弹簧能量守恒计算(弹簧类高考必考)
机械能守恒弹簧能量和连接体问题

(1)当B的速度最大时,弹簧的伸长量; (2)B的最大速度.
[解析] (1)通过受力分析可知:当B的速度最大时,其加速度为 0,细绳上的拉力大小为F=4mgsin30°=2mg,此时弹簧处于伸长 状态,弹簧的伸长量为xA,满足
k xA=F-mg 则xA=
(2)开始时弹簧压缩的长度为:xB=
【举例应用】
物体从A到C的过程,由机械能守恒定律得:
由以上两式解得: A处的弹性势能为:
二、举例应用
4、如图所示,在倾角为θ的固定的光滑斜面上有 两个用轻质弹簧相连接的物块A 、B .它们的质量都为
m,弹簧的劲度系数为k , C为一固定挡板。系统处于静
止状态,开始时各段绳都处于伸直状态。现在挂钩上挂 一物体P,并从静止状态释放,已知它恰好使物体B离开 固定档板C, 但不继续上升(设斜面足够长和足够高)。 求:物体P的质量多大?
(1)物体C下降到速度最大时,地 面对B的支持力多大? (2)物体C下降的最大速度?
解析(1)C物体下降过程中,当C物体的加速度为0时,下落速 度最大, 对C: F=2.5mg
对A、B和弹簧整体:N=(2m+3m)g-F 则地面对B物体的支持力:N=2.5mg
(2)未加C时,A处于静止状态,设弹簧压缩量为x1 则有: 2mg=kx1 得 x1 =
做功的特点:与路径无关,只取决于初末状态弹簧形变量的 大小。这一点对于计算弹力的功和弹性势能的改变是非常重 要的,必须引起重视。
二、举例应用
1、如图所示,一轻质弹簧竖直放置,下端固定在水平面上, 上端处于a位置,当一重球放在弹簧上端静止时,弹簧上端 被压缩到b位置.现将重球(视为质点)从高于a位置的c位置 沿弹簧中轴线自由下落,弹簧被重球压缩到最低位置d.以 下关于重球运动过程的正确说法应是( ).
物体拉弹簧能量守恒方程

物体拉弹簧能量守恒方程
当一个物体受到弹簧的拉力并移动时,能量守恒方程可以用来
描述这一过程。
假设弹簧的劲度系数为k,物体在弹簧上的位移为x。
在这种情况下,弹簧的势能可以表示为(1/2)kx^2。
当物体受到弹簧
的拉力移动时,它的动能可以表示为(1/2)mv^2,其中m是物体的质量,v是物体的速度。
根据能量守恒定律,系统的机械能在运动过程中保持不变。
因此,当物体受到弹簧的拉力移动时,弹簧的势能和物体的动能之和
保持不变。
这可以用以下方程表示:
(1/2)kx^2 + (1/2)mv^2 = E.
