管道的设计计算——管径和管壁厚度(精)

合集下载

不锈钢薄壁给水管规格尺寸

不锈钢薄壁给水管规格尺寸

不锈钢薄壁给水管规格尺寸
不锈钢薄壁给水管是一种常用于建筑工程中的管道材料,具有耐腐蚀、耐高温、抗压强度高等优点。

在建筑工程中,不锈钢薄壁给水管的规格尺寸多种多样,以满足不同工程需求。

一般来说,不锈钢薄壁给水管的规格尺寸主要包括管径、壁厚和长度三个方面。

管径是指管道的直径,常见的管径有6mm、8mm、10mm等,根据需要可以选择不同的管径来满足工程需求。

壁厚是指管道壁的厚度,通常以mm为单位,不同的壁厚可以承受不同的压力和负荷。

长度则是指管道的长度,一般以米为单位,可以根据工程需要进行定制。

在选择不锈钢薄壁给水管规格尺寸时,需要根据实际工程情况来进行合理选择。

如果工程需求较大,可以选择较大直径和壁厚的管道,以满足工程的承载能力要求;如果工程空间较为狭小,可以选择较小直径和壁厚的管道,以节省空间并降低成本。

除了管径、壁厚和长度外,不锈钢薄壁给水管的规格尺寸还包括连接方式。

常见的连接方式有对焊、法兰连接、螺纹连接等,每种连接方式都有其适用的场合和优缺点。

在选择连接方式时,需要根据工程要求和实际情况进行合理选择,以确保管道的连接牢固、密封性好。

总的来说,不锈钢薄壁给水管规格尺寸的选择需要综合考虑多方面
因素,以确保管道在工程中的使用效果和安全性。

在实际工程中,需要根据具体情况来进行选择,并严格按照相关标准和规范进行安装和使用,以确保工程的顺利进行和使用效果的达到。

雨水管道的设计计算

雨水管道的设计计算

地面种类
ψ
各种屋面、混凝土和沥青路面
0.90
大块石铺砌路面和沥青表面处理的碎石路面
0.60
级配碎石路面
0.45
干砌砖石和碎石路面
0.40
非铺砌地面
0.30
公园或绿地
0.15
1.2 雨水管道的设计
尽量利用池塘、 河浜受纳地面径 流,最大限度地 减少雨水管道的 设置。
利用地形, 就近排放 地面水体, 降低造价。
平坦地区:为避免干沟埋深过 大,增加造价,干沟应设在流域 的中部,以减少两侧支沟长度。
陡坡地区:为避免因沟道坡度太陡, 设跌水窨井等特殊构筑物,使干沟与 等高线斜交,以适当减少干沟坡度。
雨水沟系常沿道路铺设, 设在道路中线的一侧,与道路 相平行,尽量在快车道以外。
雨水口的设置位置,要 配合道路边沟,在道路交叉 口处,雨水不应漫过路面。
设计降雨历时:以排水面积中最远的一点到集水 点的雨水流行时间作为设计降雨历时。
t t1 t2
t2
l 60 v
(min)
式中: t——设计降雨历时(排水面积的集水时间),min;
t1——地面积水时间,min; t2——在管道中流行的时间,min; l——集中点上游各沟段的长度,m;
v——相应各管段的设计流速,m/s。
步骤5:根据各管段的假定流速,算出集流时间t,比流量q0, 设计流量qv,而后从水力学算图上选定管径D与坡度I,并确定相 应的流速v,当所确定的流速v与假定流速有出入时,再调假定 流速并进行重新计算,最终使假定流速与确定的流速两者一致
步骤6:计算各管底高程,并填入表格
雨水管道平面图的绘制
规划阶段
雨水管道水力学设计的准则
管道按满流设计,明沟应留超高,不小于0.2m。 最小设计流速为0.75m/s,明沟为0.4 m/s。 管道可不考虑最大流速,明沟的最大流速按下页表采用。 最小管径300mm,最小坡度0.003;雨水口连接管管径 200mm,最小坡度0.01。 雨水沟道流速公式。 管段衔接一般用管顶平接,当条件不利时也可用管底平接。 最小覆土厚度,在车行道下时,一般不小于0.7m,基础应 设在冰冻线以下。 在直线管段上窨井的最大间距见下表。

