分布
如果对于所有x1 < x2,都有f(x1) < f(x2),则函数f(x)在其定义 域内单调递增。
单调递减
如果对于所有x1 < x2,都有f(x1) > f(x2),则函数f(x)在其定义 域内单调递减。
有界性
有上界
如果存在一个实数M,使得对于所有x 属于定义域,都有f(x) <= M,则称 函数f(x)有上界。
两个随机变量的函数的实际 应用
金融领域
金融风险评估
在金融领域中,两个随机变量的函数可以用于评估投资组合的风险。例如,通过计算两 个资产收益率的协方差矩阵,可以了解不同资产之间的相关性,从而制定风险管理策略。
期权定价
在期权定价模型中,标的资产的价格通常被视为一个随机变量。通过引入另一个随机变 量,如无风险利率或波动率,可以构建更复杂的期权定价模型,如二叉树模型和蒙特卡
幂函数
若$X$是随机变量,$n$是自然数,则$X^n$的期望是 $E(X^n)=nE(X)$。
方差的计算
1 2 3
线性函数
若$X$是随机变量,$a$和$b$是常数,则 $aX+b$的方差是$D(aX+b)=a^2D(X)$。
乘积函数
若$X$和$Y$是随机变量,则$X times Y$的方差 是$D(X times Y)=D(X) times D(Y)+[E(X)E(Y)]^2$。
04
CHAPTER
两个随机变量的函数的图像 和性质
图像的绘制
直方图
通过将数据分组并在每个组上绘制矩 形来绘制直方图,矩形的面积等于该 组的频数,高度等于组的中位数。
折线图
散点图
将两个随机变量在坐标系上标出,并 绘制点来表示它们的值。

两个随机变量函数的分布

两个随机变量函数的分布

P{Z 3} P{X Y 3} P{X 3,Y 1} 3 , 20
P{Z 4} P{X Y 4} P{X 4,Y 4} 1 , 20
于是得Z =X +Y 的分布律(表3-13)
表3-13
同理可得,Z = XY 的分布律为(表3-14)。
表3-14
例3.17 设X,Y 相互独立,且分别服从
求随机变量Z =X +Y 的分布密度.
解 X,Y 相互独立,所以由卷积公式知
fZ (z) f X (x) fY (z x) dx

由题设可知 fX (x) fY ( y)只有当0 x 1 ,y 0 ,即当0 x 1
且z x 0 时才不等于零。现在所求的积分变量为x,z 当作参数,
当积分变量满足x 的不等式组时,被积函数
概率学与数理统计
两个随机变量函数的分布
设( X , Y )为二维随机变量,则 Z ( X ,Y ) 是( X , Y )的
函数,Z 是一维随机变量,现在的问题是如何由( X , Y )的分 布,求出Z 的分布,就是已知二维随机变量( X , Y )的分布律
或密度函数,求Z ( X ,Y ) 的分布律或密度函数问题。
特别地,当X 和Y 相互独立时,设( X , Y )关于X,Y 的边缘
概率密度分别为fX (x),fY (y),则有
fZ (z)
fX
(z
y)
fY
dy


(3.18)
fZ (z)
fX
(x)
fY
(z
x) dx

(3.19)
这两个公式称为卷积(Convolution)公式,记为 fX fY 即
0 x 1

3.5 两个随机变量的函数的分布

3.5 两个随机变量的函数的分布
第五节
两个随机变量的函数的分布
一、问题的引入 二、离散型随机变量函数的分布 三、连续型随机变量函数的分布 四、小结
一、问题的引入
有一大群人 , 令 X 和 Y 分别表示一个人的 年龄和体重, Z 表示该人的血压 ,并且已知 Z 与
X , Y 的函数关系 Z = g ( X ,Y ),如何通过 X ,Y 的分
(iii)备用的情况
由于这时当系统 L1 损坏时,系统 L2 才开始工 作, 因此整个系统 L 的寿命 Z 是 L1 , L2 两者之和: 两者之和:
Z = X +Y
当 z > 0 时 Z = X + Y 的概率密度为
f (z ) = ∫

