高考数学第9章算法初步、统计与统计案例第2节抽样方法教学案文(含解析)北师大版
2020-2021学年新教材高中数学 第9章 统计 9.1.1 简单随机抽样学案(含解析)新人教

统计9.1 随机抽样9.1.1 简单随机抽样学习目标核心素养1.通过实例,了解简单随机抽样的含义及其解决问题的过程.(重点)2.掌握两种简单随机抽样方法:抽签法和随机数法.(重点、难点) 通过对简单随机抽样的概念和应用的学习,培养数据分析素养.在我国,食品安全问题越来越受到人们的关注,党中央、国务院和各级政府部门也高度重视,从制度建设和管理上都做了大量的、卓有成效的工作,取得了良好的效果.问题:某报告称,食品质量检测人员对某品牌牛奶的抽检合格率为99.9%,你知道这一数据是怎么得到的吗?1.全面调查和抽样调查调查方式普查抽样调查定义对每一个调查对象都进行调查的方法,称为全面调查,又称普查根据一定目的,从总体中抽取一部分个体进行调查,并以此为依据对总体的情况作出估计和推断的调查方法,称为抽样调查相关概念 总体:在一个调查中,我们把调查对象的全体称为总体.个体:组成总体的每一个调查对象称为个体 样本:我们把从总体中抽取的那部分个体称为样本. 样本量:样本中包含的个体数称为样本量2.简单随机抽样的概念 放回简单随机抽样 不放回简单随机抽样一般地,设一个总体含有N (N 为正整数)个个体,从中逐个抽取n (1≤n <N )个个体作为样本 如果抽取是放回的,且每次抽取时总体内的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做放回简单随机抽样 如果抽取是不放回的,且每次抽取时总体内未进入样本的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做不放回简单随机抽样简单随机抽样:放回简单随机抽样和不放回简单随机抽样统称为简单随机抽样.通过简单随机抽样获得的样本称为简单随机样本 3.抽签法先把总体中的个体编号,然后把所有编号写在外观、质地等无差别的小纸片(也可以是卡片、小球等)上作为号签,并将这些小纸片放在一个不透明的盒里,充分搅拌.最后从盒中不放回地逐个抽取号签,使与号签上的编号对应的个体进入样本,直到抽足样本所需要的个体数.4.随机数法(1)定义:先把总体中的个体编号,用随机数工具产生与总体中个体数量相等的整数随机数,把产生的随机数作为抽中的编号,并剔除重复的编号,直到抽足样本所需要的个体数.(2)产生随机数的方法:①用随机试验生成随机数;②用信息技术生成随机数.5.总体均值和样本均值(1)总体均值:一般地,总体中有N 个个体,它们的变量值分别为Y 1,Y 2,…,Y N ,则Y =Y 1+Y 2+…+Y N N =1N ∑i =1NY i 为总体均值,又称总体平均数. (2)总体均值加权平均数的形式:如果总体的N 个变量值中,不同的值共有k (k ≤N )个,不妨记为Y 1,Y 2,…,Y k ,其中Y i 出现的频数f i (i =1,2,…,k ),则总体均值还可以写成加权平均数的形式Y =1N ∑i =1kf i Y i .(3)如果从总体中抽取一个容量为n 的样本,它们的变量值分别为y 1,y 2,…,y n ,则称y -=y 1+y 2+…+y n n =1n i =1ny i 为样本均值,又称样本平均数. 思考1:采用抽签法抽取样本时,为什么将编号写在外观、质地等无差别的小纸片(也可以是卡片、小球等)上作为号签,并将这些小纸片放在一个不透明的盒里,充分搅拌?[提示] 为了使每个号签被抽取的可能性相等,保证抽样的公平性.思考2:抽签法有什么优点和缺点?[提示] (1)优点:简单易行,当总体的个体数不多时,使总体处于“搅拌”均匀的状态比较容易,这时,每个个体都有均等的机会被抽中,从而能够保证样本的代表性.(2)缺点:仅适用于个体数较少的总体,当总体容量较大时,费时费力又不方便,况且,如果号签搅拌的不均匀,可能导致抽样不公平.1.思考辨析(正确的画“√”,错误的画“×”)(1)抽签法和随机数法都适用于总体容量和样本容量较小时的抽样. ( )(2)利用随机数法抽取样本时,选定的初始数是任意的,但读数的方向只能是从左向右读.( )(3)利用随机数法抽取样本时,若总体容量为100,则给每个个体分别编号为1,2,3, (100)( )[提示] (1)正确.(2)错误.读数的方向也是任意的.(3)错误.应编号为00,01,02, (99)[答案] (1)√ (2)× (3)×2.使用简单随机抽样从 1 000件产品中抽出50件进行某项检查,合适的抽样方法是( )A .抽签法B .随机数法C .随机抽样法D .以上都不对 B [由于总体相对较大,样本容量较小,故采用随机数法较为合适.]3.