酶的概念.

合集下载

酶的概念及特点

酶的概念及特点

2. 变构酶
二. 酶的结构与活性
变构酶(别构酶)是指一些含有2个或2个以 上亚基的寡聚酶,在变构酶分子上,别构效应剂 的调节部位一般远离活性中心,但活性部位与调 节部位之间或者活性部位之间,存在着相互作用 (变构效应,协同效应)。调节物与酶分子的调 节部位结合之后,引起酶分子构象发生变化,从 而提高或降低活性部位的酶活性
L 氨基酸
H2O + O2 L 氨基酸氧化酶
酮酸 + NH3 + H2O2
三、酶的专一性的类型
C 立体专一性(stereo specificity)—一种酶只能对一种 立体异构体起催化作用,对其对映体则全无作用的特 性。B.几何异构专一性 :
HOOC CH
延胡索酸酶
CH2COOH
HC COOH
HO CHCOOH
1. 酶的活性中心
二. 酶的结构与活性
指酶分子中直接和底物结合,并和酶催化作用直接 有关的部位。 (1)酶活性中心的组成:
由一些氨基酸残基的侧链基团组成。
这些基团在一级结构上可能相距很远,甚至可 能不在一条肽链上,但在蛋白质空间结构上彼 此靠近,形成具有一定空间结构的区域。
对于结合酶,辅因子常常是活性中心的组成部分。
2. 酶的聚合状态
一. 酶的结构
由酶的聚合状态,酶可分为三类:
单体酶 —— 酶蛋白仅有一条多肽链。 寡聚酶 —— 酶蛋白是寡聚蛋白质,由几个至几十个
亚基组成,以非共价键连接。 多酶复合体 —— 由几个酶聚合而成的复合体。一般
由在系列反应中功能相关的酶组成,有 利于一系列反应的连续进行。
3. 同工酶
3. 诱导酶
二. 酶的结构与活性
光 70
密 度

第5章 酶

第5章 酶

目录
1.绝对特异性(absolute specificity):
一种酶只能作用于一种化合物,以 催化一种化学反应,称为绝对特异 性,如脲酶。
目录
绝对专一性
O 脲酶 H2N—C—NH2 + H2O 2NH3 + CO2
NH2 O C NH2 尿素 NH CH3 O C NH2 甲基尿素 + H2O
Km:米氏常数(Michaelis constant)
目录
(二)Km与Vmax的意义
Km值 ① Km等于酶促反应速度为最大反应速度一半 时的底物浓度。 ② 意义:
a) Km是酶的特征性常数之一;
b) Km可近似表示酶对底物的亲和力;
c) 同一酶对于不同底物有不同的Km值。
目录
Vmax
定义:Vm是酶完全被底物饱和时的 反应速度,与酶浓度成正比。 意义:Vmax=K3 [E] 如果酶的总浓度已知,可从Vmax
唾液淀粉酶丧失催化能力称酶失活 唾液淀粉酶
淀粉
底物
葡萄糖
产物 酶促反应
目录
二、 酶的化学组成★
(一)单纯酶 完全由蛋白质组成 (二)结合酶 蛋白质和非蛋白质 全酶 = 酶蛋白 + 辅助因子 酶蛋白:决定着反应的特异性, 辅助因子:决定着酶的催化反应 类型
目录
全酶
(辅助 因子是 金属)
金属酶
(金属离子与酶蛋白结合紧密)
2. 抑制作用的类型
(1)不可逆性抑制 (2)可逆性抑制
①竞争性抑制
②非竞争性抑制
③反竞争性抑制
目录
(二) 不可逆性抑制作用
1. 概念
抑制剂通常以共价键与酶活性中 心的必需基团相结合,使酶失活; 抑制剂不可用透析、超滤等方法 去除。

