成都七中2015年外地生自主招生考试数学试题和答案

合集下载

【解析】四川省成都七中2014-2015学年高一下学期期初考试数学试卷Word版含解析

【解析】四川省成都七中2014-2015学年高一下学期期初考试数学试卷Word版含解析

2014-2015学年四川省成都七中高一(下)期初数学试卷一、选择题(每小题5分,共50分)1.设全集U=R,A={x|x<1},B={x|log2x<1},则A∩B=()A.{x|0<x<1} B.{x|0<x<2} C.{x|﹣1<x<1} D.{x|﹣1<x<2}2.在平行四边形ABCD中,++=()A.B.C.D.3.已知角θ的顶点与原点重合,始边与x轴的非负半轴重合,终边在直线y=2x上,则sinθ=()A.B.C.或﹣D.或﹣4.函数f(x)=3x2﹣e x的零点有()A.有一个B.有两个C.有三个D.不存在5.sin80°cos20°﹣cos80°sin20°的值为()A.B.C.﹣D.﹣6.已知函数f(x)=,则满足f(x)≤2的x的取值范围是()A.[﹣1,2] B.[0,2] C.[1,+∞)D.[﹣1,+∞)7.函数y=Asin(ωx+φ)(ω>0,|φ|<,x∈R)的部分图象如图所示,则函数表达式为()A.B.C.D.8.定义在R上的非常值函数f(x)满足y=f(x+1)和y=f(x﹣1)都是奇函数,则函数y=f (x)一定是()A.偶函数B.奇函数C.周期函数D.以上结论都不正确9.非零实数a、b满足4a2﹣2ab+4b2﹣c=0(c>0),当|2a+b|取到最大值时,则的值为()A.B.C.D.10.已知点A、B是函数f(x)=x2图象上位于对称轴两侧的两动点,定点F(0,),若向量,满足•=2(O为坐标原点).则三角形ABO与三角形AFO面积之和的取值范围是()A.(2,+∞)B.[3,+∞)C.[,+∞)D.[0,3]二、填空题(本大题有5小题,每空5分,共25分)11.若向量=(2,m),=(1,﹣3)满足⊥,则实数m的值为.12.若tanα>0,则sin2α的符号是.(填“正号”、“负号”或“符号不确定”)13.已知函数f(x)=3sin(ωx+φ),(ω>0)的图象的相邻两条对称轴的距离为2,则f(1)+f(2)+…+f(2016)=.14.将曲线C1:y=ln关于x轴对称得到的曲线C2,再将C2向右平移1个单位得到函数f (x)的图象,则f(+1)=.15.设函数y=f(x)的定义域为D,若存在实数x0,使f(x0)=x0成立.则称x0为f(x)的不动点或称(x0.f(x))为函数y=f(x)图象的不动点;有下列说法:①函数f(x)=2x2﹣x﹣4的不动点是﹣1和2;②若对于任意实数b,函数f(x)=ax2+(b+1)x+b﹣2.(a≠0)恒有两个不相同的不动点,则实数a的取值范围是0<a≤2;③函数f(x)=ax2+bx+c(a≠0),若y=f(x)没有不动点,则函数y=f(f(x))也没有不动点;④设函数f(x)=(x﹣1),若f(f(f(x)))为正整数,则x的最小值是121;以上说法正确的是.三、解答题(本题6小题,16~19题各12分,20题13分,21题14分,共75分)16.(12分)(2015春•成都校级月考)(1)化简;(2)计算:4+2log23﹣log2.17.(12分)(2015春•成都校级月考)设=(﹣1,1),=(4,3),=(5,﹣2),(1)求证与不共线,并求与的夹角的余弦值.(2)求在方向上的投影.18.(12分)(2015春•成都校级月考)已知函数f(x)=8x2﹣6kx+2k﹣1.(1)若函数f(x)的零点在(0,1]内,求实数k的范围;(2)是否存在实数k,使得函数f(x)的两个零点x1,x2满足x12+x22=1,x1x2>0.19.(12分)(2015春•成都校级月考)已知函数f(x)=alog2x,g(x)=blog3x(x>1),其中常数a.b≠0.(1)证明:用定义证明函数k(x)=f(x)•g(x)的单调性;(2)设函数φ(x)=m•2x+n•3x,其中常数m,n满足m.n<0,求φ(x+1)>φ(x)时的x的取值范围.20.(13分)(2015春•雅安校级期中)半径长为2的扇形AOB中,圆心角为,按照下面两个图形从扇形中切割一个矩形PQRS,设∠POA=θ.(1)请用角θ分别表示矩形PQRS的面积;(2)按图形所示的两种方式切割矩形PQRS,问何时矩形面积最大.21.(14分)(2015春•成都校级月考)已知函数f(x)=的图象在R上不间断.(1)求正实数a的值;(2)当x≥1时,函数h(x)=kx﹣2|x﹣2|≥0恒成立.求实数k的取值范围;(3)若关于x的方程f(x)=m|x|=0恰好有4个解,求实数m的取值范围.2014-2015学年四川省成都七中高一(下)期初数学试卷参考答案与试题解析一、选择题(每小题5分,共50分)1.设全集U=R,A={x|x<1},B={x|log2x<1},则A∩B=()A.{x|0<x<1} B.{x|0<x<2} C.{x|﹣1<x<1} D.{x|﹣1<x<2}考点:交集及其运算.专题:集合.分析:求出集合的等价条件,根据集合的基本运算进行求解即可.解答:解:A={x|x<1},B={x|log2x<1}={x|0<x<2},则A∩B={x|0<x<1},故选:A点评:本题主要考查集合的基本运算.比较基础.2.在平行四边形ABCD中,++=()A.B.C.D.考点:向量的加法及其几何意义.专题:平面向量及应用.分析:根据题意,画出图形,结合图形,利用平面向量的加法运算法则进行运算即可.解答:解:画出图形,如图所示;++=(+)+=+=+=.故选:D.点评:本题考查了平面向量的加减运算问题,解题时应画出图形,结合图形进行解答问题,是容易题.3.已知角θ的顶点与原点重合,始边与x轴的非负半轴重合,终边在直线y=2x上,则sinθ=()A.B.C.或﹣D.或﹣考点:任意角的三角函数的定义.专题:三角函数的求值.分析:由条件利用任意角的三角函数的定义,分类讨论求得sinθ的值.解答:解:由于角θ的终边在直线y=2x上,若角θ的终边在第一象限,则在它的终边上任意取一点P(1,2),则由任意角的三角函数的定义可得sinθ===.若角θ的终边在第三象限,则在它的终边上任意取一点P(﹣1,﹣2),则由任意角的三角函数的定义可得sinθ===﹣,故选:D.点评:本题主要考查任意角的三角函数的定义,体现了分类讨论的数学思想,属于基础题.4.函数f(x)=3x2﹣e x的零点有()A.有一个B.有两个C.有三个D.不存在考点:函数零点的判定定理.专题:函数的性质及应用.分析:令f(x)=0,得到e x=3x2,作出函数y=e x,和y=3x2的图象,利用数形结合即可得到结论解答:解:令f(x)=0,得到e x=3x2,作出函数y=e x,和y=3x2的图象如图:由图象可知两个图象的交点为3个,即函数f(x)=3x2﹣e x的零点的个数为3个,故选:C点评:本题主要考查函数零点公式的判定,利用函数和方程之间的关系转化为两个图象的交点问题是解决本题的关键.5.sin80°cos20°﹣cos80°sin20°的值为()A.B.C.﹣D.﹣考点:两角和与差的正弦函数.专题:三角函数的求值.分析:由条件利用两角和的正弦公式,求得所给式子的值.解答:解:sin80°cos20°﹣cos80°sin20°=sin(80°﹣20°)=sin60°=,故选:B.点评:主要考查两角和的正弦公式的应用,属于基础题.6.已知函数f(x)=,则满足f(x)≤2的x的取值范围是()A.[﹣1,2] B.[0,2] C.[1,+∞)D.[﹣1,+∞)考点:分段函数的应用.专题:函数的性质及应用.分析:根据分段函数的表达式,分别进行求解即可得到结论.解答:解:当x≤1时,x2+1≤2,得﹣1≤x≤1,当x>1时,由1﹣log2x≤2,得log2x≥﹣1.∴x≥,∴x>1综上可知,实数x的取值范围是x≥﹣1.故选:D点评:本题主要考查不等式的求解,利用分段函数的表达式分别进行求解是解决本题的关键.7.函数y=Asin(ωx+φ)(ω>0,|φ|<,x∈R)的部分图象如图所示,则函数表达式为()A.B.C.D.考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题:计算题.分析:通过函数的图象求出A,周期T,利用周期公式求出ω,图象经过(3,0)以及φ的范围,求出φ的值,得到函数的解析式.解答:解:由函数的图象可知A=2,T=2×(5﹣1)=8,所以,ω=,因为函数的图象经过(3,0),所以0=2sin(),又,所以φ=;所以函数的解析式为:;故选C.点评:本题是基础题,考查三角函数的图象求函数的解析式的方法,考查学生的视图能力,计算能力,常考题型.8.定义在R上的非常值函数f(x)满足y=f(x+1)和y=f(x﹣1)都是奇函数,则函数y=f (x)一定是()A.偶函数B.奇函数C.周期函数D.以上结论都不正确考点:函数奇偶性的性质.专题:函数的性质及应用.分析:由y=f(x+1)奇函数,即有f(1﹣x)=﹣f(1+x),由y=f(x﹣1)是奇函数,即为f(﹣x﹣1)=﹣f(x﹣1),将x换成x﹣1,x+1,再将﹣x换成x,x换成x+2,结合周期函数的定义,即可得到结论.解答:解:y=f(x+1)奇函数,即有f(1﹣x)=﹣f(1+x),将x换成x﹣1,即有f(2﹣x)=﹣f(x),①y=f(x﹣1)是奇函数,即为f(﹣x﹣1)=﹣f(x﹣1),将x换成x+1,即有f(﹣x﹣2)=﹣f(x),②则由①②可得,f(﹣x﹣2)=f(2﹣x),即有f(x﹣2)=f(x+2),将x换成x+2,可得f(x+4)=f(x),即有函数f(x)是最小正周期为4的函数.故选:C.点评:本题考查函数的奇偶性和周期性的定义,考查赋值法的运用,考查一定的推理和分析能力,属于中档题.9.非零实数a、b满足4a2﹣2ab+4b2﹣c=0(c>0),当|2a+b|取到最大值时,则的值为()A.B.C.D.考点:不等式的基本性质.专题:不等式的解法及应用.分析:4a2﹣2ab+4b2﹣c=0(c>0),化为==,利用柯西不等式即可得出.解答:解:4a2﹣2ab+4b2﹣c=0(c>0),化为==,由柯西不等式可得:≥=(2a+b)2,当|2a+b|取到最大值时,=,化为.故选:D.点评:本题考查了柯西不等式的应用,考查了推理能力与计算能力,属于中档题.10.已知点A、B是函数f(x)=x2图象上位于对称轴两侧的两动点,定点F(0,),若向量,满足•=2(O为坐标原点).则三角形ABO与三角形AFO面积之和的取值范围是()A.(2,+∞)B.[3,+∞)C.[,+∞)D.[0,3]考点:平面向量数量积的运算.专题:平面向量及应用.分析:通过设点A(﹣x,x2)(x>0)、利用•=2、计算可知B(,),过点A、B分别作x轴垂线且垂足分别为C、D,通过S△ABO+S△AFO=S梯形ACDB﹣S△ACO﹣S△BDO+S△AFO、利用面积计算公式及基本不等式计算即得结论.解答:解:依题意,不妨设点A(﹣x,x2)(x>0)、B(p,p2)(p>0),∵•=2,即﹣xp+(xp)2=2,∴(xp)2﹣xp﹣2=0,解得:xp=2或xp=﹣1(舍),∴p=,即B(,),过点A、B分别作x轴垂线,垂足分别为C、D,则S△ABO+S△AFO=S梯形ACDB﹣S△ACO﹣S△BDO+S△AFO=(AC+BD)•CD﹣AC•CO﹣BD•OD+OF•CO=(x2+)•(x+)﹣x2•x﹣••+••x=(x3++2x+﹣x3﹣+)=(+2x+)=(+)≥•2(当且仅当=即x=时等号成立)=3,故选:B.点评:本题考查平面向量数量积运算,涉及面积的计算方法、基本不等式等基础知识,注意解题方法的积累,属于中档题.二、填空题(本大题有5小题,每空5分,共25分)11.若向量=(2,m),=(1,﹣3)满足⊥,则实数m的值为.考点:数量积的坐标表达式.专题:平面向量及应用.分析:根据向量垂直的等价条件进行求解即可.