用抽签法抽取的一个容量为5的样本,它们的变量值分别为2,4,5,7,9,则该样本的平均数为( )A .4.5B .4.8C .5.4D .6C [y =2+4+5+7+95=5.4.]简单随机抽样的判断【例1】下列5个抽样中,简单随机抽样的个数是( )①一儿童从玩具箱的20件玩具中任意拿一件玩,玩后放回再拿一件,连续玩了5件;②仓库中有1万支奥运火炬,从中一次性抽取100支火炬进行质量检查;③某班从50名同学中,选出5名数学成绩最优秀的同学代表本班参加数学竞赛;④一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地抽出6个号签.A.0 B.1C.2 D.3B[根据简单随机抽样的特点逐个判断.①不是简单随机抽样.因为一儿童从玩具箱的20件玩具中任意拿一件玩,玩后放回再拿一件,连续玩了5件它不是“逐个”抽取.②不是简单随机抽样.虽然“一次性抽取”和“逐个抽取”不影响个体被抽到的可能性,但简单随机抽样要求的是“逐个抽取”.③不是简单随机抽样.因为5名同学是从中挑出来的,是最优秀的,每个个体被抽到的可能性不同,不符合简单随机抽样中“等可能抽样”的要求.④是简单随机抽样.因为总体中的个体数是有限的,并且是从总体中逐个进行抽取的,等可能的抽样.综上,只有④是简单随机抽样.]简单随机抽样必须具备的特点1被抽取样本的总体中的个体数N是有限的;2抽取的样本是从总体中逐个抽取的;3简单随机抽样是一种等可能的抽样.,如果三个特征有一个不满足,就不是简单随机抽样.[跟进训练]1.为了进一步严厉打击交通违法,交警队在某一路口随机抽查司机是否酒驾,这种抽查是( )A.简单随机抽样B.抽签法C.随机数法D.以上都不对D[由于不知道总体的情况(包括总体个数),因此不属于简单随机抽样.]抽签法的应用【例2】从20架钢琴中抽取5架进行质量检查,请用抽签法确定这5架钢琴.[解] 第一步,将20架钢琴编号,号码是01,02, (20)第二步,将号码分别写在外观、质地等无差别的小纸片上作为号签.第三步,将小纸片放入一个不透明的盒里,充分搅匀.第四步,从盒中不放回地逐个抽取5个号签,使与号签上编号相同的钢琴进入样本.1.一个抽样试验能否用抽签法,关键看两点:一是制签是否方便;二是个体之间差异不明显.2.应用抽签法时应注意的问题:(1)编号时,如果已有编号可不必重新编号;(2)号签要求大小、形状完全相同;(3)号签要均匀搅拌;(4)根据实际需要采用有放回或无放回抽取.[跟进训练]2.为迎接2022年北京冬奥会,奥委会现从报名的某高校30名志愿者中选取6人组成奥运志愿小组,请用抽签法设计抽样方案.[解] (1)将30名志愿者编号,号码分别是01,02, (30)(2)将号码分别写在外观、质地等无差别的小纸片上作为号签.(3)将小纸片放入一个不透明的盒里,充分搅匀.(4)从盒中不放回地逐个抽取6个号签,使与号签上编号相同的志愿者进入样本.随机数法及其综合应用[探究问题]1.某工厂有2 000名工人,从中选取20人参加职工代表大会,采用简单随机抽样方法进行抽样,是用抽签法还是随机数法?为什么?[提示] 采用随机数法,因为工人人数较多,制作号签比较麻烦,所以采用随机数法.2.某工厂的质检人员采用随机数法对生产的100件产品进行检查,若抽取10件进行检查,应如何对100件产品编号?[提示] 可对这100件产品编号为:001,002,003, (100)【例3】某市质监局要检查某公司某个时间段生产的500克袋装牛奶的质量是否达标,现从500袋牛奶中抽取10袋进行检验.(1)利用随机数法抽取样本时,应如何操作?(2)如果用随机试验生成部分随机数如下所示,据此写出应抽取的袋装牛奶的编号.162,277,943,949,545,354, 821,737, 932,354,873,520,964,384,263,491,648,642,175,331,572,455,068,877,047,447,672,172,065,025,834,216,337,663,013,785,916,955,567,199,810,507,175,128,673,580,667.(3)质监局对该公司生产的袋装牛奶检验的质量指标有两个:一是每袋牛奶的质量满足500±5g,二是10袋质量的平均数≥500g,同时满足这两个指标,才认为公司生产的牛奶为合格,否则为不合格.经过检测得到10袋袋装牛奶的质量(单位:g)为:502,500,499,497,503,499,501,500,498,499.计算这个样本的平均数,并按照以上标准判断牛奶质量是否合格.[解] (1)第一步,将500袋牛奶编号为001,002, (500)第二步,用随机数工具产生1~500范围内的随机数.