管道壁厚对照表

管道壁厚对照表

(一)无缝碳钢管壁厚m m(二)无缝不锈钢管壁厚mm(三)焊接钢管壁厚mm压金属直管的壁厚根据SH 3059-2001《石油化工管道设计器材选用通则》确定:当S0< Do /6时,直管的计算壁厚为:S0 = P D0/(2[σ]tΦ+2PY)直管的选用壁厚为:S = S0 + C式中S0――直管的计算壁厚,mm;P――设计压力,MPa;D0――直管外径,mm;[σ]t――设计温度下直管材料的许用应力,MPa;Φ――焊缝系数,对无缝钢管,Φ=1;S――包括附加裕量在的直管壁厚,mm;C――直管壁厚的附加裕量,mm;Y――温度修正系数,按下表选取。

温度修整系数表钢管壁厚表示方法有管子表号、钢管壁厚尺寸和管子重量三种方法1)是以管子表号"Sch"表示壁厚。

管子表号是管子设计压力与设计温度下材料许用应力的比值乘1000,并经圆整后的数值。

即: Sch=P/[σ]t×1000ANSI B36.10壁厚等级:Sch10、Sch20、Sch30、Sch40、Sch60、Sch80、Sch100、Sch120、Sch140、Sch160十个等级;ANSI B36.19壁厚等级:Sch5s、Sch10s、Sch40s、S2)以钢管壁厚尺寸表示中国、ISO、日本部分钢管标准采用ch80s四个等级; 表示英制管壁厚系列:Sch.20----全称:Schedule 20Sch.10s--带s的系列为不锈钢专用,碳钢不用。

举个例子:2" sch.10s 表示2”接管的壁厚为2.9mm,材质为不锈钢;2" sch.40 表示2”接管的壁厚为4.0mm。

3)是以管子重量表示管壁厚度,它将管子壁厚分为三种:a.标准重量管,以STD表示b加厚管,以XS表示c.特厚管,以XXS表示。

对于DN≤250mm的管子,Sch40相当于STD,DN<200mm的管子,Sch80相当于XS。

压缩空气流量及管径计算

压缩空气流量及管径计算

厚可近似按薄壁圆筒公式计算:
先选取的气体流速由下式求得:
m in
=
npdi
2
np
c
1
8 qv 2
式中, p 为管内气体压力(MPa); n 为强度安全系数
u ); qv 为气体容积流量( m 3 h ); u 为管内气体平均流速( m s ),下表中
常用管材许用应力值列于下表; 为焊缝系数,无缝 (包括:壁厚偏差、腐蚀裕度、加工减薄量),为简便
例 2: 算出例 1 中排气管路的厚度。管路材料为 20
1
qv 2 u 。
1
di
18.8
252 6
2 =121.8
mm
公式
m in
=
npdi
2
np
c

n=2 ,
3.
如上表 20#钢 150oC 时的许用应力为 131,即
=1 , C =1 带入公式
m in
=
npdi
2
np
c

2 3121 2 1311 2
140
140
在 1.5MPa 以上时,管路材料推荐采用 20#钢。
(MPa) 150oC 109 131 140 140
排气管路的厚度。管路材料为 20#钢
npdi
2
np
c

n=2 ,
p=3.0 MPa , d i =121
钢 150oC 时的许用应力为 131,即σ=131
=1 带入公式
i c = 2 3121 1=3.8 mm
b.高压管道的壁厚,应查阅相关专业资料进行计算
主管路(或主干管)内压缩空气流速推荐值;对于长度在 1m 内的管路或

完整word版,压缩空气管径的设计计算及壁厚

完整word版,压缩空气管径的设计计算及壁厚

管道的设计计算——管径和管壁厚度空压机是通过管路、阀门等和其它设备构成一个完整的系统。

管道的设计计算和安装不当,将会影响整个系统的经济性及工作的可靠性,甚至会带来严重的破坏性事故。

A.管内径:管道内径可按预先选取的气体流速由下式求得:=i d 8.1821⎪⎭⎫ ⎝⎛u q v式中,i d 为管道内径(mm );v q 为气体容积流量(h m 3);u 为管内气体平均流速(sm ),下表中给出压缩空气的平均流速取值范围。