解答:解:∵向量=(2,m),=(1,﹣3)满足⊥,∴•=2﹣3m=0,解得m=,故答案为:点评:本题主要考查向量数量积的应用,根据向量垂直的坐标公式进行求解是解决本题的关键.12.若tanα>0,则sin2α的符号是正号.(填“正号”、“负号”或“符号不确定”)考点:二倍角的正弦;三角函数值的符号.专题:三角函数的求值.分析:由已知,利用三角函数的基本关系式可得sin2α==>0,即可得解.解答:解:∵tanα>0,∴sin2α==>0.故答案为:正号.点评:本题主要考查了二倍角的正弦函数公式,三角函数基本关系式的应用,属于基础题.13.已知函数f(x)=3sin(ωx+φ),(ω>0)的图象的相邻两条对称轴的距离为2,则f(1)+f(2)+…+f(2016)=0.考点:正弦函数的图象.专题:三角函数的求值.分析:直接利用图象对称轴的距离,求出函数的周期,继而求出f(x)=3sin(x+φ),分别求出f(1),f(2),f(3),f(4)的值,发现其规律得到答案.解答:解:函数f(x)=3sin(ωx+φ),(ω>0)的图象的相邻两条对称轴的距离为2,∴周期为4,则ω==,∴f(x)=3sin(x+φ),∴f(1)=3sin(+φ)=3cosφ,f(2)=3sin(π+φ)=﹣3sinφ,f(3)=3sin(+φ)=﹣3cosφ,f(4)=3sin(2π+φ)=3sinφ,∴f(1)+f(2)+…+f(2016)=504[f(1)+f(2)+f(3)+f(4)]=0,故答案为:0.点评:本题考查函数周期的求法以及归纳推理好三角函数的诱导公式,涉及三角函数的图象的应用,考查计算能力.14.将曲线C1:y=ln关于x轴对称得到的曲线C2,再将C2向右平移1个单位得到函数f(x)的图象,则f(+1)=.考点:函数的图象与图象变化.专题:函数的性质及应用.分析:根据函数图象的对称变换和平移变换法则,求出函数f(x)的解析式,将x=+1代入可得答案.解答:解:将曲线C1:y=ln关于x轴对称得到的曲线C2,∴曲线C2的方程为:y=﹣ln,再将C2向右平移1个单位得到函数f(x)的图象,∴函数f(x)=﹣ln,∴f(+1)=﹣ln=﹣ln=﹣(﹣)=,故答案为:点评:本题考查的知识点是函数的图象与图象变化,函数求值,根据函数图象的对称变换和平移变换法则,求出函数f(x)的解析式,是解答的关键.15.设函数y=f(x)的定义域为D,若存在实数x0,使f(x0)=x0成立.则称x0为f(x)的不动点或称(x0.f(x))为函数y=f(x)图象的不动点;有下列说法:①函数f(x)=2x2﹣x﹣4的不动点是﹣1和2;②若对于任意实数b,函数f(x)=ax2+(b+1)x+b﹣2.(a≠0)恒有两个不相同的不动点,则实数a的取值范围是0<a≤2;③函数f(x)=ax2+bx+c(a≠0),若y=f(x)没有不动点,则函数y=f(f(x))也没有不动点;④设函数f(x)=(x﹣1),若f(f(f(x)))为正整数,则x的最小值是121;以上说法正确的是①③④.考点:命题的真假判断与应用.专题:函数的性质及应用.分析:根据已知中函数不动点的定义,逐一分析四个结论的真假,最后综合讨论结果,可得答案.解答:解:令2x2﹣x﹣4=x,解得x=﹣1,或x=2,故①函数f(x)=2x2﹣x﹣4的不动点是﹣1和2,故①正确;若对于任意实数b,函数f(x)=ax2+(b+1)x+b﹣2.(a≠0)恒有两个不相同的不动点,则ax2+(b+1)x+b﹣2=x有两个不相等的实根,则△=b2﹣4a(b﹣2)=b2﹣4ab+8a>0恒成立,则16a2﹣32a<0,解得0<a<2,即实数a的取值范围是0<a<2,故②错误;③函数f(x)=ax2+bx+c(a≠0),若y=f(x)没有不动点,则ax2+(b﹣1)x+c=0无实根,则函数y=f(f(x))也没有不动点;④设函数f(x)=(x﹣1),若f(f(f(x)))={[(x﹣1)﹣1]﹣1}=为正整数,则x的最小值是121,故④正确;故正确的命题的序号为:①③④,故答案为:①③④点评:本题考查的知识点是命题的真假判断与应用,此类题型往往综合较多的其它知识点,综合性强,难度中档.三、解答题(本题6小题,16~19题各12分,20题13分,21题14分,共75分)16.(12分)(2015春•成都校级月考)(1)化简;(2)计算:4+2log23﹣log2.考点:对数的运算性质;运用诱导公式化简求值.专题:函数的性质及应用;三角函数的求值.分析:(1)根据诱导公式和二倍角公式化简即可;(2)根据对数的运算性质计算即可.解答:解:(1)==﹣;(2)4+2log23﹣log2=2+log29﹣log2=2+log28=5.点评:本题考查的知识点是对数的运算性质,和三角形函数的化简,属于基础题.17.(12分)(2015春•成都校级月考)设=(﹣1,1),=(4,3),=(5,﹣2),(1)求证与不共线,并求与的夹角的余弦值.(2)求在方向上的投影.考点:数量积表示两个向量的夹角;向量的投影.专题:综合题.分析:(1)根据共线向量的判断方法易得与不共线,再结合向量的数量积的运算,可得cos<a,b>的值,(2)根据数量积的运算与投影的概念,可得在方向上的投影为,代入向量的坐标,计算可得答案.解答:解:(1)∵=(﹣1,1),=(4,3),且﹣1×3≠1×4,∴与不共线,又•=﹣1×4+1×3=﹣1,||=,||=5,∴cos<,>===﹣.(2)∵•=﹣1×5+1×(﹣2)=﹣7,∴在方向上的投影为==﹣.点评:本题考查向量的数量积的运用,要求学生能熟练计算数量积并通过数量积来求出向量的模和夹角或证明垂直.18.(12分)(2015春•成都校级月考)已知函数f(x)=8x2﹣6kx+2k﹣1.(1)若函数f(x)的零点在(0,1]内,求实数k的范围;(2)是否存在实数k,使得函数f(x)的两个零点x1,x2满足x12+x22=1,x1x2>0.考点:一元二次方程的根的分布与系数的关系;根的存在性及根的个数判断.专题:函数的性质及应用.分析:(1)由条件利用二次函数的性质求得实数k的范围.(2)由条件利用二次函数的性质求得实数k的值,再结合(1)中k的范围,得出结论.解答:解:(1)由函数f(x)=8x2﹣6kx+2k﹣1的零点在(0,1]内,可得,求得<k≤.(2)由题意可得,求得k>.再根据x12+x22=1=﹣2x1x2=1,可得k2﹣=1,求得k=,或k=(舍去).结合(1)可得<k≤.故不存在实数k满足题中条件.点评:本题主要考查一元二次方程根的分布与系数的关系,二次函数的性质,体现了转化、分类讨论的数学思想,属于基础题.19.(12分)(2015春•成都校级月考)已知函数f(x)=alog2x,g(x)=blog3x(x>1),其中常数a.b≠0.(1)证明:用定义证明函数k(x)=f(x)•g(x)的单调性;(2)设函数φ(x)=m•2x+n•3x,其中常数m,n满足m.n<0,求φ(x+1)>φ(x)时的x的取值范围.考点:对数函数的图像与性质.专题:函数的性质及应用.分析:(1)任取区间(1,+∞)上两个实数x 1,x2,且x1<x2,则k(x1)÷k(x2)=()2∈(0,1),进而分当ab>0时和当ab<0时两种情况,可得函数k(x)=f(x)•g(x)的单调性;(2)由函数φ(x)=m•2x+n•3x,可将φ(x+1)>φ(x)化为m•2x+2n•3x>0,结合m•n <0,分当m>0,n<0时和当m<0,n>0时两种情况,可得满足条件的x的取值范围.解答:证明:(1)任取区间(1,+∞)上两个实数x1,x2,且x1<x2,则∈(0,1),∵函数f(x)=alog2x,g(x)=blog3x(x>1),∴k(x 1)÷k(x2)=(ab•log2x1•log3x1)÷(ab•log2x2•log3x2)=()2∈(0,1),当ab>0时,k(x1)<k(x2),函数k(x)=f(x)•g(x)在区间(1,+∞)上单调递增;当ab<0时,k(x1)>k(x2),函数k(x)=f(x)•g(x)在区间(1,+∞)上单调递减;(2)∵函数φ(x)=m•2x+n•3x,φ(x+1)>φ(x),m•n<0,∴φ(x+1)﹣φ(x)=m•2x+2n•3x>0,当m>0,n<0时,>,则x>,当m<0,n>0时,<,则x<,点评:本题考查的知识点是对数函数的图象与性质,函数单调性的判断与证明,其中熟练掌握函数单调性的证明方法定义法(作商法)的方法和步骤是解答本题的关键.20.(13分)(2015春•雅安校级期中)半径长为2的扇形AOB中,圆心角为,按照下面两个图形从扇形中切割一个矩形PQRS,设∠POA=θ.(1)请用角θ分别表示矩形PQRS的面积;(2)按图形所示的两种方式切割矩形PQRS,问何时矩形面积最大.考点:弧度制的应用.专题:三角函数的求值.分析:(1)根据矩形的面积公式,分别表示即可,(2)根据三角函数中θ的范围,分别计算求出各自的最大值,比较即可.解答:解:(1)对于图1,由题意知PS=OPsinθ=2sinθ,OS=OPcosθ=2cosθ,∴S PQRS=S1=OP•OS=4sinθcosθ=2sin2θ,(0<θ<),对于图2由题意知,设PQ的中点为N,PM=2sin(﹣θ),∴MN=0M﹣ON=2cos(﹣θ)﹣=sinθ,∴S PQRS=S2=2PM•MN=4sin(﹣θ)•sinθ=sin(﹣θ)sinθ,(0<θ<),(2)对于图1,当sin2θ=1时,即θ=时,S max=2,对于图2,S2=sin(﹣θ)sinθ=[sin(2θ+)﹣],∵0<θ<,∴<2θ+<,∴<sin(2θ+)≤1,当sin(2θ+)=1,即θ=时,S max=,综上所述,按照图2的方式,当θ=时,矩形面积最大.点评:本题考查了图形的面积最大问题,关键是三角形函数的化简和求值,属于中档题.21.(14分)(2015春•成都校级月考)已知函数f(x)=的图象在R上不间断.(1)求正实数a的值;(2)当x≥1时,函数h(x)=kx﹣2|x﹣2|≥0恒成立.求实数k的取值范围;(3)若关于x的方程f(x)=m|x|=0恰好有4个解,求实数m的取值范围.考点:分段函数的应用.专题:函数的性质及应用.分析:(1)根据函数f(x)=的图象在R上不间断,可得x=0时,两段函数的函数值相等,即4=2×|﹣a|,解得正实数a的值;(2)当x≥1时,函数h(x)=kx﹣2|x﹣2|≥0恒成立.k≥,分当x∈[1,2]时和当x∈(2,+∞)时,两种情况讨论,可得满足条件的实数k的取值范围;(3)若关于x的方程f(x)=m|x|=0恰好有4个解,函数y=f(x)与y=m|x|的图象有四个交点,对m值进行分类讨论,数形结合可得实数m的取值范围.解答:解:(1)∵函数f(x)=的图象在R上不间断.∴4=2×|﹣a|,解得a=2,或a=﹣2(舍去),∴正实数a=2,(2)当x≥1时,函数h(x)=kx﹣2|x﹣2|≥0,即k≥,当x∈[1,2]时,k≥=﹣2为减函数,故k≥2,当x∈(2,+∞)时,k≥=2﹣为增函数,故k≥0;综上所述:k≥2,即实数k的取值范围为[2,+∞),(3)若关于x的方程f(x)=m|x|=0恰好有4个解,即函数y=f(x)与y=m|x|的图象有四个交点,①当m<0时,函数y=f(x)与y=m|x|的图象无交点,不满足条件;②当m=0时,函数y=f(x)与y=m|x|的图象有三个交点,不满足条件;③当m>0时,若与y=mx与y=2x﹣4平行,即m=2,则函数y=f(x)与y=m|x|的图象有三个交点,则m≥2时,函数y=f(x)与y=m|x|的图象有三个交点,若y=﹣mx与y=﹣(x2+5x+4)相切,则函数y=f(x)与y=m|x|的图象有五个交点,即x2+(5﹣m)x﹣4=0的△=(5﹣m)2﹣16=0,解得:m=1,或m=9(舍去),即m=1时,函数y=f(x)与y=m|x|的图象有五个交点,0<m<1时,函数y=f(x)与y=m|x|的图象有六个交点,故当1<m<2时,函数y=f(x)与y=m|x|的图象有四个交点,故实数m的取值范围为(1,2)点评:本题考查的知识点是分段函数的应用,函数的零点与方程的根,恒成立问题,是函数图象和性质的综合应用,难度较大.。