其中E表示系统的总机械能,它在整个过程中保持不变。
这个
方程描述了弹簧和物体之间的能量转化过程,其中弹簧的势能和物
体的动能相互转化,但它们的总和保持不变。
这个方程可以用来解决各种与弹簧和物体运动相关的问题,例
如计算物体在弹簧上的位移、速度或者弹簧的劲度系数等。
它是描
述弹簧振动和弹簧系统动力学行为的重要工具,能够帮助我们理解
和预测弹簧系统的运动规律。
总之,能量守恒方程在描述物体受到弹簧拉力移动时的能量转
化过程中起着重要作用,它是描述弹簧系统动力学行为的基础之一。
通过应用这个方程,我们可以更好地理解和分析弹簧系统的运动特性。
高考物理含弹簧类机械能守恒问题

高考物理含弹簧类机械能守恒问题1.如图1所示,半径R =0.4 m 的光滑圆弧轨道BC 固定在竖直平面内,轨道的上端点B 和圆心O 的连线与水平方向的夹角θ=30°,下端点C 为轨道的最低点且与粗糙水平面相切,一根轻质弹簧的右端固定在竖直挡板上.质量m =0.1 kg 的小物块(可视为质点)从空中A 点以v 0=2 m/s 的速度被水平抛出,恰好从B 点沿轨道切线方向进入轨道,经过C 点后沿水平面向右运动至D 点时,弹簧被压缩至最短,C 、D 两点间的水平距离L =1.2 m ,小物块与水平面间的动摩擦因数μ=0.5,g 取10 m/s2.求:图1(1)小物块经过圆弧轨道上B 点时速度v B 的大小;(2)小物块经过圆弧轨道上C 点时对轨道的压力大小;(3)弹簧的弹性势能的最大值E pm .答案 (1)4 m/s (2)8 N (3)0.8 J解析 (1)小物块恰好从B 点沿切线方向进入轨道,由几何关系有v B =v 0sin θ=4 m/s (2)小物块由B 点运动到C 点,由机械能守恒定律有mgR (1+sin θ)=12m v C 2-12m v B 2 在C 点处,由牛顿第二定律有F N -mg =m v 2C R,解得F N =8 N 根据牛顿第三定律,小物块经过圆弧轨道上C 点时对轨道的压力F N ′大小为8 N.(3)小物块从B 点运动到D 点,由能量守恒定律有E pm =12m v B 2+mgR (1+sin θ)-μmgL =0.8 J. 2.如图2所示,在同一竖直平面内,一轻质弹簧静止放于光滑斜面上,其一端固定,另一端恰好与水平线AB 平齐;长为L 的轻质细绳一端固定在O 点,另一端系一质量为m 的小球,将细绳拉至水平,此时小球在位置C .现由静止释放小球,小球到达最低点D 时,细绳刚好被拉断,D 点与AB 相距h ;之后小球在运动过程中恰好与弹簧接触并沿斜面方向压缩弹簧,弹簧的最大压缩量为x .试求:图2(1)细绳所能承受的最大拉力F ;(2)斜面倾角θ的正切值;(3)弹簧所获得的最大弹性势能E p .答案 (1)3mg (2)h L (3)mg (x h h +L+h +L ) 解析 (1)小球由C 运动到D 的过程机械能守恒,则:mgL =12m v 12 解得:v 1=2gL在D 点由牛顿第二定律得:F -mg =m v 21L解得:F =3mg由牛顿第三定律知,细绳所能承受的最大拉力为3mg(2)小球由D 运动到A 的过程做平抛运动,则:v y 2=2gh 解得:v y =2gh tan θ=v y v 1=h L(3)小球到达A 点时,有:v A 2=v y 2+v 12=2g (h +L )小球在压缩弹簧的过程中,小球与弹簧组成的系统机械能守恒,则:E p =mgx sin θ+12m v A 2 解得:E p =mg (x h h +L+h +L ).。
2025高考物理总复习含弹簧的机械能守恒问题