酶

LDH1 (H4)
LDH2 (H3M)
LDH3 (H2M2)
LDH4 (HM3)
LDH5 (M4)
乳酸脱氢酶的同工酶
第三节 影响酶促反应速度的因素
• • • • • • 酶浓度的影响 底物浓度的影响 温度的影响 pH的影响 激活剂的影响 抑制剂的影响
2017/3/17
Free template from
作业
名词解释:酶、酶原、酶原激活、 同工酶 填空 :1.酶促反应的特点有____、_____、_____ 2.酶按分子组成可分为__和__.后者由___和__组成. 3.酶原激活的实质是_______________. 4.在乳酸脱氢酶的同工酶中,急性心肌梗死是___含量增 高,肝炎是___ 含量增高. 5.在人体中,大多数酶的最适温度是__,最适pH___ 6.肝精氨酸酶的最适pH是__,胃蛋白酶的最适pH是__ 7.有机磷农药中毒属于_____ 抑制,磺胺类药物的抑菌 作用属于可逆性抑制中的______抑制. 简答题:酶原激活的生理意义是什么?
公元前2000多年前
酿酒
第三章 酶
————生物的催化剂 Enzyme[`enzaim] E
第一节 酶的概述
一、酶的概念 酶是由活细胞产生的能够在体内外起催化作 用的生物催化剂 酶(蛋白质) 生物催化剂 核酶(核酸)

• 酶促反应 • 酶活性 • 酶失活 S1 E1 S2 E2 S 底物 E3 E 酶 S4 E4 P 产物
13
一、酶浓度的影响
• [s]足够大
v 反 应 速 度
酶浓度[E]
2017/3/17
Free template from
14
二、底物浓度的影响
• 酶浓度不变

“酶”专题知识(知识+练习+问题详解)

“酶”专题知识(知识+练习+问题详解)

“酶”专题知识一、酶的发现过程(略)二、酶的概念:活细胞产生的一类具有生物催化作用的特殊有机物。

1、来源:由活细胞产生。

(除某些没有细胞核的细胞外,如哺乳动物成熟的红细胞、血小板,植物筛管细胞)2、作用:催化生物化学反应(降低化学反应活化能)3、本质:绝大多数是蛋白质,少数是RNA(暂时还没有把DNA列入)。

三、酶的合成1、合成的原料:氨基酸或核糖核苷酸2、合成的场所:核糖体(与唾液淀粉酶等胞外酶合成和分泌有关的主要细胞结构有核糖体、内质网、高尔基体、线粒体和细胞膜。

)3、合成的过程:遵循中心法则,通过转录和翻译合成的4、合成的控制:酶的合成是在基因控制下进行的四、酶和激素的比较1、化学成分:前者主要是蛋白质,少数是RNA;后者有多肽及蛋白类、氨基酸衍生物、脂质等。

2、生理功能:前者对生化反应起催化作用;后者对生命活动起调节作用。

3、相互关系:能合成激素的细胞一定也能合成酶,但能合成酶的细胞不一定能合成激素。

要注意酶与激素、蛋白质、维生素、脂质的关系:维生素脂质激素蛋白质酶五、酶的类型1、按其发挥作用的场所不同分为:(1)胞外酶:消化酶、SOD(超氧化歧化酶)、基因工程中的工具酶(限制性核酸内切酶和DNA连接酶)等,在细胞外发挥作用。