四川省成都七中2015-2016学年高一下学期入学数学试卷 含解析

四川省成都七中2015-2016学年高一下学期入学数学试卷 含解析

2015-2016学年四川省成都七中高一(下)入学数学试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各组函数是同一函数的是()①与;②f(x)=x与;③f(x)=x0与;④f(x)=x2﹣2x﹣1与g(t)=t2﹣2t﹣1.A.①②B.①③C.③④D.①④2.下列函数中,既是偶函数又存在零点的是() A.y=lnx B.y=x2+1 C.y=sinx D.y=cosx3.如图,某港口一天6时到18时的水深变化曲线近似满足函数y=3sin(x+φ)+k.据此函数可知,这段时间水深(单位:m)的最大值为()A.5 B.6 C.8 D.104.设函数f(x)=,则f(﹣2)+f(log212)=()A.3 B.6 C.9 D.125.若A={x∈Z|2≤22﹣x<8},B={x∈R||log2x|>1},则A∩(∁R B)的元素个数是()A.0 B.1 C.2 D.36.函数f(x)与的图象与图象关于直线y=x 对称,则的f(4﹣x2)的单调增区间是()A.(﹣∞,0] B.[0,+∞)C.(﹣2,0] D.[0,2)7.将函数f(x)=sin2x的图象向右平移φ(0<φ<)个单位后得到函数g(x)的图象.若对满足|f(x1)﹣g(x2)|=2的x1、x2,有|x1﹣x2|min=,则φ=() A.B.C.D.8.如图,长方形ABCD的边AB=2,BC=1,O是AB 的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为()A. B. C.D.9.设函数f(x)=ln(1+|x|)﹣,则使得f(x)>f(2x﹣1)成立的取值范围是( )A.(﹣∞,)∪(1,+∞)B.(,1)C.() D.(﹣∞,﹣,)10.如图,函数f(x)的图象为折线ACB,则不等式f(x)≥log2(x+1)的解集是( )A.{x|﹣1<x≤0} B.{x|﹣1≤x≤1}C.{x|﹣1<x ≤1} D.{x|﹣1<x≤2}11.已知定义在R上的函数f(x)=2|x﹣m|﹣1(m为实数)为偶函数,记a=f(log0.53),b=f(log25),c=f(2m),则a,b,c的大小关系为( )A.a<b<c B.a<c<b C.c<a<b D.c<b<a 12.已知函数f(x)=,函数g(x)=b﹣f(2﹣x),其中b∈R,若函数y=f(x)﹣g(x)恰有4个零点,则b的取值范围是()A.(,+∞)B.(﹣∞,)C.(0,)D.(,2)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若函数f(x)=xln(x+)为偶函数,则a= .14.若函数f(x)=2|x﹣a|(a∈R)满足f(1+x)=f(1﹣x),且f(x)在[m,+∞)上单调递增,则实数m 的最小值等于.15.若函数f(x)=(a>0且a≠1)的值域是[4,+∞),则实数a的取值范围是.16.设函数f(x)=,①若a=1,则f(x)的最小值为;②若f(x)恰有2个零点,则实数a的取值范围是.三、解答题(本大题共6小题,共70分。

成都七中学校自主招生测验试题

成都七中学校自主招生测验试题

成都七中学校⾃主招⽣测验试题成都七中学校⾃主招⽣测验试题————————————————————————————————作者:————————————————————————————————⽇期:成都七中实验学校⾃主招⽣考试试题数学试题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题36分;第Ⅱ卷为⾮选择题114分;全卷共150分.考试时间为120分钟.2.本试卷的选择题答案⽤2B 铅笔涂在机读卡上,⾮选择题在卷Ⅱ上作答.3.考⽣务必将⾃⼰的姓名及考号写在密封线以内指定位置.4.⾮选择题必须在指定的区域内作答,不能超出指定区域或在⾮指定区域作答,否则答案⽆效.卷I (选择题,共36分)⼀.选择题:本⼤题共12个⼩题,每⼩题3分,共36分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.1.计算3×(-2) 的结果是( )A .5B .-5C .6D .-62.如图1,在△ABC 中,D 是BC 延长线上⼀点,∠B = 40°,∠ACD = 120°,则∠A 等于( ) A .60° B .70°C .80°D .90°3.下列计算中,正确的是( )A .020=B . 623)(a a = C .93=± D .2a a a =+4.如图2,在□ABCD 中,AC 平分∠DAB ,AB = 3,则□ABCD 的周长为( ) A .6 B .9 C .12D .155.把不等式2x -< 4的解集表⽰在数轴上,正确的是( )6.如图3,在5×5正⽅形⽹格中,⼀条圆弧经过A ,B ,C 三点,ABABCD40°120°图1MR Q ABCP A -B D2 0 C 0 - 2那么这条圆弧所在圆的圆⼼是( ) A .点P B .点M C .点RD .点Q7.若2230x x y ++-=,则xy 的值为()A .6或0B .6-或0C .5或0D .8-或08.已知y x a b b y b b a x b a ,,,,0则--=-+=<<的⼤⼩关系是()A .y x >B .x =yC .y x <D .与a 、b 的取值有关 9.如图4,已知边长为1的正⽅形ABCD ,E 为CD 边的中点,动点P在正⽅形ABCD 边上沿A B C E →→→运动,设点P 经过的路程为 x ,△APE 的⾯积为y ,则y 关于x 的函数的图象⼤致为()10.如图5,两个正六边形的边长均为1,其中⼀个正六边形⼀边恰在另⼀个正六边形的对⾓线上,则这个图形(阴影部分)外轮廓线的周长是( )D .1011.如图6,已知⼆次函数2y ax bx c =++的图像如图所⽰,则下列6个代数式,,,,2,ab ac a b c a b c a b ++-++2a b -中其值为正的式⼦个数为()A .1个B .2个C .3个D .4个12.将正⽅体骰⼦(相对⾯上的点数分别为1和6、2和5、3和4)放置于⽔平桌⾯上,如图7-1.在图7-2中,将骰⼦向右翻滚90°,然后在桌⾯上按逆时针⽅向旋转90°,则完成⼀次变换.若骰⼦的初始位置为图7-1所⽰的状态,那么按上述规则连续完成10次变换后,骰⼦朝上⼀⾯的点数是( )A .2B .3C .5D .6卷Ⅱ(⾮选择题,共114分)图7-1图7-2向右翻滚逆时针旋转90°图5x (yO2.(1(x yO2.1(x y2.1 ABC E PD 图4图6O 1 1yx⼆.填空题:本⼤题共6个⼩题,每⼩题4分,共24分.将答案直接填写在题中横线上.13.5-的相反数是.14.如图8,矩形ABCD的顶点A,B在数轴上,CD = 6,点A对应的数为1-,则点B所对应的数为.15.如图9,有五张点数分别为2,3,7,8,9的扑克牌,从中任意抽取两张,则其点数之积是偶数的概率为.16.已知x = 1是⼀元⼆次⽅程02=++nm++的值为.17.把三张⼤⼩相同的正⽅形卡⽚A,B,C叠放在⼀个底⾯为正⽅形的盒底上,底⾯未被卡⽚覆盖的部分⽤阴影表⽰.若按图10-1摆放时,阴影部分的⾯积为S1;若按图10-2摆放时,阴影部分的⾯积为S2,则S1S2(填“>”、“<”或“=”).18.南⼭中学⾼⼀年级举办数学竞赛,A、B、C、D、E五位同学得了前五名,发奖前,⽼师让他们猜⼀猜各⼈的名次排列情况.A说:B第三名,C第五名;B说:E第四名,D第五名;C说:A第⼀名,E第四名;D说:C第⼀名,B第⼆名;E说:A第三名,D第四名.⽼师说:每个名次都有⼈猜对,试判断获得第⼀⾄第五名的依次为 .三、解答题(本⼤题共7个⼩题,共90分.解答应写出⽂字说明、证明过程或演算步骤)19.(1)(本⼩题满分8分)解⽅程:1211+=-xx.(2)(本⼩题满分8分)先化简再求值:22214()a a a a a----÷++++,其中22430a a+-=.20.(本⼩题满分12分)甲、⼄两校参加区教育局举办的学⽣英语⼝语竞赛,两校参赛⼈数相等.⽐赛结束后,发现学⽣成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.甲校成绩统计表图10-1ACBCBA图10-2⼄校成绩扇形统计图图11-110分9分8分72°54°7分A 0图8BCD图9(1)在图11-1中,“7分”所在扇形的圆⼼⾓(3)经计算,⼄校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的⾓度分析哪个学校成绩较好.(4)如果该教育局要组织8⼈的代表队参加市级团体赛,为便管理,决定从这两所学校中的⼀所挑选参赛选⼿,请你分析,应选哪所学校?21.(本⼩题满分12分)如图12,在直⾓坐标系中,矩形OABC 的顶点O 与坐标原点重合,顶点A ,C 分别在坐标轴上,顶点B 的坐标为(4,2).过点D (0,3)和E (6,0)的直线分别与AB,BC 交于点M ,N .(1)求直线DE 的解析式和点M 的坐标;(2)若反⽐例函数xmy =(x >0)的图象经过点M ,求该反⽐例函数的解析式,并通过计算判断点N 是否在该函数的图象上;(3)若反⽐例函数xmy =(x >0)的图象与△MNB 有公共点,请直接..写出m 的取值范围. 22.(本⼩题满分12分)某仪器⼚计划制造A 、B 两种型号的仪器共80套,该公司所筹资⾦不少于2090万元,但不超过2096万元,且所筹资⾦全部⽤于制造仪器,两种型号的制造成本和售价如下表:A B 成本(万元/套) 25 28 售价(万元/套)3034(1)该⼚对这两种型号仪器有哪⼏种制造⽅案?(2)该⼚应该选⽤哪种⽅案制造可获得利润最⼤?(3)根据市场调查,每套B 型仪器的售价不会改变,每套A 型仪器的售价将会提⾼a 万元(a >0),且所制造的两种仪器可全部售出,问该⼚⼜将如何制造才能获得最⼤利润?分数 7 分 8 分 9 分 10 分⼈数118xMN yDAB C E O8 6 48分 9分分数⼈数 210分图11-2 7分 08 45图13-2ADOBC21 MN图13-1ADBM N12图13-3ADOBC21 MNO(1)如图13-1,若AO = OB ,请写出AO 与BD 的数量关系和位置关系;(2)将图13-1中的MN 绕点O 顺时针旋转得到图13-2,其中AO = OB .求证:AC = BD ,AC ⊥ BD ;(3)将图13-2中的OB 拉长为AO 的k 倍得到图13-3,求ACBD的值. 24.(本⼩题满分12分)如图14,在直⾓梯形ABCD 中,AD ∥BC ,90B ∠=?,AD = 6,BC = 8,33=AB ,点M 是BC 的中点.点P 从点M 出发沿MB 以每秒1个单位长的速度向点B 匀速运动,到达点B 后⽴刻以原速度沿BM 返回;点Q 从点M 出发以每秒1个单位长的速度在射线MC 上匀速运动.在点P ,Q 的运动过程中,以PQ 为边作等边三⾓形EPQ ,使它与梯形ABCD 在射线BC 的同侧.点P,Q 同时出发,当点P 返回到点M 时停⽌运动,点Q 也随之停⽌.设点P ,Q 运动的时间是t 秒(t >0).(1)设PQ 的长为y ,在点P 从点M 向点B 运动的过程中,写出y 与t 之间的函数关系式(不必写t 的取值范围).(2)当BP = 1时,求△EPQ 与梯形ABCD 重叠部分的⾯积.(3)随着时间t 的变化,线段AD 会有⼀部分被△EPQ 覆盖,被覆盖线段的长度在某个时刻会达到最⼤值,请回答:该最⼤值能否持续⼀个时段?若能,直接..写出t 的取值范围;若不能,请说明理由.M A D C B P QE 图14 A D C B (备⽤图) M25.(本⼩题满分14分)如图15,抛物线2(0)y ax bx c a =++≠经过x 轴上的两点1(,0)A x 、2(,0)B x 和y 轴上的点3(0,)2C -,P 的圆⼼P 在y 轴上,且经过B 、C 两点,若3b a =,23AB =.求:(1)抛物线的解析式;(2)D 在抛物线上,且C 、D 两点关于抛物线的对称轴对称,问直线BD 是否经过圆⼼P ?并说明理由;(3)设直线BD 交P 于另⼀点E ,求经过点E 和P 的切线的解析式.C M B yQxD E O AP 图152011年数学参考答案⼀、选择题BCADBCABBC⼆、填空题13.5 14.5 15. 71016.1 17. = 18. C 、B 、A 、E 、D. 三、解答题19.(1)解:)1(21-=+x x ,3=x .经检验知,3=x 是原⽅程的解.………………8分(2)解:………………6分由已知得2322a a +=,代⼊上式的原式23=………………8分20.解:(1)144;………………3分(2)如图1;………………6分(3)甲校的平均分为8.3分,中位数为7分;………………8分由于两校平均分相等,⼄校成绩的中位数⼤于甲校的中位数,所以从平均分和中位数⾓度上判断,⼄校的成绩较好.………………9分⼄校成绩条形统计图 86 48分 9分分数⼈数2 10分图17分 0 8322212[](2)(2)4(2)(2)(1)2(2)442(2)442(2)41(2)12a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a--+=-?++--+--+=+---++=?+--+=?+-=+=+原式(4)因为选8名学⽣参加市级⼝语团体赛,甲校得10分的有8⼈,⽽⼄校得10分的只有5⼈,所以应选甲校.………………12分21.解:(1)设直线DE 的解析式为b kx y +=,∵点D ,E 的坐标为(0,3)、(6,0),∴ ?+==.60,3b k b解得=-=.3,21b k ∴ 321+-=x y .………………2分∵点M 在AB 边上,B (4,2),⽽四边形OABC 是矩形,∴点M 的纵坐标为2.⼜∵点M 在直线321+-=x y 上,∴ 2 = 321+-x .∴ x = 2.∴ M (2,2).………………4分(2)∵x(x >0)经过点M (2,2),∴ 4=m .∴xy 4=.………………5分⼜∵点N 在BC 边上,B (4,2),∴点N 的横坐标为4.∵点N 在直线321+-=x y 上,∴ 1=y .∴ N (4,1). ………………8分∵当4=x 时,y =4x= 1,∴点N 在函数 xy 4=的图象上.………………9分(3)4≤ m ≤8.………………12分22.解:(1)设A 种型号的仪器造x 套,则B 种型号的仪器造(80-x)套, 由题意得:()20968028252090≤-+≤x x解之得:5048≤≤x ………………2分所以 x=48、49、50 三种⽅案:即:A 型48套,B 型32套;A 型49套,B 型31套;A 型50套,B 型30套。