t2时刻弹力最大,小球处在最低点,动能最小,B错误; t3时刻小球往上运动恰好要离开弹簧; t2~t3这段时间内,小球先加速后减速, 动能先增大后减小,弹簧的弹性势能 转化为小球的动能和重力势能,C正 确,D错误。
例2 如图所示,质量为M的小球套在固定倾斜的光滑杆上,原长为l0的轻质弹簧一 端固定于O点,另一端与小球相连,弹簧与杆在同一竖直平面内。图中AO水平,BO 间连线长度恰好与弹簧原长相等,且与杆垂直,O′在O的正下方,C是AO′段的中 点,θ=30°。现让小球从A处由静止释放,重力加速度为g,下列说法正确的有 A.下滑过程中小球的机械能守恒
动能Ek;
答案
mgR 2
C点与D点的高度差h=0.5R 圆环从C运动到D,在C点和D点两弹簧弹性势能的 和相等,根据机械能守恒 mgh=Ek 解得 Ek=m2gR
(3)由C点静止释放圆环,求圆环运动到D点时 对轨道的作用力FN。 答案 1.7mg,方向竖直向下
由 Ek=12mv2 得,圆环运动到 D 点时的速度 v= gR
(1)斜面的倾角α; 答案 30°
由题意可知,当A沿斜面下滑至速度最大时,C恰好离开地面,A的加 速度此时为零。 由牛顿第二定律得4mgsin α-2mg=0 则 sin α=12,α=30°。
(2)A球获得的最大速度vm的大小。
答案 2g
m 5k
初始时系统静止且细线无拉力,弹簧处于压缩状态,设弹簧压缩量为 Δx,对B:kΔx=mg 因B、C的质量均为m,则C球恰好离开地面时,弹簧伸长量也为Δx, 故弹簧弹性势能变化量为零, A、B、C三小球和弹簧组成的系统机械能守恒, 有 4mg·2Δx·sin α-mg·2Δx=12(5m)vm2 联立解得 vm=2g 5mk。
高考必会专题之弹簧问题

高考弹簧类问题复习弹簧类问题含有力的非突变模型---弹簧模型,这类问题能很好地考查同学们对物理过程的分析、物理知识的综合、以及数学知识的灵活应运,所以这类问题在近年的高考中频频出现。
为了帮助同学们复习好这部分内容,现浅谈如下几点,供同学们参考一、知识点聚焦1、弹簧的瞬时问题弹簧发生弹性形变时,弹力与其形变量成正比,因此,弹力不同,形变量不同,形变量不同,对应的弹力也不同。
解决这一类问题时一定要弄清“时刻”及“位置”的含义。
2、弹簧的平衡问题这类问题涉及的知识有胡克定律、力的平衡条件,一般可用f=kx或△f=k•△x和∑F=0等公式来求解。
3、弹簧的非平衡问题这类问题主要是指弹簧在相对位置发生变化时,所引起的力、加速度、速度、功、能和合外力等其他物理量发生变化的情况。
这类问题的解决,不但要涉及胡克定律、牛顿第二定律、还要涉及动能定理、能的转化和守恒定律等方面的内容。
4、弹簧弹力做功与动量、能量的综合问题在弹簧弹力做功的过程中弹力是个变力,所以这类问题一般与动量、能量联系,以综合题的形式出现。
这类问题有机地将动量守恒、机械能守恒、功能关系和能量转化等结合在一起,考查同学们的综合应用能力。
解决这类问题时,要细致分析弹簧的动态过程,综合利用动能定理和功能关系等知识解题。
二、典型例题分析(一)、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为"轻弹簧",是一种常见的理想化物理模型。
由于“轻弹簧”质量不计,选取任意小段弹簧分析,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大。
故:轻质弹簧中各部分间的张力处处相等,均等于弹簧两端的受力。
弹簧一端受力为F,另一端受力一定也为F。
若是弹簧秤,则弹簧秤示数为F。