注意限制性核酸内切酶和DNA连接酶的作用:DNA连接酶的作用是催化切割的DNA片段(黏性末端)形成化学键(磷酸二酯键)而拼接起来。

不是促使碱基配对形成氢键。

消化酶属于分泌蛋白如唾液淀粉酶(注意与生物膜和细胞器的联系)。

(2)胞内酶:在细胞内发挥作用。

如光合酶、呼吸酶、转氨酶、ATP酶、解旋酶、DNA聚合酶、DNA连接酶、RNA聚合酶、逆转录酶、存在于微生物中的限制性核酸内切酶等。

2、具有酶活性的蛋白质分为简单蛋白质类和结合蛋白质类:(1)简单蛋白质类的酶只由氨基酸组成,不含任何其他物质,如胃蛋白酶。

(2)结合蛋白质类的酶(又称全酶)是由蛋白质与辅因子组成,其中蛋白质部分称为酶蛋白,辅因子部分称为辅酶或辅基。

第6章 酶

第6章 酶

k1 k3 E+P ES k2
推导基于两个假设:
分解为E及P的反应为慢反应,反应速度取决于 慢反应即 V=k3[ES] (1)
1. E与S形成ES复合物的反应是快速平衡反应而ES
2. S的总浓度远远大于E的总浓度,因此在反应的 初始阶段,S的浓度可认为不变即[S]=[St]
Km值的推导:
当反应速度为最大反应速度一半时:
在其他因素不变的情况下,底物浓度对 反应速度的影响呈矩形双曲线关系。

V
Vmax
[S]
当底物浓度较低时:
反应速率与底物浓度成正比;反应为 一级反应。
V
Vmax
[S]
随着底物浓度的增高:
反应速率不再成正比例加速;反应为 混合级反应。
V
Vmax
[S]
当底物浓度高达一定程度:
反应速率不再增加,达最大速率;反 应为零级反应。
胰凝乳蛋白酶的一级结构和空间结构
二、酶蛋白的结构
必需基团(essential group) 酶分子中氨基酸 残基侧链的化学基团 中,一些与酶活性密 切相关的化学基团。
酶的活性中心 (active center)
指必需基团在空间结构上彼此靠近, 组成具有特定空间结构的区域,能与底 物特异结合并将底物转化为产物。
辅酶 (coenzyme): 与酶蛋白非共价键结合较疏松, 可用透析或超滤方法除去。 辅基 (prosthetic group): 与酶蛋白共价键结合较紧密, 不能用透析或超滤的方法除去。
辅助 因子: 分类
酶的辅助因子从其化学本质来看可分为三类:
①金属离子
②小分子有机物,如维生素 ③蛋白质类辅酶
(一)无机离子对酶的作用
2、专一性不可逆抑制剂

酶
• 辅酶在催化反应过程中,直接参加了反应。 • 每一种辅酶都具有特殊的功能,可以特定地 催化某一类型的反应。在反应中起运载体的 作用,传递电子、质子或其它基团。 • 同一种辅酶可以和多种不同的酶蛋白结合形 成不同的全酶。 • 一般来说,全酶中的辅酶决定了酶所催化的 类型(反应专一性),而酶蛋白则决定了所 催化的底物类型(底物专一性)。
(3)过氧化物酶
(4)加氧酶(双加氧酶和单加氧酶)
O2 +
OH OH
OH C=O C=O OH
(顺,顺-已二烯二酸)
RH + O2 + 还原型辅助因子 ROH + H2O + 氧化型辅助因子 (又称羟化酶)
2、转移酶 Transferase
• 转移酶催化基团转移反应,即将一个底物分子 的基团或原子转移到另一个底物的分子上。
HOOCCH=CHCOOH H2O
HOOCCH2CHCOOH OH
5、异构酶 Isomerase
• 异构酶催化各种同分异构体的相互转化, 即底物分子内基团或原子的重排过程。
• 例如,6-磷酸葡萄糖异构酶催化的反应
CH2OH O OH OH OH OH OH OH CH2OH O CH2OH OH
A
酶蛋白决定反应的特异性和高效性 辅助因子决定反应的种类与性质
辅助因子分类
(按其与酶蛋白结合的紧密程度)
辅酶 (coenzyme): 与酶蛋白结合疏松,可用透析或超滤的 方法除去。 辅基 (prosthetic group): 与酶蛋白结合紧密,不能用透析或超 滤的方法除去。 金属离子
辅酶/辅基的作用特点
• 活性中心:
• 必需基团:活性中心的必需基团,活性中心以外的必 需基团 • 活性中心: 底物结合部位+ 催化部位 • 活性中心是酶与底物结合并表现催化作用的空间区域, 大多由肽链上相距甚远的氨基酸残基提供必需基团, 经肽链折叠环绕,使之在三维空间中相互接近,构成 特定的空间构象,起催化中心作用。在结合酶中辅酶 和辅基也参与活性中心的组成。