−∞
f X ( z − y ) fY ( y ) d y
= ∫ αe − α ( z − y ) βe − βy d y
(1 − e − αz )(1 − e − βz ), z > 0, Fmax ( z ) = FX ( z ) ⋅ FY ( z ) = 0, z ≤ 0.
Z = max{ X , Y }的概率密度为
αe − αz + βe − βz − (α + β )e −( α + β ) z , z > 0, f max ( z ) = z ≤ 0. 0,
分布函数为
Fmax ( z ) = P { M ≤ z } = P { X ≤ z ,Y ≤ z }
=P { X ≤ z } P {Y ≤ z }.
即有 Fmax ( z ) = FX ( z )FY ( z ). 类似地, 类似地
可得 N = min{ X , Y }的分布函数为
Fmin (z ) = P { N ≤ z } = 1 − P{ N > z } (z

概率统计课件3.5两个随机变量的函数的分布.

概率统计课件3.5两个随机变量的函数的分布.

2018/10/8
e
1

k 2
k!
e
2

1
1!
e
1


k 1 2
( k 1)!
e
2



k 1
k!
e
1
e
2
1 ( 1 2 ) k k e [2 12k 1 k! 1!
1k ]
k
(1 2 ) ( 1 2 ) 1 ( 1 2 ) k e (1 2 ) e k! k!
参数为 i , 的分布, 则其和 X1 X 2
服从参数为 2018/10/8
Xn

i 1
n
i
, 的分 布.
1 1 ▲ 特别当 1 2 n , 时, 2 2 X X1 X 2 X n 的密度函数为:
x n 1 1 2 2 x e x0 n f X ( x ) 2 2 ( n 2 ) 0 x0 此时则称 X 服从自由度为 n 的开平方分布,记 2 X ~ (n) 为:
第五节 两个随机变量的函数的分布
Z X Y
的分布
M=max(X,Y)及N=min(X,Y)的分布
小结
研究的问题 在一维随机变量中讨论了:已知随机 变量 X 及它的分布,如何求其函数 Y g( X ) 的分布。 在多维随机变量中需讨论:已知随机变 量X1, X2, …,Xn 及其联合分布,如何求 出它们的函数: Yi =gi (X1, X2, …,Xn ), i = 1, 2,…, m 的联合分布。
X 与 Y 的取值均为: 0, 1, 2,
Z 的取值也为非负的整数 k P (Z k) P ( X Y k)

§3.3 随机变量的独立性§3.4 两个随机变量函数的分布

§3.3    随机变量的独立性§3.4   两个随机变量函数的分布

第9页
例3.3.2 已知 (X, Y) 的联合密度为
e x y , f (x, y ) 0, 问 X 与Y 是否独立?
解: 边缘分布密度分别为:
( x y ) dy e x x 0 0 e f (x) x0 0
x 0, y 0; 其 他.
若(X,Y)的所有可能取值为(xi, yj) (i, j=1, 2, …), 则X与 Y相互独立的充分必要条件是对一切 i, j=1, 2,… , 有 P{X = xi,Y= yj}= P{X= xi}· P{Y= yi}
(Pij Pi P ) j
第3章
§3.3—3.4
第7页
2. (X, Y)是连续型
14
14
16
18
18
1 12
( X,Y ) (-1,-1) (-1,0) (1,-1) (1,0) (2,-1) (2,0) X +Y -2 0 1 -1 -1 0 0 2 -1 1 1 0 1 3 -2 2 2 0
dx
0
1/2
e y dy
1 2
1 e1 2e
第3章
§3.3—3.4
第6页
§3.3 随机变量的独立性
定义 设两个随机变量X, Y, 若对任意的实数 x, y 有 F(x,y) = FX(x) FY(y) 即 P{X≤x, Y≤y} = P{X≤x} P{Y≤y}
则称随机变量X与Y是相互独立的。 1. (X, Y)是离散型
e y , 0 x y f ( x, y ) 其他 0,
求概率P{X+Y≤1}.
第3章
§3.3—3.4
第4页
D为 2x+3y≤6. 1.解:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档