例1、如图所示,一个弹簧秤放在光滑的水平面上,外壳质量m不能忽略,弹簧及挂钩质量不计,施加水平方向的力F1、F2,且F1>F2则弹簧秤沿水平方向的加速度为 ,弹簧秤的读数为 .分析与解 以整个弹簧秤为研究对象:利用牛顿运动定律12F F ma -= ∴12F F a m -=仅以轻质弹簧为研究对象:则弹簧两端的受力都是F 1,所以弹簧秤的读数为F 1说明 F 2作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的。
高考二轮物理复习专题:弹簧问题(附答案)

专题弹簧类问题(附参考答案)高考动向弹簧问题能够较好的培养学生的分析解决问题的能力和开发学生的智力,借助于弹簧问题,还能将整个力学知识和方法有机地结合起来系统起来,因此弹簧问题是高考命题的热点,历年全国以及各地的高考命题中以弹簧为情景的选择题、计算题等经常出现,很好的考察了学生对静力学问题、动力学问题、能量守恒问题、功能关系问题等知识点的理解,考察了对于一些重要方法和思想的运用。
弹簧弹力的特点:弹簧弹力的大小可根据胡克定律计算(在弹性限度内),即F=kx,其中x是弹簧的形变量(与原长相比的伸长量或缩短量,不是弹簧的实际长度)。
高中研究的弹簧都是轻弹簧(不计弹簧自身的质量,也不会有动能和加速度)。
不论弹簧处于何种运动状态(静止、匀速或变速),轻弹簧两端所受的弹力一定等大反向。
弹簧的弹力属于接触力,弹簧两端必须都与其它物体接触才可能有弹力。
如果弹簧的一端和其它物体脱离接触,或处于拉伸状态的弹簧突然被剪断,那么弹簧两端的弹力都将立即变为零。
在弹簧两端都保持与其它物体接触的条件下,弹簧弹力的大小F=kx与形变量x成正比。
由于形变量的改变需要一定时间,因此这种情况下,弹力的大小不会突然改变,即弹簧弹力大小的改变需要一定的时间。
(这一点与绳不同,高中物理研究中,是不考虑绳的形变的,因此绳两端所受弹力的改变可以是瞬时的。
)一、与物体平衡相关的弹簧例.如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m1g/k1B.m2g/k2C.m1g/k2D.m2g/k2此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m1 + m2)g/k2,而m l刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m2g/k2,因而m2移动△x=(m1 + m2)·g/k2 -m2g/k2=m l g/k2.参考答案:C此题若求m l移动的距离又当如何求解?二、与分离问题相关的弹簧两个相互接触的物体被弹簧弹出,这两个物体在什么位置恰好分开?这属于临界问题。
弹簧的能量问题

心态决定状态 状态决定效率细节决定成败成败决定命运 1 第六章 机械能第八节 弹簧中的能量问题【学习要求】1、知道弹性势能的决定因素及弹性势能与弹力做功的关系;2、能综合利用动量守恒定律和功能关系解决弹簧问题;【学习过程】一、知识要点:1、物体的弹性势能与 和 有关,弹性形变量越大,弹性势能越 。
弹簧的劲度系数越大,弹性势能越 。
弹簧的伸长量与压缩量相同时,弹簧的弹性势能 。
2、弹力势能弹力做功的关系:弹力做正功,弹性势能 ,其数值相等;弹力做负功,弹性势能 ,其数值相等;即: 。
二、典型问题引路(一)弹簧中的能量守恒问题例1、 如图,质量为1m 的物体A 经一轻质弹簧与下方地面上的质量为2m 的物体B 相连,弹簧的劲度系数为k ,A 、B 都处于静止状态。
一条不可伸长的轻绳绕过轻滑轮,一端连物体A ,另一端连一轻挂钩。
开始时各段绳都处于伸直状态,A 上方的一段绳沿竖直方向。
现在挂钩上升一质量为3m 的物体C 并从静止状态释放,已知它恰好能使B 离开地面但不继续上升。