酶的名词解释生物化学方程式

酶的名词解释生物化学方程式

酶的名词解释生物化学方程式酶的名词解释和生物化学方程式酶是生物体内一类具有催化作用的蛋白质,能够加速生物化学反应的进行,而不影响反应的平衡点。

酶在维持生命活动中起着至关重要的作用。

本文将介绍酶的定义和功能,并探讨酶催化反应的机制。

一、酶的定义酶是一类具有高度专一性的生物催化剂,它能够在细胞内或体外低于常温下加速化学反应的进行。

酶分子通常由一条或多条多肽链组成,并具有特定的三维结构。

酶与底物结合形成酶底物复合物,通过调整底物分子的构型,降低反应所需的活化能,从而促使反应发生。

酶的活性受到温度、pH值、底物浓度和酶浓度等环境因素的影响。

二、酶的功能酶在生物体内起着非常重要的功能,包括代谢调节、物质转运、信号转导等。

酶可以分解复杂的有机物质,提供生物体所需的能量和营养物质。

例如,消化酶能够分解食物中的大分子物质,使其转化为可供细胞吸收和利用的小分子物质。

另外,酶还能够合成生物体内所需的物质,如DNA聚合酶可以将DNA的单链合成成双链,促使DNA复制。

三、酶催化反应的机制酶催化反应的机制可以通过生物化学方程式来表示。

生物化学方程式是描述酶催化反应过程的化学方程式。

以下以酶催化水解蔗糖为例进行具体说明。

蔗糖 + 水 -> 葡萄糖 + 蔗糖酶在这个反应中,蔗糖酶是酶的名称,将蔗糖分解为葡萄糖和蔗糖酶。

酶与蔗糖结合形成酶底物复合物,随后酶通过特定的活性位点将底物转化为产物,最后酶与产物解离,重新进入催化循环。

酶催化反应的机制分为两个基本步骤:底物结合和催化步骤。

底物结合是指酶与底物之间的识别和结合过程,酶通过与底物之间的氢键、离子键或范德华力进行相互作用,形成酶底物复合物。

催化步骤是指酶促使底物转化为产物的过程,酶通过调整底物分子的构型,降低反应所需的活化能,从而促使反应发生。

四、酶的特点和应用酶具有高效、专一和可逆等特点。

由于酶具有高度专一性,使其在医药、食品、生物工程等领域具有广泛的应用。

例如,酶在医药领域用于制药工艺中的底物转化,如蛋白质重组技术中的酶切剂,可以切割目标蛋白质中的特定位点,得到所需的产物。

酶的一般知识

酶的一般知识

酶的一般知识最佳答案概念:酶(enzyme)是活细胞产生的具有催化作用的有机物,除少数RNA外几乎都是蛋白质。

酶催化作用实质:降低化学反应活化能酶与无机催化剂比较:1、相同点:1)改变化学反应速率,本身不被消耗;2)只催化已存在的化学反应;3)加快化学反应速率,缩短达到平衡时间,但不改变平衡点;4)降低活化能,使化学反应速率加快。

2、不同点:即酶的特性酶的特性1、高效性:酶的催化效率比无机催化剂更高,使得反应速率更快;2、专一性:一种酶只能催化一种或一类底物,如蛋白酶只能催化蛋白质水解成多肽;3、多样性:酶的种类很多,大约有4000多种;4、温和性:是指酶所催化的化学反应一般是在较温和的条件下进行的。

一般来说,动物体内的酶最适温度在35到40摄氏度之间,植物体内的酶最适温度在40-50摄氏度之间;细菌和真菌体内的酶最适温度差别较大,有得酶最适温度可高达70摄氏度。