四川省成都七中2014-2015学年八年级(下)期末数学试卷(解析版)

四川省成都七中2014-2015学年八年级(下)期末数学试卷(解析版)

四川省成都七中2014-2015学年八年级下学期期末数学试卷一、选择题(每小题3分,共30分,每小题都只有一个正确选项)1.(3分)观察如图所示图案,在A,B,C,D四幅图案中,能通过图案平移得到的是()A.B.C.D.2.(3分)等腰三角形的一边为4,另一边为9,则这个三角形的周长为()A.17 B.22 C.13 D.17或223.(3分)下列图案是几种小汽车的标志,其中是轴对称图形,但不是中心对称图形的图案的是()A. B.C.D.4.(3分)(1999•广州)已知a>b,则下列不等式中正确的是()A.﹣3a>﹣3b B.﹣>﹣C.3﹣a>3﹣b D.a﹣3>b﹣3 5.(3分)如图是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A.△ABC的三条中线的交点B.△ABC三边的中垂线的交点C.△ABC三条高所在直线的交点D.△ABC三条角平分线的交点6.(3分)如图,在△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为()A.80°B.75°C.65°D.45°7.(3分)不等式2x﹣6>0的解集在数轴上表示正确的是()A.B.C.D.8.(3分)如图,用不等式表示数轴上所示的解集,正确的是()A.x<﹣1或x≥3B.x≤﹣1或x>3 C.﹣1≤x<3 D.﹣1<x≤39.(3分)不等式﹣3x+6>0的正整数解有()A.1个B.2个C.3个D.无数多个10.(3分)某次“迎奥运”知识竞赛中共20道题,对于每一道题,答对得10分,答错或不答扣5分,选手至少要答对()道题,其得分才会不少于95分?A.14 B.13 C.12 D.11二、填空题(每小题4分,共20分)11.(4分)x的2倍与12的差大于6,用不等式表示为.12.(4分)已知点A(﹣1,2),将它先向左平移2个单位,再向上平移3个单位后得到点B,则点B的坐标是.13.(4分)命题“等边三角形的三个内角相等”的逆命题是.14.(4分)如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠BAC,CD=2cm,则BD的长是.15.(4分)如图,已知一次函数y=kx+b,观察图象回答下列问题:x时,kx+b<0.三、解答题(共50分)16.(12分)(1)解不等式≤5﹣x,并把解集表示在数轴上;(2)解不等式组.17.(9分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,Rt△ABC的顶点均在格点上,在建立平面直角坐标系以后,点A的坐标为(﹣6,1),点B的坐标为(﹣3,1),点C的坐标为(﹣3,3).(1)将Rt△ABC沿x轴正方向平移8个单位得到Rt△A1B1C1,试在图上画出Rt△A1B1C1的图形,并写出点A1的坐标(,).(2)若Rt△ABC内部一点P的坐标为(a,b),则平移后点P的对应点P1的坐标是(,).(3)将原来的Rt△ABC绕着点O顺时针旋转180°得到Rt△A2B2C2,试在图上画出Rt△A2B2C2的图形.18.(9分)已知,如图,D是△ABC的BC边的中点,DE⊥AB,DF⊥AC,垂足分别为E,F,且DE=DF,求证:AB=A C.19.(10分)郑校长暑假将带领该校市级“三好学生”去北京旅游,甲旅行社说:“如果校长买全票一张,则其余的学生可享受半价优惠.”乙旅行社说:“包括校长在内全部按票价的六折优惠.”若全票价为2400元,两家旅行社的服务质量相同,根据“三好学生”的人数你认为选择哪一家旅行社才比较合算?20.(10分)两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC,(1)请找出图②中的全等三角形,并给予说明(说明:结论中不得含有未标识的字母);(2)试说明:DC⊥BE.B卷一、填空题(每小题4分,共20分.)21.(4分)已知关于x的不等式组无解,则a的取值范围为.22.(4分)一次函数y=(3﹣m)x+m﹣5的图象经过第一,二,四象限,则m应为.23.(4分)若不等式2x<4的解都能使关于x的一次不等式(a﹣1)x<a+5成立,则a的取值范围是.24.(4分)我们把符合等式a2+b2=c2的a、b、c三个称为勾股数.现请你用计算器验证下列各组的数是否勾股数.你能发现其中规律吗?请完成下列空格.3,4,5;5,12,13;7,24,25;9,40,41;11,,;…25.(4分)如图,在Rt△ABC中,∠A=90°,∠B=45°,∠B的平分线BD交AC于点D,则=.二、解答题26.(8分)如图,小将同学将一个直角三角形的纸片折叠,A与B重合,折痕为DE,若已知AC=10cm,BC=6cm,你能求出CE的长吗?27.(10分)龙泉地区为促进特种水果的发展,决定对枇杷和水蜜桃的种殖提供政府补贴.该地区某农家乐在改建的10个1亩大小的种植地里分别种植枇杷和水蜜桃(每个种植地只能种一种水果),因资金有限,投入不能超过14万元,并希望获得不低于10.8万元的收益,相关信息如下表所示:(收益=毛利润﹣成本+政府补贴)种殖种类成本(万元/亩)毛利润(万元/亩)政府补贴(万元/亩)枇杷 1.5 2.5 0.2水蜜桃 1 1.8 0.1(1)根据以上信息,该农家乐有哪些种殖方案?(2)请你帮该农家乐设计一种种殖方案,可获得最大收益.28.(12分)如图,已知△ABC是等腰三角形,且∠C=60°,AB=10,点P是AC边上一动点,由点A向点C运动(点P与点A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由点B向CB延长线方向运动(点Q与点B不重合),过点P作PE⊥AB于点E,连结PQ交AB于点D.(1)当∠BQD=30°时,求AP的长.(2)在运动过程中,线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化,请说明理由.参考答案与试题解析一、选择题(每小题3分,共30分,每小题都只有一个正确选项)1.(3分)观察如图所示图案,在A,B,C,D四幅图案中,能通过图案平移得到的是()A.B.C.D.考点:生活中的平移现象.分析:根据平移的性质,结合图形,对选项进行一一分析,排除错误答案.解答:解:A、图案属于旋转所得到,故错误;B、图案属于旋转所得到,故错误;C、图案形状与大小没有改变,符合平移性质,故正确;D、图案属于旋转所得到,故错误.故选C.点评:本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,以致选错.2.(3分)等腰三角形的一边为4,另一边为9,则这个三角形的周长为()A.17 B.22 C.13 D.17或22考点:等腰三角形的性质.分析:本题可先根据三角形三边关系,确定等腰三角形的腰和底的长,然后再计算三角形的周长.解答:解:当腰长为4时,则三角形的三边长为:4、4、9;∵4+4<9,∴不能构成三角形;因此这个等腰三角形的腰长为9,则其周长=9+9+4=22.故本题选B.点评:本题考查了等腰三角形的性质和三角形的三边关系;对于已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.3.(3分)下列图案是几种小汽车的标志,其中是轴对称图形,但不是中心对称图形的图案的是()A. B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、是轴对称图形,也是中心对称图形.故错误;B、不是轴对称图形,也不是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故正确.故选D.点评:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.(3分)(1999•广州)已知a>b,则下列不等式中正确的是()A.﹣3a>﹣3b B.﹣>﹣C.3﹣a>3﹣b D.a﹣3>b﹣3考点:不等式的性质.分析:看各不等式是加(减)什么数,或乘(除以)什么数得到的,再判断用不用变号.解答:解:A、不等式两边都乘以﹣3,不等号的方向改变,﹣3a<﹣3b,故A错误;B、不等式两边都除以﹣3,不等号的方向改变,﹣<﹣,故B错误;C、同一个数减去一个大数小于减去一个小数,3﹣a<3﹣b,故C错误;D、不等式两边都减3,不等号的方向不变,故D正确.故选:D.点评:不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.5.(3分)如图是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A.△ABC的三条中线的交点B.△ABC三边的中垂线的交点C.△ABC三条高所在直线的交点D.△ABC三条角平分线的交点考点:角平分线的性质;作图—应用与设计作图.分析:由于凉亭到草坪三条边的距离相等,所以根据角平分线上的点到边的距离相等,可知是△ABC三条角平分线的交点.由此即可确定凉亭位置.解答:解:∵凉亭到草坪三条边的距离相等,∴凉亭选择△ABC三条角平分线的交点.故选D.点评:本题主要考查的是角的平分线的性质在实际生活中的应用.主要利用了到线段的两个端点的距离相等的点在这条线段的垂直平分线上.6.(3分)如图,在△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为()A.80°B.75°C.65°D.45°考点:线段垂直平分线的性质;等腰三角形的性质.专题:计算题;压轴题.分析:首先利用线段垂直平分线的性质推出∠DAC=∠DCA,根据等腰三角形的性质可求出∠ABC=∠ACB,易求∠BCD的度数.解答:解:已知AB=AC,∠A=30°可得∠ABC=∠ACB=75°根据线段垂直平分线的性质可推出AD=CD所以∠A=∠ACD=30°所以∠BCD=∠ACB﹣∠ACD=45°.故选D.点评:本题运用两个知识点:线段垂直平分线的性质以及等腰三角形的性质,难度一般.7.(3分)不等式2x﹣6>0的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集.专题:图表型.分析:不等式2x﹣6>0的解集是x>3,>应向右画,且不包括3时,应用圈表示,不能用实心的原点表示3这一点,据此可求得不等式的解以及解集再数轴上的表示.解答:解:将不等式2x﹣6>0移项,可得:2x>6,将其系数化1,可得:x>3;∵不包括3时,应用圈表示,不能用实心的原点表示3这一点答案.故选:A.点评:此题主要考查了在数轴上表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.8.(3分)如图,用不等式表示数轴上所示的解集,正确的是()A.x<﹣1或x≥3B.x≤﹣1或x>3 C.﹣1≤x<3 D.﹣1<x≤3考点:在数轴上表示不等式的解集.分析:不等式的解集表示﹣1与3之间的部分,其中不包含﹣1,而包含3.解答:解:由图示可看出,从﹣1出发向右画出的折线且表示﹣1的点是空心圆,表示x >﹣1;从3出发向左画出的折线且表示3的点是实心圆,表示x≤3.所以这个不等式组为﹣1<x≤3故选D.点评:此题主要考查利用数轴上表示的不等式组的解集来写出不等式组.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.9.(3分)不等式﹣3x+6>0的正整数解有()A.1个B.2个C.3个D.无数多个考点:一元一次不等式的整数解.分析:首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.解答:解:不等式的解集是x<2,故不等式﹣3x+6>0的正整数解为1.故选A.点评:正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.10.(3分)某次“迎奥运”知识竞赛中共20道题,对于每一道题,答对得10分,答错或不答扣5分,选手至少要答对()道题,其得分才会不少于95分?A.14 B.13 C.12 D.11考点:一元一次不等式的应用.专题:应用题;优选方案问题.分析:本题可设答对x道题,则答错或不答的题目就有20﹣x个,再根据得分才会不少于95分,列出不等式,解出x的取值即可.解答:解:设答对x道,则答错或不答的题目就有20﹣x个.即10x﹣5≥95去括号:10x﹣100+5x≥95∴15x≥195x≥13因此选手至少要答对13道.故应选B.点评:本题考查的是一元一次不等式的运用,解此类题目时常常要设出未知数再根据题意列出不等式解题即可.二、填空题(每小题4分,共20分)11.(4分)x的2倍与12的差大于6,用不等式表示为2x﹣12>6.考点:由实际问题抽象出一元一次不等式.分析:由x的2倍与12的差大于6得出关系式为:x的2倍﹣12>6,把相关数值代入即可.解答:解:∵x的2倍为2x,∴x的2倍与12的差大于6可表示为:2x﹣12>6.故答案为:2x﹣12>6.点评:此题主要考查了列一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.12.(4分)已知点A(﹣1,2),将它先向左平移2个单位,再向上平移3个单位后得到点B,则点B的坐标是(﹣3,5).考点:坐标与图形变化-平移.