管内平均流速推荐值1m 内的管路或管路附件——冷却器、净化设备、压力容器等的进出口处,有安装尺寸的限制,可适当提高瞬间气体流速。

例1:2台WJF-1.5/30及2台H-6S 型空压机共同使用一根排气管路,计算此排气管路内径。

已知WJF-1.5/30型空压机排气量为1.5 m 3/min 排气压力为3.0 MPa已知H-6S 型空压机排气量为0.6 m 3/min 排气压力为3.0 MPa4台空压机合计排气量v q =1.5×2+0.6×2=4.2 m 3/min =252 m 3/h如上表所示u=6 m/s带入上述公式=i d 8.1821⎪⎭⎫ ⎝⎛u q v =i d 8.18216252⎪⎭⎫ ⎝⎛=121.8 mm得出管路内径为121mm 。

B.管壁厚度:管壁厚度δ取决于管道内气体压力。

a.低压管道,可采用碳钢、合金钢焊接钢管;中压管道,通常采用碳钢、合金钢无缝钢管。

其壁厚可近似按薄壁圆筒公式计算:min δ=[]c npnpd i+-ϕσ2式中,p 为管内气体压力(MPa );n 为强度安全系数5.25.1~=n ,取[σ]为管材的许用应力(MPa ),常用管材许用应力值列于下表;ϕ为焊缝系数,无缝钢管ϕ=1,直缝焊接钢管ϕ=0.8;c 为附加壁厚(包括:壁厚偏差、腐蚀裕度、加工减薄量),为简便起见,通常当δ>6mm 时,c ≈0.18δ;当δ≤6mm 时,c =1mm 。

管道工程量计算规则

管道工程量计算规则

管道、电气工程量计算规则管道工程量计算规则1、工程量计算顺序:工艺管线工程量计算尽量以以下顺序计算:管道安装管件安装阀门安装法兰安装管道压力试验无损探伤及焊口热处理管道支架制作安装管口充氩保护、套管制作安装设备安装(泵、电机等)2、管道安装2.1 压力等级:低压0<P≤1.6MPa, 中压1.6<P≤10MPa, 高压10<P≤42MPa。

2.2 连接方式:电弧焊、氩弧焊、氩电联焊、螺栓连接、埋弧自动焊、氧乙炔焊、热风焊、承插粘接等2.3 工程量计算:工艺管线以施工图纸标明的延长米计算,不扣除管件、阀门、法兰长度,主材消耗量是扣除管件、阀门、法兰长度后加损耗的量。

方型补偿器不单独提取工程量,工程量包含在管道工程量及管件工程量中。

3、管件安装3.1 管件种类:弯头、三通、异径管、管帽(盲板)、管接头、挖孔制三通;3.2 各种管件连接均按压力等级、材质、连接方式以10个(个也行)为单位计算工程量,主管上挖眼制三通应以管件安装计算工程量,如:挖眼制三通 DN500*350 20个 2.5MPa,不另计主材费,挖眼制三通支线管径小于主管径1/2时,不计算管件工程量,若支管线较短相当于管接头及凸台时,应按配件管径计算工程量(相当于管件);3.3 对于仪表而言,管道开孔不计算工程量,以预留考虑,但压力表表弯制作,凸台制作安装、温度计扩大管制作安装应分别计算工程量,均以个为单位,应注明管径大小;3.4 焊接盲板工程量以“个”为单位,执行管件连接乘以系数0.6(造价用)。

4、阀门安装4.1 应注明压力等级、规格型号、安装方式(法兰连接、焊接、螺纹连接等),以个为单位;4.2 各种法兰及阀门安装的配套法兰安装应分别计算工程量,螺栓、透镜垫的安装费已包括在定额内,本身材料费应另行计算,在阀门安装或法兰安装工程量后提供其数量(主材费不计的可以不予考虑);4.3 直接安装在管道上的仪表流量计应归入阀门安装中,以个为单位,执行阀门安装乘以系数0.7(造价用)。