若将C 换成另一个质量为13()m m +的物体D ,仍从上述初始位置由静止状态释放,则这次B 刚离地时D 的速度的大小是多少?已知重力加速度为g 。
【km m g m m m v )2()(2312211++=】【方法总结】 【误区提示】心态决定状态 状态决定效率细节决定成败成败决定命运 2 (二)弹簧问题中的动量与能量综合问题 例2、在光滑水平导轨上放置着质量均为m 滑块B 和C ,B 和C 用轻质弹簧拴接,且都处于静止状态。
在B 的右端有一质量也为m 的滑块A 以速度0v 向左运动,与滑块B 碰撞的碰撞时间极短,碰后粘连在一起,如图4所示,求(1)弹簧可能具有的最大弹性势能;(2)滑块C 可能达到的最大速度和滑块B 可能达到的最小速度。
【2112mv ,023v ,016v 】【变式1】若滑块C 的质量为2m ,则情况又如何?【变式2】若滑块C 的质量为3m ,则情况又如何?【方法总结】【误区提示】B A 图40vPC心态决定状态 状态决定效率细节决定成败成败决定命运 3 (三)弹簧问题中的子弹打木块问题例3、如图所示,质量为M 的水平木板静止在光滑的水平地面上,板在左端放一质量为m 的铁块,现给铁块一个水平向右的瞬时冲量使其以初速度V 0开始运动,并与固定在木板另一端的弹簧相碰后返回,恰好又停在木板左端。
高考弹簧问题专题详解

高考弹簧问题专题详解高考动向弹簧问题能够较好的培养学生的分析解决问题的能力和开发学生的智力,借助于弹簧问题,还能将整个力学知识和方法有机地结合起来系统起来,因此弹簧问题是高考命题的热点,历年全国以及各地的高考命题中以弹簧为情景的选择题、计算题等经常出现,很好的考察了学生对静力学问题、动力学问题、动量守恒和能量守恒问题、振动问题、功能关系问题等知识点的理解,考察了对于一些重要方法和思想的运用。
知识升华一、弹簧的弹力1、弹簧弹力的大小弹簧弹力的大小由胡克定律给出,胡克定律的内容是:在弹性限度内,弹力的大小与弹簧的形变量成正比。
数学表达形式是:F=kx 其中k是一个比例系数,叫弹簧的劲度系数。
说明:①弹力是一个变力,其大小随着弹性形变的大小而变化,还与弹簧的劲度系数有关;②弹簧具有测量功能,利用在弹性限度内,弹簧的伸长(或压缩)跟外力成正比这一性质可制成弹簧秤。
2、弹簧劲度系数弹簧的力学性质用劲度系数描写,劲度系数的定义因弹簧形式的不同而不同,以下主要讨论螺旋式弹簧的劲度系数。
(1)定义:在弹性限度内,弹簧产生的弹力F(也可认为大小等于弹簧受到的外力)和弹簧的形变量(伸长量或者压缩量)x的比值,也就是胡克定律中的比例系数k。
(2)劲度系数的决定因素:劲度系数的大小由弹簧的尺寸和绕制弹簧的材料决定。
弹簧的直径越大、弹簧越长越密、绕制弹簧的金属丝越软越细时,劲度系数就越小,反之则越大。
如两根完全相同的弹簧串联起来,其劲度系数只是一根弹簧劲度系数的一半,这是因为弹簧的长度变大的缘故;若两根完全相同的弹簧并联起来,其劲度系数是一根弹簧劲度系数的两倍,这是相当于弹簧丝变粗所导致;二、轻质弹簧的一些特性轻质弹簧:所谓轻质弹簧就是不考虑弹簧本身的质量和重力的弹簧,是一个理想化的模型。
由于它不需要考虑自身的质量和重力对于运动的影响,因此运用这个模型能为分析解决问题提供很大的方便。
性质1、轻弹簧在力的作用下无论是平衡状态还是加速运动状态,各个部分受到的力大小是相同的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2016·滁州质检)如图所示,光滑曲面AB 与水平面BC 平滑连接于B 点,BC 右端连接内
壁光滑、半径为r 的14
细圆管CD ,管口D 端正下方直立一根劲度系数为k 的轻弹簧,轻弹簧一端固定,另一端恰好与管口D 端平齐。