分析:直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.解答:解:原来点的横坐标是﹣1,纵坐标是2,向左平移2个单位,再向上平移3个单位得到新点的横坐标是﹣1﹣2=﹣3,纵坐标为2+3=5,即为(﹣3,5).故答案是(﹣3,5).点评:本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.13.(4分)命题“等边三角形的三个内角相等”的逆命题是三个内角相等的三角形是等边三角形.考点:命题与定理.分析:逆命题就是原命题的题设和结论互换,找到原命题的题设为等边三角形,结论为三个内角相等,互换即可.解答:解:命题“等边三角形的三个内角相等”的逆命题是“三个内角相等的三角形是等边三角形”.故答案为:三个内角相等的三角形是等边三角形.点评:本题考查逆命题的概念,关键是知道题设和结论互换.14.(4分)如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠BAC,CD=2cm,则BD的长是4cm.考点:角平分线的性质;含30度角的直角三角形.分析:根据直角三角形两锐角互余求出∠BAC=60°,再根据角平分线的定义求出∠CAD=∠BAD=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半可得BD=2CD,再根据等角对等边可得AD=B D.解答:解:∵∠C=90°,∠B=30°,∴∠BAC=90°﹣30°=60°,∵AD平分∠CAB,∴∠CAD=∠BAD=×60°=30°,∴AD=2CD=2×2=4cm,又∵∠B=∠ABD=30°,∴AD=BD=4cm.故答案为:4cm点评:本题考查了直角三角形两锐角互余的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记性质是解题的关键.15.(4分)如图,已知一次函数y=kx+b,观察图象回答下列问题:x<2.5时,kx+b<0.考点:一次函数与一元一次不等式.专题:数形结合.分析:观察函数图象得到x<2.5时,一次函数图象在x轴下方,所以y=kx+b<0.解答:解:当x<2.5时,y<0,即kx+b<0.故答案为<2.5.点评:本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.三、解答题(共50分)16.(12分)(1)解不等式≤5﹣x,并把解集表示在数轴上;(2)解不等式组.考点:解一元一次不等式组;在数轴上表示不等式的解集;解一元一次不等式.分析:(1)先求出不等式的解集,再在数轴上表示出来即可;(2)分别求出各不等式的解集,再求出其公共解集即可.解答:解:(1)去分母得,x﹣1≤15﹣3x,移项、合并同类项得,4x≤16,把x的系数化为1得,x≤4.在数轴上表示为:;(2),由①得x>1,由②得x≤2,不等式①②的解集在同一数轴上表示如下:故原不等式组的解集是1<x≤2.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.17.(9分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,Rt△ABC的顶点均在格点上,在建立平面直角坐标系以后,点A的坐标为(﹣6,1),点B的坐标为(﹣3,1),点C的坐标为(﹣3,3).(1)将Rt△ABC沿x轴正方向平移8个单位得到Rt△A1B1C1,试在图上画出Rt△A1B1C1的图形,并写出点A1的坐标(2,1).(2)若Rt△ABC内部一点P的坐标为(a,b),则平移后点P的对应点P1的坐标是(a+8,b).(3)将原来的Rt△ABC绕着点O顺时针旋转180°得到Rt△A2B2C2,试在图上画出Rt△A2B2C2的图形.考点:作图-旋转变换;作图-平移变换.专题:作图题.分析:(1)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点A1的坐标;(2)根据向右平移横坐标加,纵坐标不变解答;(3)根据网格结构找出点A、B、CABC绕着点O顺时针旋转180°的对应点A2、B2、C2的位置,然后顺次连接即可.解答:解:(1)Rt△A1B1C1如图所示,A1(2,1);(2)P1(a+8,b);(3)Rt△A2B2C2如图所示.故答案为:(1)2,1;(2)a+8,B.点评:本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.18.(9分)已知,如图,D是△ABC的BC边的中点,DE⊥AB,DF⊥AC,垂足分别为E,F,且DE=DF,求证:AB=A C.考点:全等三角形的判定与性质.专题:证明题.分析:首先运用HL定理证明△BDE≌△CDF,进而得到∠B=∠C,运用等腰三角形的判定定理即可解决问题.解答:证明:如图,∵D是△ABC的BC边的中点,DE⊥AB,DF⊥AC,∴BD=CD,△BDE、△CDF均为直角三角形;在△BDE、△CDF中,,∴△BDE≌△CDF(HL),∴∠B=∠C,∴AB=A C.点评:该题主要考查了全等三角形的判定、等腰三角形的判定等几何知识点及其应用问题;牢固掌握全等三角形的判定、等腰三角形的判定等几何知识点是解题的基础和关键.19.(10分)郑校长暑假将带领该校市级“三好学生”去北京旅游,甲旅行社说:“如果校长买全票一张,则其余的学生可享受半价优惠.”乙旅行社说:“包括校长在内全部按票价的六折优惠.”若全票价为2400元,两家旅行社的服务质量相同,根据“三好学生”的人数你认为选择哪一家旅行社才比较合算?考点:一次函数的应用.分析:设三好学生为x人,选择甲旅行社费用为y1元,乙旅行社费用为y2元,分别表示出y1元,y2元,再通过讨论就可以得出结论.解答:解:设三好学生为x人,选择甲旅行社费用为y1元,乙旅行社费用为y2元,由题意,得y1=2400×0.5x+2400,y1=1200x+2400.y2=0.6×2400(x+1),y2=1440x+1440.当y1>y2时,1200x+2400>1440x+1440,解得:x<4;当y1=y2时,1200x+2400=1440x+1440,解得:x=4;当y1<y2时,1200x+2400<1440x+1440,解得:x>4.综上所述,当三好学生人数少于4人时,选择乙旅行社合算;等于4人时,甲、乙两家一样合算;多于4人时,选择甲旅行社合算.点评:本题考查了一次函数的解析式的运用,总价=单价×数量的运用,方案设计的运用,解答时求出一次函数的解析式是关键.20.(10分)两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC,(1)请找出图②中的全等三角形,并给予说明(说明:结论中不得含有未标识的字母);(2)试说明:DC⊥BE.考点:等腰直角三角形;全等三角形的判定与性质;等腰三角形的判定与性质.专题:证明题.分析:①可以找出△BAE≌△CAD,条件是AB=AC,DA=EA,∠BAE=∠DAC=90°+∠CAE.②由①可得出∠DCA=∠ABC=45°,则∠BCD=90°,所以DC⊥BE.解答:解:(1)∵△ABC,△DAE是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°.∠BAE=∠DAC=90°+∠CAE,在△BAE和△DAC中∴△BAE≌△CAD(SAS).(2)由(1)得△BAE≌△CA D.∴∠DCA=∠B=45°.∵∠BCA=45°,∴∠BCD=∠BCA+∠DCA=90°,∴DC⊥BE.点评:本题主要考查全等三角形的判定与性质及等腰三角形的性质;充分利用等腰直角三角形的性质是解答本题的关键.B卷一、填空题(每小题4分,共20分.)21.(4分)已知关于x的不等式组无解,则a的取值范围为a≥3.考点:解一元一次不等式组.分析:先把a当作已知条件求出各不等式的解集,再根据不等式组无解求出a的取值范围即可.解答:解:,由①得,x≤3,由②得,x>a,∵不等式组无解,∴a≥3.故答案为:a≥3.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.22.(4分)一次函数y=(3﹣m)x+m﹣5的图象经过第一,二,四象限,则m应为m>5.考点:一次函数图象与系数的关系.分析:根据一次函数图象与系数的关系得到3﹣m<0且m﹣5>0,然后求出两部等式的公共部分即可.解答:解:根据题意得3﹣m<0且m﹣5>0,解得m>5.故答案为:m>5.点评:本题考查了一次函数图象与系数的关系:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).23.(4分)若不等式2x<4的解都能使关于x的一次不等式(a﹣1)x<a+5成立,则a的取值范围是1<a≤7.考点:解一元一次不等式组.专题:分类讨论.分析:先求出不等式2x<4的解集,再根据不等式(a﹣1)x<a+5用a表示出x的取值范围,由<2即可求出a的取值范围.解答:解:解不等式2x<4得:x<2,∵(a﹣1)x<a+5,①当a﹣1>0时,x<,∴≥2,∴1<a≤7.②当a﹣1<0时,x>,不合题意舍去.故答案为:1<a≤7.点评:本题考查的是解一元一次不等式组,根据题意得到关于a的不等式是解此题的关键.24.(4分)我们把符合等式a2+b2=c2的a、b、c三个称为勾股数.现请你用计算器验证下列各组的数是否勾股数.你能发现其中规律吗?请完成下列空格.3,4,5;5,12,13;7,24,25;9,40,41;11,60,61;…考点:勾股数.专题:规律型.分析:通过观察,得这组勾股数用n表示为:2n+1,2n2+2n,2n2+2n+1,据此求解.解答:解:先用计算机验证是勾股数;通过观察得到:这组勾股数用n表示为:2n+1,2n2+2n,2n2+2n+1,11是第5组勾股数的第一个小数,所以其它2个数为:2×52+2×5=60,2×52+2×5+1=61,故答案为:60、61.点评:此题考查的知识点是勾股数,关键是首先通过计算得是勾股数,再观察得出规律,据规律求解.25.(4分)如图,在Rt△ABC中,∠A=90°,∠B=45°,∠B的平分线BD交AC于点D,则=.考点:角平分线的性质;等腰直角三角形.分析:过点D作DE⊥BC于E,先根据角平分线的性质得出DA=DE,再利用HL证明Rt△ABD≌Rt△EBD,得出AB=EB,则BC﹣AB=CE,然后在Rt△CED中,利用cos∠C=cos45°=,即可求出=.解答:解:如图,过点D作DE⊥BC于E.∵BD平分∠ABC,DA⊥AB,DE⊥BC,∴DA=DE.在Rt△ABD与Rt△EBD中,,∴Rt△ABD≌Rt△EBD(HL),∴AB=EB,∴BC﹣AB=BC﹣EB=CE.∵在Rt△ABC中,∠A=90°,∠B=45°,∴∠C=45°.在Rt△CED中,cos∠C=cos45°=,∴=.故答案为.点评:本题考查了角平分线的性质,全等三角形的判定与性质,锐角三角函数的定义,难度适中.准确作出辅助线构造全等三角形,进而得出BC﹣AB=CE是解题的关键.二、解答题26.(8分)如图,小将同学将一个直角三角形的纸片折叠,A与B重合,折痕为DE,若已知AC=10cm,BC=6cm,你能求出CE的长吗?考点:翻折变换(折叠问题).分析:连接BE,设CE=x,由折叠可知,AE=BE=10﹣x,把问题转化到Rt△BCE中,使用勾股定理.解答:解:连接BE,设CE=x∵将直角三角形的纸片折叠,A与B重合,折痕为DE∴DE是AB的垂直平分线∴AE=BE=10﹣x在Rt△BCE中BE2=CE2+BC2即(10﹣x)2=x2+62解之得x=,即CE=cm.点评:本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后对应线段相等.27.(10分)龙泉地区为促进特种水果的发展,决定对枇杷和水蜜桃的种殖提供政府补贴.该地区某农家乐在改建的10个1亩大小的种植地里分别种植枇杷和水蜜桃(每个种植地只能种一种水果),因资金有限,投入不能超过14万元,并希望获得不低于10.8万元的收益,相关信息如下表所示:(收益=毛利润﹣成本+政府补贴)种殖种类成本(万元/亩)毛利润(万元/亩)政府补贴(万元/亩)枇杷 1.5 2.5 0.2水蜜桃 1 1.8 0.1(1)根据以上信息,该农家乐有哪些种殖方案?(2)请你帮该农家乐设计一种种殖方案,可获得最大收益.考点:一次函数的应用;一元一次不等式组的应用.分析:(1)设种植枇杷的面积为x亩,则种植水蜜桃的面积为(10﹣x)亩,根据条件建立不等式组求出其解即可;(2)设可获得最大收益为W元,种植枇杷的面积为x亩,则种植水蜜桃的面积为(10﹣x)亩,根据收益=毛利润﹣成本+政府补贴建立W与x的函数关系式,由一次函数的性质就可以求出结论.解答:解:(1)设种植枇杷的面积为x亩,则种植水蜜桃的面积为(10﹣x)亩,由题意,得,解得:6≤x≤8.∵x为整数,∴x=6,7,8.∴有3种种植方案.方案1,种植枇杷6亩,水蜜桃4亩;方案2,种植枇杷7亩,水蜜桃3亩;方案3,种植枇杷8亩,水蜜桃2亩;(2)设可获得最大收益为W元,由题意,得W=(2.5﹣1.5+0.2)x+(1.8﹣1+0.1)(10﹣x),W=0.3x+9.∴k=0.3>0,∴W随x的增大而增大,∴当x=8时,W最大=11.4万元.点评:本题考查了列一元一次不等式组解实际问题的运用,一元一次不等式组的解法的运用,一次函数的性质的运用,收益=毛利润﹣成本+政府补贴的关系的运用,方案设计的运用,解答时建立一次函数的关系式是关键.。