管道的设计计算——管径和管壁厚度

管道的设计计算——管径和管壁厚度空压机是通过管路、阀门等和其它设备构成一个完整的系统。

管道的设计计算和安装不当,将会影响整个系统的经济性及工作的可靠性,甚至会带来严重的破坏性事故。

A.管内径:管道内径可按预先选取的气体流速由下式求得:=i d 8.1821⎟⎠⎞⎜⎝⎛u q v 式中,为管道内径();为气体容积流量(i d mm v q h m 3);为管内气体平均流速(u s m ),下表中给出压缩空气的平均流速取值范围。

管内平均流速推荐值气体介质 压力范围(Mpa)p 平均流速(m/s)u 0.3~0.6 10~200.6~1.0 10~15 1.0~2.0 8~12空 气 2.0~3.0 3~6注:上表内推荐值,为输气主管路(或主干管)内压缩空气流速推荐值;对于长度在1m 内的管路或管路附件——冷却器、净化设备、压力容器等的进出口处,有安装尺寸的限制,可适当提高瞬间气体流速。

例1:2台WJF-1.5/30及2台H-6S 型空压机共同使用一根排气管路,计算此排气管路内径。

已知WJF-1.5/30型空压机排气量为1.5 m 3/min 排气压力为3.0 MPa已知H-6S型空压机排气量为0.6 m 3/min 排气压力为3.0 MPa4台空压机合计排气量=1.5×2+0.6×2=4.2 m v q 3/min=252 m 3/h如上表所示u=6 m/s 带入上述公式=i d 8.1821⎟⎠⎞⎜⎝⎛u q v =i d 8.18216252⎟⎠⎞⎜⎝⎛=121.8 mm 得出管路内径为121。

mmB.管壁厚度:管壁厚度δ取决于管道内气体压力。

a.低压管道,可采用碳钢、合金钢焊接钢管;中压管道,通常采用碳钢、合金钢无缝钢管。

其壁厚可近似按薄壁圆筒公式计算:min δ=[]c npnpd i +−ϕσ2 式中,p 为管内气体压力(MPa);n 为强度安全系数5.25.1~=n ,取[σ]为管材的许用应力(MPa),常用管材许用应力值列于下表;ϕ为焊缝系数,无缝钢管ϕ=1,直缝焊接钢管ϕ=0.8;为附加壁厚(包括:壁厚偏差、腐蚀裕度、加工减薄量),为简便起见,通常当c δ>6mm 时,c ≈0.18δ;当δ≤6mm 时, =1mm。

管道壁厚对照表.

管道壁厚对照表.(⼀)⽆缝碳钢管壁厚m m(⼆)⽆缝不锈钢管壁厚mm(三)焊接钢管壁厚mm内压⾦属直管的壁厚根据SH 3059-2001《⽯油化⼯管道设计器材选⽤通则》确定:当S0< Do /6时,直管的计算壁厚为:S0 = P D0/(2[σ]tΦ+2PY)直管的选⽤壁厚为: S = S0 + C式中S0――直管的计算壁厚, mm;P――设计压⼒, MPa;D0――直管外径, mm;[σ]t――设计温度下直管材料的许⽤应⼒, MPa;Φ――焊缝系数,对⽆缝钢管,Φ=1;S――包括附加裕量在内的直管壁厚, mm;C――直管壁厚的附加裕量, mm;Y――温度修正系数,按下表选取。

温度修整系数表钢管壁厚表⽰⽅法有管⼦表号、钢管壁厚尺⼨和管⼦重量三种⽅法1)是以管⼦表号"Sch"表⽰壁厚。

管⼦表号是管⼦设计压⼒与设计温度下材料许⽤应⼒的⽐值乘1000,并经圆整后的数值。

即: Sch=P/[σ]t×1000ANSI B36.10壁厚等级:Sch10、Sch20、Sch30、Sch40、Sch60、Sch80、Sch100、Sch120、Sch140、Sch160⼗个等级;ANSI B36.19壁厚等级:Sch5s、Sch10s、Sch40s、S2)以钢管壁厚尺⼨表⽰中国、ISO、⽇本部分钢管标准采⽤ch80s四个等级; 表⽰英制管壁厚系列:Sch.20----全称:Schedule 20Sch.10s--带s的系列为不锈钢专⽤,碳钢不⽤。