动物体内的酶最适PH大多在6.5-8.0之间,但也有例外,如胃蛋白酶的最适PH为1.5,植物体内的酶最适PH大多在4.5-6.5之间。

酶的这些性质使细胞内错综复杂的物质代谢过程能有条不紊地进行,使物质代谢与正常的生理机能互相适应.若因遗传缺陷造成某个酶缺损,或其它原因造成酶的活性减弱,均可导致该酶催化的反应异常,使物质代谢紊乱,甚至发生疾病.因此酶与医学的关系十分密切酶的发现1773年,意大利科学家斯帕兰扎尼(L.Spallanzani,1729—1799)设计了一个巧妙的实验:将肉块放入小巧的金属笼中,然后让鹰吞下去。

过一段时间他将小笼取出,发现肉块消失了。

于是,他推断胃液中一定含有消化肉块的物质。

但是什么,他不清楚。

1836年,德国科学家施旺(T.Schwann,1810—1882)从胃液中提取出了消化蛋白质的物质。

解开胃的消化之谜。

1926年,美国科学家萨姆钠(J.B.Sumner,1887—1955)从刀豆种子中提取出脲酶的结晶,并通过化学实验证实脲酶是一种蛋白质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 习惯命名法
一. 酶的命名
底物名 + “酶”
如 己糖激酶、蛋白酶、脲酶
1. 习惯命名法
一. 酶的命名
反应类型 + “酶”
如 己糖激酶、乳酸脱氢酶、DNA聚合酶
1. 习惯命名法
一. 酶的命名
酶的来源
如 胃蛋白酶
1. 习惯命名法
问题
一. 酶的命名
这种命名法缺乏科学系统性,易产生“一酶多名” 或“一名多酶”问题。如分解淀粉的酶,若按这种命 名法则有三种名称,如淀粉酶、淀粉水解酶和细菌淀 粉酶。
乳酸脱氢酶的编码是: EC1.1.1.27
2. 国际系统命名法
一. 酶的命名
国际系统命名法看起来科学而严谨,但使用起 来不太方便.
一. 酶的命名
国际酶学委员会建议: 每个酶都给予 2 个名称
习惯名
系统名
二. 酶的分类
只催化一种化合物。
二、 酶的特性
2. 酶不共同于一般催化剂的特征
❖ 酶对环境条件极为敏感 ❖ 酶活性可以调控
三、酶的专一性的类型
酶催化的专一性(specificity)是指酶对它所催 化的反应及其底物具有的严格的选择性。通常一 种酶只能催化一种或一类化学反应。
由酶对底物选择的严格程度,可将酶的专一性分 为多种类型:
HOOC CH
延胡索酸酶
CH2COOH
HC COOH
HO CHCOOH
延胡索酸
苹果酸
三、酶的专一性及其类型
Summryຫໍສະໝຸດ 绝对专一性一种酶只能催化一种底物。如6-磷 酸葡萄糖磷酸酯酶。
立体专一性
一种酶只能对一种立体异构体起催 化作用。
一种酶只作用于一定的化学
键专一性 键,对键两侧的基团无要求
。如酯酶。
CH2OH O
OH HO
OR
OH 葡萄糖苷
三、酶的专一性及其类型
2 相对专一性——酶能催化在结构上类似的一系列化合物 反应特怔。
B 键专一性(bond specificity)—在催化A-B化合物 中,酶对A,B基团的结构要求不严,而要求有一定的 化学键便能进行催化反应特性。
三、酶的专一性及其类型
第一节 酶的概念及特点
一、 酶的概念
酶是由生物细胞产生的以蛋白质为主要成 分的生物催化剂。
生物体内的反应是在很温和的条件(如温 和的温度、接近中性的pH)下进行的,而同 样的反应若在非生物条件下进行,则需要高 温、高压、强酸、强碱等剧烈的条件。
一、 酶的概念
酶是但酶发挥其催化作用并不局限于活细胞内,在许 多情况下,细胞内产生的酶需分泌到细胞外或转移到 其它组织器官中发挥作用,如胰蛋白酶、脂酶、淀粉 酶等水解酶。把由细胞内产生并在细胞内发挥作用的 酶称为胞内酶,而将细胞内产生后分泌细胞外起作用 的酶叫胞外酶。