四川省成都市第七中学2015届高三2月阶段性考试数学试题Word版含解析

四川省成都市第七中学2015届高三2月阶段性考试数学试题Word版含解析

成都七中2015届高三2月阶段性测试 数 学 试 题本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题).满分150分.考试时间120分钟. 第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.已知集合A=2{|320}x x x -+>, B={|2,N*}x x x <∈, 则()R C A B =A .φB .{1} C.{2} D.{1,2} 【解析】集合A={|12}x x x <>或,{|12}R C A x x ∴=≤≤,B={|2,*}x x x N <∈,(){1}R C A B ∴=,故选B .2.已知i 是虚数单位, 若22()01i mi +<+(m R ∈),则m 的值为A .12 B .2- C .2 D .12-【解析】 由22()01i mi +<+,知21i mi ++为纯虚数,222(12)11i m m imi m +++-∴=++为纯虚数,2m ∴=-,故选B.3.已知命题p:1x ≠或2y ≠,命题q:3x y +≠,则p 是q 的 充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】 因为命题p:1x ≠或2y ≠,命题q:3x y +≠,所以¬p :12x y ==且,¬q: 3x y +=,所以¬p ⇒¬q ,但¬q ⇒¬p ,等价于q ⇒p ,但p ⇒q ,所以p 是q 的必要不充分条件. 4. 在如图所示的程序框图中,若0()xf x xe =,则输出的结果是A.2016x x e xe +B.2015x xe xe + C.2014x xe xe + D.2013x e x +【解析】 由0()x f x xe = 得当1i =时,10()()()x x x f x f x xe e xe ''===+,当2i =时,2015i =1()()i i f x f x -'=21()()()2x x x xf x f x e xe e xe ''==+=+,……,当2015i =时,20152014()()(2014)2015x x x x f x f x e xe e xe ''==+=+,故选B.5.一个边长为2m ,宽1m 的长方形内画有一个中学生运动会的会标,在长方形内随机撒入100粒豆子,恰有60粒落在会标区域内,则该会标的面积约为A .352m B .652m C .1252m D .1852m【解析】 由几何概型的概率计算公式可知, =会标的面积落在会标区域内豆粒长方形的面积数总豆粒数,所以会标的面积约为60621005⨯=,故选B. 6.三角函数()sin cos f x a x b x =-,若()()44f x f x ππ-=+,则直线0ax by c -+=的倾斜角为A . 4πB .3πC .23πD . 34π【解析】 由()()44f x f x ππ-=+知三角函数()f x 的图像关于4x π=对称,所以02()()f f π=所以=-a b ,直线0ax by c -+=的斜率1a k b ==-,其倾斜角为倾斜角为34π.故选D.7.已知数列{}n a 满足*1112,(N )1nn na a a n a ++==∈-,则1232014a a a a ⋅⋅⋅⋅=-6 B.6 C.-1 D.1【解析】 由111n n na a a ++=-可得21n na a +=-,从而可得4n na a +=,所以数列{}n a 是一个周期为4的数列.又12a =,所以2345113,,,2,23a a a a =-=-==,所以12341a a a a ⋅⋅⋅=,又201450342=⨯+,所以1232014126a a a a a a ⋅⋅⋅⋅=⋅=-.8. 已知向量(4,0)OA =, B 是圆C:22((1x y -+-=上的一个动点,则两向量OA OB 与所成角的最大值为A . 12πB . 6πC .3πD . 512π【解析】 如图,过点O向圆C 作切线OB ,连结CB ,AOB ∠为OA OB 与成的最大角,因点C ,所以4AOC π∠=,||2OC =,||1BC =,又OC CB ⊥,6COB π∴∠=,56412AOB πππ∴∠=+=,故选D.9.已知抛物线21:2(0)C x py p =>的焦点与双曲线222:13x C y -=的左焦点的连线交1C 于第二象限内的点M ,若抛物线1C 在点M 处的切线平行于双曲线2C 的一条渐近线,则p=B.C.8D.16【解析】 由题意可知,抛物线21:2(0)C x p y p =>的焦点坐标为(0,)2p ,双曲线222:13x C y -=的左焦点坐标为(2,0)-,则过抛物线的焦点与双曲线的左焦点的直线方程为122x yp +=-,即202p x y p -+=.设该直线与抛物线1C 的交点M 的坐标为200(,)2x x p ,则抛物线1C 在点M 的切线斜率为x p ,又抛物线1C在点M 处的切线与双曲线2C 的一条渐近线平行,点M在第二象限,所以03x b p a =-=-,解得03x p =-.即(,)36p M p-,又点M 在直线202px y p -+=上,所以()2026p p p p ⋅-⋅+=,解得p =,故选A. 10.定义区间12[,]x x 长度为21x x -,(21x x >),已知函数22()1()a a x f x a x +-=(,0a R a ∈≠)的定义域与值域都是[,]m n ,则区间[,]m n 取最大长度时a 的值为A .3 B . 13a a ><-或 C .1a > D . 3【解析】 设[,]m n 是已知函数定义域的子集.0,x ≠[,](,0)m n ∴⊆-∞或[,](0,)m n ⊆+∞,故函数222()111()a a x a f x a x a a x +-+==-在[,]m n 上单调递增,则()()f m m f n n =⎧⎨=⎩,故,m n 是方程211a x a a x +-=的同号的相异实数根,即222()10a x a a x -++=的同号的相异实数根.211mn a =>,,m n ∴同号,只需2(3)(1)0a a a ∆=+->,13a a ∴><-或,n m -== nm -取最大值为.此时3a =.第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N ,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N 为 .【解析】 由分层抽样的定义可知,总人数129680812212543N =÷=+++.12.已知2tan ),,2(-=∈αππα,则)232cos(απ-=_______.【解析】 由2tan ),,2(-=∈αππα,得552sin =α,55cos -=α, 则==αααcos sin 22sin 54-,53sin cos 2cos 22-=-=ααα,所以103432sin 32sin 2cos 32cos )232cos(-=+=-απαπαπ.13.设x 、y 满足约束条件⎪⎩⎪⎨⎧≥-+≥+-≤--02022022y x y x y x ,若z mx y =+取得最大值时的最优解有无穷多个,则实数m 的值是 .【解析】 作出不等式组表示的平面区域如图中阴影部分所示,由于目标函数取最大值时的最优解有无穷多个,所以目标函数z mx y =+的几何意义是直线0mx y z +-=与直线220x y -+=重合,比较得12m =-.14. 设1,1a b >>,若2e ab =,则ln 2e as b=-的最大值为 .【解析】1,1a b >>,∴ln 0,ln 0a b >>,由2e ab =得ln ln 2a b +=为定值,令ln a t b =,ln 2ln ln ln ln ln ln ()12a a b t b a b +∴==⋅≤=,当且仅当e a b ==时等号成立,ln 1t ∴≤,e t ∴≤,ln 2e e a s b ∴=-≤-.15.在平面直角坐标系中,定义:一条直线经过一个点(,)x y ,若,x y 都是整数,就称该直线为完美直线,这个点叫直线的完美点,若一条直线上没有完美点,则就称它为遗憾直线.现有如下几个命题:①如果k 与b 都是无理数,则直线y=kx+b 一定是遗憾直线; ②“直线y=kx+b 是完美直线”的充要条件是“k 与b 都是有理数”; ③存在恰有一个完美点的完美直线;④完美直线l 经过无穷多个完美点,当且仅当直线l 经过两个不同的完美点. 其中正确的命题是______.(写出所有正确命题的编号)【解析】 对于①,如果取,-1,0),是完美直线,所以①错误;对于②,由①知当k 与b 均为无理数,但是直线是完美直线,所以②错误;对于③,设直线方程为y=,只经过了一个完美点(0,0),所以③正确;对于④,设y=kx 为过原点的完美直线,若此直线l 过不同的完美点(x1,y1)和(x2,y2),把两点代入完美直线l 的方程得y1=kx1,y2=kx2,两式相减得y1-y2=k (x1-x2),则(x1-x2,y1-y2)也在完美直线y=kx 上,且(x1-x2,y1-y2)也为完美点,通过这种方法得到直线l 经过无穷多个完美点,所以④正确.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分)在△ABC 中,角A 、B 、C 所对的边分别为a ,b ,c ,且2,13A C b π+==.yC(1)记角,()A x f x a c ==+,若△ABC 是锐角三角形,求f (x)的取值范围;(2)求△ABC 的面积的最大值.【解析】 (1)在△ABC 中, A+B+C=π,32π=+C A ,解得3π=B . (1分) ∵ 在△ABC 中,C cB b A a sin sin sin ==,b=1,∴CA c a sin 3sin1sin 3sin1ππ+⋅=+)]32sin([sin 332A A -+=π]sin 32cos cos 32sin [sin 332A A A ππ-+=A A cos sin 3+= )6sin(2π+=A ,即)6sin(2)(π+=x x f . (4分)△ABC 是锐角三角形,62A ππ∴<<,得3π<x+6π<23π,于是3<)(x f ≤2,即f (x)的取值范围为(3,2]. (6分) (2)由(1)知3π=B ,1b =,由余弦定理得2222cos b a c ac B =+-,即22212cos3a c ac π=+-.2212a c ac ac ac ac ∴=+-≥-=,当且仅当a c =时,等号成立. (10分)此时11sin sin 223ABC S ac B ac π∆===≤,故当a c =时,△ABC的面积的最大值为4. (12分)17.