举个例⼦:2" sch.10s 表⽰2”接管的壁厚为2.9mm,材质为不锈钢;2" sch.40 表⽰2”接管的壁厚为4.0mm。

3)是以管⼦重量表⽰管壁厚度,它将管⼦壁厚分为三种:a.标准重量管,以STD表⽰b加厚管,以XS表⽰c.特厚管,以XXS表⽰。

对于DN≤250mm的管⼦,Sch40相当于STD,DN<200mm的管⼦,Sch80相当于XS。

压力管道壁厚及开孔补强计算

压力管道壁厚及开孔补强计算压力管道是用于输送液体、气体或其他物质的管道,在运行过程中会受到一定的内外压力载荷。

为了确保管道在压力载荷下的安全运行,需要对压力管道的壁厚及开孔补强进行合理的计算。

1.管道内压力壁厚计算:根据管道的内压力、材料的允许应力和安全因子来计算管道的壁厚。

一般采用ASME标准或API标准中的公式来进行计算。

2.管道外压力壁厚计算:对于管道受到的外压力载荷,例如土压力或深水压力等,需要计算管道的外壁厚度。

常用的方法有ASME标准中的公式和材料力学性能参数。

3.管道轻质液体和气体压力壁厚计算:对于轻质液体和气体在管道中的压力载荷,由于其密度较小,管道壁厚常较薄。

可以采用API520或API521等标准中的公式,结合流体特性和工况条件来进行计算。

在进行压力管道壁厚计算时,需要考虑以下几个因素:1.管道内外压力:管道的内外压力是计算管道壁厚的基本参数,需要准确测量或估算。

2.材料的强度:管道材料的强度特性是壁厚计算的重要参数,需要从材料规格中获取。

3.安全因子:安全因子是考虑管道在运行过程中不确定因素的影响,一般取1.1~1.54.温度和环境条件:管道在不同温度和环境条件下的工作性能可能会有所变化,需要考虑这些因素对壁厚计算的影响。