一、 酶的概念
在本章节中把酶所催化的反应称作酶促 反应,发生化学反应前的物质称底物( substrate),而反应后生成的物质称产物( product)。
二、 酶的特性
1. 酶具有共同于一般催化剂的特征
❖ 用量少; ❖ 只能催化热力学上允许的反应; ❖ 不改变反应的平衡点,而只能缩短时
间。催化机理都是降低反应所需的活 化能。
2. 国际系统命名法
一. 酶的命名
酶的国际习惯用名和系统命名的应用实例
习惯用名 乙醇脱氢酶 谷丙转氨酶 (GPT) 过氧化物酶
系统命名 乙醇∶NAD+氧化还原酶 丙氨酸∶α-酮戊二酸氨基转移酶 H2O2∶邻甲氧基酚氧化酶
催化的反应
乙醇
NAD+
乙醛 丙氨酸
NADH + H+ α-酮戊二酸
丙酮酸 H2O2
1. 绝对专业性——除一种底物外,酶都不能催化 其它反应的特性。
三、酶的专一性及其类型
H2O 脲酶
H2N C NH2
2NH3 + CO2
O
三、酶的专一性及其类型
2 相对专一性——酶能催化在结构上类似的一系列化合物 反应特怔。
A 基团专一性(group specificity)—在催化A-B化合 物中,酶对其中的一个基团具有高度甚至是绝对专一 性,而对另一个基团则具有相对专一性的特性。
C 立体专一性(stereo specificity)—一种酶只能对一 种立体异构体起催化作用,对其对映体则全无作用的 特性。a.立体异构专一性:
L 氨基酸
H2O + O2 L 氨基酸氧化酶
酮酸 + NH3 + H2O2
三、酶的专一性及其类型
C 立体专一性(stereo specificity)—一种酶只能对一 种立体异构体起催化作用,对其对映体则全无作用的 特性。b.几何异构专一性 :
二、 酶的特性
2. 酶不共同于一般催化剂的特征
❖ 催化效率极高
酶促反应的速度比非酶促反应通常要快 105~1017 倍
如此高的催化效率使生物体内含量 甚微的酶能催化大量的物质转化。
二、 酶的特性
2. 酶不共同于一般催化剂的特征
❖ 专一性很强 铂:催化许多反应,包括有机反应 H+:淀粉、脂肪、蛋白质、蔗糖等 酶:只作用于结构近似的分子,甚至
相对专一性
基团 专一性
不仅要求底物具有一定的化 学键,还对键某一侧的基团 有选择性。如磷酸单酯酶。
第二节 酶的命名与分类 一. 酶的命名
1. 习惯命名法
迄今为止所发现的4000多种酶中,现已有2500余 种酶被鉴定出来,用于生产实践的酶有近200种, 其中半数用于临床。
1961年以前,人们根据酶作用的底物名称、反 应、性质及酶来源,对该酶冠名。
谷氨酸 邻甲氧基酚
H2O
四邻甲氧基酚
2. 国际系统命名法
一. 酶的命名
国际酶学委员会规定,每个酶都有唯一的特 定标码,其书写方式是:
EC 数字.数字.数字.数字
酶 亚亚 顺
的 类亚 序

类号



2. 国际系统命名法
一. 酶的命名
乙醇脱氢酶的编码是: EC1.1.1.1
第一个“1”—— 第1大类,即氧化还原酶类; 第二个“1”—— 第1亚类,供氢体为CHOH; 第三个“1”—— 第1亚亚类,受氢体为NAD+; 第四个“1”—— 在亚亚类中的顺序号。
对于淀粉酶来说,强调的是底物;对淀粉水解酶来 说,既强调底物又指出酶催化反应的性质;而细菌淀 粉酶强调的是酶的来源和作用的对象。
2. 国际系统命名法
一. 酶的命名
该命名法规定,每种酶的名称应明确标明底物 及所催化反应的特征,即酶的名称应包含两部分: 前面为底物,后面为所催化反应的名称。
若前面底物有两个,则两个底物都写上,并在两 个底物之间用“:”分开,若底物之一是水,则可 略去。
相关文档
最新文档