(本小题满分12分)2015年元月成都市跳伞塔社区要派人参加成都市财政局、水务局、物价局联合举行的“成都中心城区居民生活用水及特种用水价格调整方案听证会”,为了解居民家庭月均用水量(单位:吨),从社区5000住户中随机抽查100户,获得每户2014年12月的用水量,并制作了频率分布表和频率分布直方图(如图).(1)分别求出频率分布表中a、b的值,并估计社区内家庭月用水量不超过3吨的频率;(2)设A1,A2,A3是月用水量为[0,2)的家庭代表.B1,B2是月用水量为[2,4]的家庭代表.若从这五位代表中任选两人参加水价听证会,请列举出所有不同的选法,并求家庭代表B1,B2至少有一人被选中的概率.【解析】(1)由频率分布直方图可得a=0.5×0.5=0.25,∴月用水量为[1.5,2)的频数为25.故2b=100﹣92=8,得b=4.由频率分布表可知,月用水量不超过3吨的频率为0.92,所以家庭月用水量不超过3吨的频率约为0.92.(6分)(2)由A1、A2、A3、B1、B2五代表中任选2人共有如下10种不同选法,分别为:(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A2,A3),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2).记“B1、B2至少有一人被选中”的事件为A,事件A 包含的基本事件为:(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2),共包含7个基本事件数.又基本事件的总数为10,所以.即家庭代表B1、B2至少有一人被选中的概率为.(12分)18.(本小题满分12分)已知几何体A-BCPM的三视图如图所示,侧视图是直角三角形,正视图是一个梯形,点E、F分别是AB、AP的中点.(1)求证:PC AB;(2)求证:EF∥平面BMC(3)求三棱锥M-ABC的体积.【解析】(1)由三视图可知, 平面PCBM ⊥平面ABC , 平面PCBM平面ABC BC =,且PC BC ⊥,∴PC ⊥平面ABC , (3分) 又AB ⊂平面ABC ,∴PC AB ⊥. (5分) (2)连接PB .∵点E 、F 分别是AB 、AP 的中点, ∴EF 是ABP ∆的中位线, ∴EF ∥PB ,又PB ⊂平面BMC ,EF ⊄平面BMC ,∴EF ∥平面BMC . (8分)(3)由(1)知PC ⊥平面ABC ,由三视图可知PM ∥BC , PC= 1,CB=2,AC=1,点A 到直线BC 的距离为AG=,∴PM ∥平面ABC ,∴点M 到平面ABC 的距离为PC=1,∴1122222ABC S BC AG ∆=⨯=⨯⨯=,∴三棱锥M-ABC的体积为11133M ABC ABC V S PC -∆=∙==. (12分)19.(本小题满分12分)已知数列{}n a 的前n 项和n S满足)N ()2)(1(2243*∈++-+=+n n n n n a S n n ,且)2)(1(1+++=n n n a b n n . 求证:数列{}n b 是等比数列,并通项公式nb ;(2)设nn na c =,nT 为数列{}n c 的前n 项和,求nT .【解析】(1)由)2)(1(2243++-+=+n n n n a S n n 可得,)3)(2)(1(214311+++-+=+++n n n n a S n n ,两式作差得=++++--+++-=-+)3)(2)(1(2)3)(2()3)(2)(1(2)1(21n n n n n n n n n n n n a a n n)(3)2)(1(3)3)(2)(1(262+++--=++++-n n n n n n n n n n , (3分)又)2)(1(1+++=n n n a b n n ,则)3)(2)(1(111++++=++n n n a b n n ,所以)2)(1(1)3)(2)(1(22211++-++++-=-++n n n n n n a a b b n n n n ,整理得112n nb b +=,又2161316111=+=+=a b ,故数列{}n b 是首项为21,公比为21的等比数列,所以12n n b =. (6分)由(1)可得)(2n )1(121)2)(1(1++-=++-=n n n n n b a n n n ,所以)(2n )1(12++-==n n na c n n n , (7分)故]2)1(1431321[)2834221(321)(++++⨯+⨯-++++=++++=n n n c c c c T n n n ,设nnF 2834221n ++++=,则1n 2163824121+++++=n n F ,作差得1n 22116181412121+-+++++=n n n F , 所以n n F 222n +-=. (9分)设)(2)1(1431321n ++++⨯+⨯=n n G ,则2121211141313121n +-=+-+++-+-=n n n G , (11分)故2122232121222+++-=+--+-=n n n n T n n n )(.(12分)20.(本小题满分13分)已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆上的点到焦点的距离的最小值为e 是方程2230x -+=的根. (1)求椭圆C 的标准方程;(2)若椭圆C 长轴的左右端点分别为A1,A2,设直线x=4与x 轴交 于点D ,动点M 是直线x=4上异于点D 的任意一点,直线A1M , A2M 与椭圆C 交于P ,Q 两点,问直线PQ 是否恒过定点?若是,求出定点;若不是,请说明理由.【解析】 (1)设椭圆C 的方程为22221(0)x y a b a b+=>>,则依题意得2a c -=,又离心率e 是方程的2230x -+=的根,所以c e a ==,2,a c ==21b ∴=.∴椭圆C 的标准方程为2214x y +=. (4分) (2)由(1)知椭圆C 的标准方程为2214x y +=,12(20)(20)A A ∴-,,,,设动点(4,)(R 0)M m m m ∈≠且,1122(,),(,)P x y Q x y ,则12,62A M A M m mk k ==,∴直线1A M 的方程为(2)6m y x =+,直线2A M 的方程为(2)2my x =-,由22)1(642x y m y x ⎧⎪⎪⎨⎪+=+⎩=⎪ 消去y 得2222(9)44360m x m x m +++-=, 2124362,9m x m -∴-=+2121829m x m -∴=+,1269m y m =+,2221826(,99m mP m m -∴++. (6分)由22)1(242x y m y x ⎧⎪⎪⎨⎪+=-⎩=⎪ 消去y 得2222(1)4440m x m x m +-+-=, 22222244222,11m m x x m m --∴=∴=++,2221m y m -=+,222222(,)11m m Q m m --∴++. (8分)222222262291(18222391PQ m m m m m k m m m m m m --++∴==≠----++,∴直线PQ 的方程为22222222()131m m m y x m m m ---=-+-+, 22222222()311m m m y x m m m --∴=-+-++22222222223311m m m m x m m m m -=-⨯---++222233m m x m m =--- 22(1)3m x m =--,∴直线PQ 过定点(10),. (12分)当m =时,(1,2P,(1,2Q -;当m =(1,2P -,(1,2Q . 此时直线PQ 也恒过定点(1,0).综上可知,直线PQ 恒过定点,且定点坐标为(1,0). (13分)21.(本小题满分14分)已知函数()ln xf x a x bx =+((0,)x ∈+∞的图象过点11(,)e e -,且在点(1,(1)f )处的切线与直线0x y e +-=垂直.(1)求,a b 的值.(2)若存在01[,e]e x ∈(e 为自然对数的底数,且e=2.71828…),使得不等式2000113()222f x x tx +-≥-成立,求实数t 的取值范围.【解析】 (1)()ln ln x f x a x bx ax x bx =+=+,()ln ,f x a x a b '∴=++又在点(1,(1)f )处的切线与直线0x y e +-=垂直.(1)1f a b '∴=+=. (3分)又函数()ln x f x a x bx =+的图象过点11(,)e e -, ∴11111()ln a b f a b ee e e e e e =⨯⨯+⨯=-+=-, 1a b ∴-=,1,0a b ∴==. (5分)(2)由(1)知,()ln f x x x =,由题意2113()222f x x tx +-≥-得, 2113ln 222x x x tx +-≥-,则32ln t x x x ≤++, 若存在1[,]x e e ∈,使不等式2113()222f x x tx +-≥-成立, 只需t 小于或等于32ln x x x ++的最大值, 设3()2ln (0)h x x x x x =++>,则2(3)(1)()x x h x x +-'=, (8分) 当1[,1]x e ∈时,()0h x '<,故()h x 单调递减;当[1,]x e ∈时,()0h x '>,故()h x 单调递增. 33()2ln 2,h e e e e e e =++=++1111()2ln 323h e e e e e e =++=-++,12()()240h h e e e e ∴-=-->,∴1()() h h ee>,故当1[,]x ee∈时,h(x)的最大值为11()23h ee e=-++,故123t ee≤-++,即实数t的取值范围是1(,2+3e]e-∞-+. (14分)。