质量为m 的滑块在曲面上距BC 高度为2r 处由
静止开始下滑,滑块与BC 间的动摩擦因数μ=12
,进入管口C 端时与圆管恰好无作用力,通过CD 后压缩弹簧,在压缩弹簧过程中滑块速度最大时弹簧的弹性势能为E p 。
求:
(1)滑块到达B 点时的速度大小v B ;
(2)水平面BC 的长度s ;
(3)在压缩弹簧过程中滑块的最大速度v m 。
[答案] (1)2gr (2)3r (3) 3gr +2mg 2k -2E p m
2.(2016·乐山模拟)如图甲所示,在倾角为37°足够长的粗糙斜面底端,一质量m =1 kg 的
滑块压缩着一轻弹簧且锁定,但它们并不相连,滑块可视为质点。
t=0时解除锁定,计算机通过传感器描绘出滑块的v-t图象如图乙所示,其中Oab段为曲线,bc段为直线,在t1=0.1 s时滑块已上滑s=0.2 m 的距离(g取10 m/s2,sin 37°=0.6,cos 37°=0.8)。
求:
(1)滑块离开弹簧后在图中bc段对应的加速度a及动摩擦因数μ的大小;
(2)t2=0.3 s和t3=0.4 s时滑块的速度v1、v2的大小;
(3)弹簧锁定时具有的弹性势能E p。
答案:(1)10 m/s20.5(2)00.2 m/s(3)4 J
3.(2016·厦门模拟)如图所示,在竖直方向上A,B两物体通过劲度系数为k的轻质弹簧相连,A放在水平地面上;B、C两物体通过细绳绕过轻质定滑轮相连,C放在固定的光
滑斜面上。
用手拿住C ,使细线刚刚拉直但无拉力作用,并保证ab 段的细线竖直、cd 段的细线与斜面平行。
已知A ,B 的质量均为m ,斜面倾角为θ=37°,重力加速度为g 滑轮的质量和摩擦不计,开始时整个系统处于静止状态。
C 释放后沿斜面下滑,当A 刚要离开地面时,B 的速度最大。
(sin 37°=0.6,cos 37°=0.8)求:
(1)从开始到物体A 刚要离开地面的过程中,物体C 沿斜面下滑的距离;
(2)C 的质量;
(3)A 刚离开地面时,C 的动能。
答案:(1)2mg k (2)103m (3)20m 2g 2
13k
三、计算题
11.如图所示,固定斜面的倾角θ=30°,物体A 与斜面之间的动摩擦因数μ=32
,轻
弹簧下端固定在斜面底端,弹簧处于原长时上端位于C点。
用一根不可伸长的轻绳通过轻质光滑的定滑轮连接物体A和B,滑轮右侧绳子与斜面平行,A的质量为2m,B的质量为m,初始时物体A到C点的距离为L。
现给A、B一初速度v0>gL,使A开始沿斜面向下运动,B向上运动,物体A将弹簧压缩到最短后又恰好能弹到C点。
已知重力加速度为g,不计空气阻力,整个过程中,轻绳始终处于伸直状态,求:
(1)物体A向下运动刚到C点时的速度;
(2)弹簧的最大压缩量;
(3)弹簧的最大弹性势能。
答案:(1)v20-gL(2)v20
2g-L
2(3)
3m v20
4-
3mgL
4
12.如图所示,一内壁光滑的细管弯成半径为R=0.4 m的半圆形轨道CD,竖直放置,其内径略大于小球的直径,水平轨道与竖直半圆轨道在C点连接完好。
置于水平轨道上的弹簧左端与竖直墙壁相连,B处为弹簧的自然状态。
将一个质量为m=0.8 kg的小球放在弹
簧的右侧后,用力向左侧推小球而压缩弹簧至A处,然后将小球由静止释放,小球运动到C 处后对轨道的压力为F1=58 N。
水平轨道以B处为界,左侧AB段长为x=0.3 m,与小球的动摩擦因数为μ=0.5,右侧BC段光滑。
g=10 m/s2,求:
(1)弹簧在压缩时所储存的弹性势能;
(2)小球运动到轨道最高处D点时对轨道的压力大小。
答案:(1)11.2 J(2)10 N。