开孔补强是在管道上开孔时,为了保证管道的强度和稳定性,需要进行相关的补强计算。

开孔补强通常包括以下几个方面:1.开孔位置:开孔位置的选择要考虑管道壁厚和管道材料的强度,避免对管道的强度造成过大的影响。

2.补强类型:开孔补强可以通过焊接补强板、法兰补强等方式进行。

补强方式要根据具体情况选择,确保管道的强度和稳定性。

3.补强计算:开孔补强需要对补强部分进行计算,包括补强板的厚度、尺寸和连接方式等。

一般可以参考相关的标准和规范进行计算。

总之,压力管道壁厚及开孔补强计算是保证管道安全运行的重要环节,需要根据具体情况和相关标准进行合理计算。

通过科学合理的计算,可以确保管道在各种工况下的强度和稳定性,从而保证了工程的安全和可靠性。

化工设计概论第六章管道设计与布置


常用管件
3.分合流管件
主要作用是将流体分成几条流向或 合并流体为同一流向。如三通,四通还 有异径三通、四通等。
常用管件
4.管路附件
附属于管道上的各种物件如防雨 帽、视镜、阻火器、过滤器、漏斗、 汽水混合器、取样口、取样冷却器、 阀门伸长杆等。
管道过滤器
管道附件
• 管道过滤器 一种装在管道上用来除去流体介质
第六章 管道设计与布置
第一节 管道设计与布置的内容和步骤 一、管道设计与布置的内容 1)管道的设计计算
管径,压降,保温,应力,热补偿 2)管道的布置设计
第一节 管道设计与布置的内容和步骤
二、管道设计与布置的步骤
(1)选择管道材料。 (2)选择介质的流速。 (3)确定管径。 (4)确定管壁厚度。 (5)确定管道连接方式。 (6)选阀门和管件。 (7)选管道的热补偿器。 (8)绝热形式、绝热层厚度及保温材料的选择。 (9)管道布置。 (10)计算管道的阻力损失。
二、管道 焊接
二、管道 螺纹连接
二、管道 法兰连接
二、管道 承锸连接
二、管道
卡箍连接
二、管道 卡套连接
管道连接形式示意图
三、常用阀门
1、阀门定义
阀门是用来控制各种管道及设备内 流体的流量、流体的压力及保证生产安 全运行的一种化工机械产品。阀门的品 种较多,结构相差悬殊,材质各异,使 用特性不同,因此需根据阀门在管道中 作用及输送介质等条件,选用不同型式 的阀门。
疏水阀的种类颇多,按其工作原理可分为 热动力型,热静力型和机械型三种。
疏水阀
安装示意图
1-切断阀;2-排污阀;3-过滤器;4-疏水阀 5视镜;6-止回阀
阀门型号标志
阀门
阀门型号标志
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

管道的设计计算——管径和管壁厚度
空压机是通过管路、阀门等和其它设备构成一个完整的系统。

管道的设计计算和安装不当,将会影响整个系统的经济性及工作的可靠性,甚至会带来严重的破坏性事故。

A.管内径:管道内径可按预先选取的气体流速由下式求得:
=i d 8.1821
⎪⎭
⎫ ⎝⎛u q v 式中,i d 为管道内径(mm );v q 为气体容积流量(h m 3);u 为管内气体平均流速(s m ),下表中给出压缩空气的平均流速取值范围。

管内平均流速推荐值
1m 内的管路或管路附件——冷却器、净化设备、压力容器等的进出口处,有安装尺寸的限制,可适当提高瞬间气体流速。

例1:2台WJF-1.5/30及2台H-6S 型空压机共同使用一根排气管路,计算此排气管路内径。

已知WJF-1.5/30型空压机排气量为1.5 m 3/min 排气压力为3.0 MPa
已知H-6S 型空压机排气量为0.6 m 3/min 排气压力为3.0 MPa
4台空压机合计排气量v q =1.5×2+0.6×2=4.2 m 3/min =252 m 3/h
如上表所示u=6 m/s
带入上述公式=i d 8.1821⎪⎭⎫ ⎝⎛u q v =i d 8.1821
6252⎪⎭⎫ ⎝⎛=121.8 mm 得出管路内径为121mm 。

B.管壁厚度:管壁厚度δ取决于管道内气体压力。

a.低压管道,可采用碳钢、合金钢焊接钢管;中压管道,通常采用碳钢、合金钢无缝钢管。

其壁厚可近似按薄壁圆筒公式计算:
min δ=
[]c np
npd i +-ϕσ2 式中,p 为管内气体压力(MPa );n 为强度安全系数5.25.1~=n ,取[σ]为管材的许用应力(MPa ),常用管材许用应力值列于下表;ϕ为焊缝系数,无缝钢管ϕ=1,直缝焊接钢管ϕ=0.8;c 为附加壁厚(包括:壁厚偏差、腐蚀裕度、加工减薄量),为简便起见,通常当δ>6mm 时,c ≈0.18δ;当δ≤6mm 时,c =1mm 。

当管子被弯曲时,管壁应适当增加厚度,可取
'δ=R
d 20δ
δ+ 式中,0d 为管道外径;R 为管道弯曲半径。

b.高压管道的壁厚,应查阅相关专业资料进行计算,在此不做叙述。

常用管材许用应力
例2: 算出例1中排气管路的厚度。

管路材料为20#钢
公式 min δ=[]c np
npd i +-ϕσ2中 n=2 , p=3.0 MPa , i d =121 如上表20#钢150o C 时的许用应力为131,即σ=131
ϕ=1 , C =1 带入公式
min δ=[]c np npd i +-ϕσ2=13
21131212132+⨯-⨯⨯⨯⨯=3.8 mm 管路厚度取4 mm。

相关文档
最新文档