2015年成都某七中嘉祥外国语学校招生入学数学真卷(二)及答案解析

2015年成都某七中嘉祥外国语学校招生入学数学真卷(二)及答案解析

○332015年成都某七中嘉祥外国语学校招生入学数学真卷(二) (满分:100分 时间:100分钟)一、选择题。

(每小题2分,共10分)1.一个长20分米的方木的横截面是边长为m 分米的正方形,将它锯掉8分米后,方木的体积比原来减少( )。

A.8m 立方分米B.12m 立方分米C.82m 立方分米D.122m 立方分米2.把一根铁丝分成两段,第一段是全长的32,第二段是全长的32米,第一段与第二段比( )。

A.第一段长B.第二段长C.一样长D.无法比较3.d c b a =⨯=⨯=⨯575352,a 、b 、c 、d 都是不为0的自然数,其中最小的一个数是( )。

A.aB.bC.cD.d4.一个圆锥体和一个圆柱体的体积比是7:8,它们的底面半径的比是3:2,那么该圆锥体和圆柱体高的比是( )。

A.7:18B.32:63C.7:6D.6:75.(导学号 90672135)下面判断中错误的有( )个。

①两个面积相等的三角形不一定能拼成平行四边形。

②因为2012年的2月有28日这一天,所以2012年是平年。

③一件大衣,如果卖100元,可赚25%;如果卖120元,就赚50%。

④一个两位小数精确到0.1后的近似值是2.0,这个小数最大是2.44。

⑤一个圆柱和一个圆锥等底等高,那么圆柱的体积是圆锥的31。

A.1 B.2 C.3 D.4二、填空题。

(每小题3分,共45分)1.一个正方体的表面积比另一个正方体的表面积少20%,它们的表面积比是__________,若小正方体棱长为2分米,则大正方体的表面积是__________。

2.一个四位数□73□,有约数3,又是5的倍数,这样的四位数一共有__________个。

3.某商品按20%的利润定价,然后又按8折售出,结果亏损了64元。

这种商品的成本是__________元。

4.(导学号90672136)如图,半圆1S 的面积是14.132cm ,圆2S 的面积是19.6252cm ,那么长方形(阴影部分)的面积是__________2cm 。

四川省成都七中2015年八年级(下)期末考试数学试题

四川省成都七中2015年八年级(下)期末考试数学试题

DAE成都七中2014—2015学年度下期期末考试八 年 级 数 学A 卷(100分)友情提示:请将解答写在答题卷上!亲爱的同学们,时间飞逝,我们又迎来了半期考试。

你想检测一下自己在这段时间的学习收获吗?来吧,请你认真细致、沉着冷静地答题。

祝你成功!一、选择题(每小题3分,共30分,每小题都只有一个正确选项)1、观察下面图案,在A ,B ,C ,D 四幅图案中,能通过图案(1)平移得到的是( )2、等腰三角形的一边为4,另一边为9,则这个三角形的周长为( ) A 、17 B 、22 C 、13 D 、17或223、下列图案是几种小汽车的标志,其中是轴对称图形,但不是中心对称图形的图案的是( )A.B. C. D.4.已知a b >,则下列不等式中正确的是( ) A .33a b ->- B .33a b->- C .33a b ->- D .33a b ->-5、如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在( )A.△ABC 的三条中线的交点B.△ABC 三边的中垂线的交点C. △ABC 三条高所在直线的交点D. △ABC 三条角平分线的交点 6.如图,△ABC 中,AB =AC ,∠A =30º,DE 垂直平分AC , 则∠BCD 的度数为( )A 、80ºB 、75ºC 、65ºD 、45ºA .B .C .(1)7. 不等式260x ->的解集在数轴上表示正确的是( )8、如图,用不等式表示数轴上所示的解集,正确的是( )A 、x <-1 或x ≥3B 、x ≤-1或x >3C 、-1≤x <3D 、-1<x ≤3 9、不等式-3x +6>0的正整数解有( )A 、1个B 、2个C 、3个D 、无数多个10.某次“迎奥运”知识竞赛中共有20道题,对于每一道题,答对了10分,答错了或不答扣5分,至少要答对( )道题,其得分才会不少于95分?A .14B .13C .12D .11二、填空题(每小题4分,共20分)11、x 的2倍与12的差大于6,用不等式表示为 。

成都七中初升高试题及答案

成都七中初升高试题及答案

成都七中初升高试题及答案试题:一、语文(共30分)1. 根据题目所给的古文段落,翻译成现代汉语。

(5分)2. 阅读现代文,回答下列问题:- 作者通过这篇文章想要表达什么主题?(5分)- 文章中使用了哪些修辞手法?请举出两个例子并解释其作用。

(5分)3. 根据题目所给的诗句,完成填空题。

(5分)4. 写作:请以“我的梦想”为题,写一篇不少于600字的作文。

(10分)二、数学(共30分)1. 解下列方程:\[ x^2 - 5x + 6 = 0 \](5分)2. 计算下列表达式的值:\[ \sqrt{25} + \frac{1}{2} -\frac{2}{3} \](5分)3. 根据题目所给的图形,求其面积。

(5分)4. 应用题:某商店购进一批商品,进价为每件100元,标价为每件150元。

若该商店想要获得至少30%的利润,那么至少需要打几折销售?(15分)三、英语(共20分)1. 选择题:根据题目所给的语境,选择最合适的选项。

(5分)2. 完形填空:阅读短文,从所给选项中选择最佳答案填空。

(5分)3. 阅读理解:阅读文章,回答相关问题。

(5分)4. 作文:请以“My Favorite Hobby”为题,写一篇不少于100词的短文。

(5分)四、科学(共20分)1. 选择题:根据题目所给的科学知识,选择正确的答案。

(5分)2. 实验题:根据题目描述的实验步骤,分析实验结果。

(5分)3. 简答题:请回答下列问题:- 什么是光合作用?(5分)- 什么是遗传?(5分)答案:一、语文1. 翻译:(略)2. 主题:(略)修辞手法:(略)3. 填空:(略)4. 作文:(略)二、数学1. 解:\[ x = \frac{5 \pm \sqrt{5^2 - 4 \cdot 1 \cdot 6}}{2 \cdot 1} = 2 \text{ 或 } 3 \]2. 计算:\[ \sqrt{25} + \frac{1}{2} - \frac{2}{3} = 5 +\frac{1}{2} - \frac{2}{3} = \frac{31}{6} \]3. 面积:(略)4. 应用题:设商品打x折销售,根据题意得:\[ 150 \cdot x \cdot 0.1 \geq 100 \cdot 1.3 \] 解得:\[ x \geq 0.87 \]即至少需要打87折。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成都七中2015年外地生自主招生考试数学试题和答案
一、单项选择题(本大题共10小题,每题6分,共60分)
1、已知等腰△ABC 的面积为1,其中∠A=120°,则△ABC 内切圆的面积为
A. B. C. D. 2如图所示,两对角线长分别为4和2的菱形围绕其中心旋转90︒,可以围成一个四角星(其各边用实线标注),则该四角星的周长为
A. B. C. D.
3、已知1x =,则42422
x x x +=++
A.3
B.4
C. 4+
D. 8+4、某三棱锥的三视图如右图所示,则该三棱锥的最长棱长为
A. B. C. D.4
5、设x 、y 为实数,则代数式22
245425x xy y x y ++-+-的最小值是
A.-8
B.8
C.0
D.-10
6、已知6x y z w ≤≤≤≤,则方程18x y z w +++=的正整数解的个数为 A.5 B. 6 C.7 D.8
7、定义分子为1且分母为正整数的分数为单位分数,把1分拆成若干个不同的单位分数之和。

如:1=
156
113211101901721561421301111216121++++++++++++n m ,其中m n ≤。

设1x m ≤≤,1y n ≤≤,则21
x y x +++的最小值为 A. 232 B. 52 C. 87 D. 343 8、若一个两位数平方的末两位恰好等于其本身,则这样的两位数有( )个
A.2
B.3
C.4
D.5
9、设
p 、q 为不相等的正整数,且关于x 的方程20x px q -+=和20x qx p -+=的根都是正整数,则p q -= A.1 B.2 C.3 D.4
10、在正方形ABCD 所在平面上的直线l 满足下列条件:正方形ABCD 的四个顶点到直线l 的距离只取两个值,其中的一个值是另一个值的3倍,这样的直线l 的条数为
A.4
B.8
C.12
D.16
二、填空题(本大题共4小题,每题7分,共28分)
11、在四边形ABCD 中, BC=8,CD=19,AD=10,∠A=∠B=60°,则AB=______
12、如右图,点E 、F 分别是正方形ABCD 的边BC 、CD 上的点,而△ABE 、△ECF 、△FDA 的面积分别为2、3、4,那么△AEF 的面积为______
13、函数
24y x mx m =++的图像被x 轴所截的最大值为_______
14、已知[]x 表示不超过x 的最大整数,如[]π=3. []3=3,那么=________
三、填空题(本大题共4小题,每题8分,共32分)
15、已知.10.33=,即10.30.030.003 (3)
=+++,等式两边同乘 3.则有10.90.090.009.....=+++,也即.
10.9=,借鉴上述操作,若有222221111.....61234π=++++,那么++++22227
1513111…=_________
16、在四边形ABCD 中,∠DAC=98°,∠DBC=82°,∠BCD=70°,BC=AD ,则∠ACD=____
17、方程x x
x x =-+-111的解为________ 18、已知o 为△ABC 的外心,有AB=2,AC=4,则AO ·BC 的最小值为_______ 四、解答题(本大题共2小题,19题14分,20题16分,共30分) 19、如图正方形OABC 的顶点O 在坐标原点,且OA 边和AB 边所在直线的解析式分别为34y x =和42533
y x =-+,D 、E 分别为OC 、AB 的中点,P 为OA 边上一动点(点P 与点O 不重合),连接DE 和CP ,交点为Q
(1)求证:Q 为△COP 的外心(2)求正方形OABC 的边长(3)当圆Q 与AB 相切时,求点P 的坐标
20、若存在正常数L ,对某一函数图像上任意不同两点111(,)P x y ,222(,)P x y ,有不等式1212y y L x x -≤-恒成立,则称该函数为李氏函数,L 为该函数的李氏系数。

(1)判断21y x =+和1y x
=是否为李氏函数(只判断不用说明理由); (2)若函数1y x =1(1)2
x <<为李氏函数,求其李氏系数L 的取值范围; (3)若函数3(1)y x a x a =<<+为李氏函数,其李氏系数L 的最小值为3,求a 的取值
范围。

相关文档
最新文档