第三步,把产生的随机数作为抽中的编号,使编号对应的袋装牛奶进入样本.第四步,重复上述过程,直到产生不同的编号等于样本所需要的数量.(2)应抽取的袋装牛奶的编号为:162,277,354,384,263,491,175,331,455,068. (3)y =502+500+499+497+503+499+501+500+498+49910=499.8<500,所以该公司的牛奶质量不合格.1.该公司对质监部门的这种检验方法并不认可,公司自己质检部门抽取了100袋牛奶按照本例(3)检验标准,统计得到这100袋袋装牛奶的质量都满足500±5g,平均数为500.4g ,你认为质监局和公司的检验结果哪一个更可靠?为什么?[解] 该公司的质检部门的检验结果更可靠.因为质监局抽取的样本较少,不能很好地反映总体,该公司的质检部门抽取的样本量较大,一般来说,样本量大的会好于样本量小的.尤其是样本量不大时,增加样本量可以较好地提高估计的效果.2.为进一步加强公司生产牛奶的质量,规定袋装牛奶的质量变量值为Y i =⎩⎪⎨⎪⎧ 1,质量不低于500 g 0,质量低于500 g ,公司质监部门又抽取了一个容量为50的样本,其质量变量值如下:1 1 1 0 1 1 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0 1 0 1 1 1 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 1据此估计该公司生产的袋装牛奶质量不低于500 g 的比例.[解] 由样本观测数据,计算可得样本平均数为y =0.56,据此估计该公司生产的袋装牛奶质量不低于500 g 的比例约为0.56.随机数法的注意点1当总体容量较大,样本容量不大时,可用随机数法抽取样本.2用随机数法抽取样本,为了方便,在编号时需统一编号的位数.3掌握利用信息技术产生随机数的方法和规则.一、知识必备1.简单随机抽样的相关概念以及抽签法和随机数法的抽样步骤.2.当总体容量和样本容量都不大时,用抽签法抽样;当总体容量较大,样本容量不大时,用随机数法抽样.二、方法必备1.要判断所给的抽样方法是不是简单随机抽样,关键是看它们是否符合简单随机抽样的定义,即简单随机抽样的三个特点:总体有限、逐个抽取、等可能抽取.2.一个抽样试验能否用抽签法,关键看总体和样本的容量是否较少.1.(多选题)下面抽样方法不属于简单随机抽样的是( )A.从平面直角坐标系中抽取5个点作为样本B.某饮料公司从仓库中的1 000箱可乐中一次性抽取20箱进行质量检查C.某连队从200名战士中,挑选出50名最优秀的战士去参加抢险救灾活动D.从10台手机中逐个不放回地随机抽取2台进行质量检验(假设10台手机已编号,对编号进行随机抽取)ABC[选项A中,平面直角坐标系中有无数个点,这与要求总体中的个体数有限不相符,故错误;选项B中,一次性抽取不符合简单随机抽样逐个抽取的要求,故错误;选项C中,50名战士是最优秀的,不符合简单随机抽样的等可能性,故错误;选项D符合简单随机抽样的要求.]2.抽签法确保样本代表性的关键是( )A.制签B.搅拌均匀C.逐一抽取D.抽取不放回B[若样本具有很好的代表性,则每一个个体被抽取的机会相等,故需要对号签搅拌均匀.]3.“双色球”彩票中有33个红色球,每个球的编号分别为01,02,…,33.一位彩民用随机数法选取6个号码作为6个红色球的编号,选取方法是从下面的随机数表中第1行第5列和第6列的数字开始,从左向右读数,则依次选出来的第5个红色球的编号为( )7816 6572 0802 6314 0214 4319 9714 01983204 9234 4936 8200 3623 4869 6938 7181A .01B .02C .14D .19A [从随机数表中第1行第5列和第6列的数字开始,从左向右读数,依次是65(舍去),72(舍去),08,02,63(舍去),14,02(舍去),14(舍去),43(舍去),19,97(舍去),14(舍去),01,98(舍去),32;选出来的这6个数为:08,02,14,19,01,32,第5个红色球的编号为01.]4.在总体为N 的一批零件中抽取一个容量为30的样本,若每个零件被抽取的可能性为25%,则N 的值为________.120 [据题意30N=0.25,故N =120.] 5.某展览馆在22天中(全年中随机抽取的数据)每天进馆参观的人数如下:180,158,170,185,189,180,184,185,140,179,192,185,190,165,182,170,190,183,175,180,185,147可估计全年该展览馆平均每天参观的人数约为________.177 [根据题意,可用样本均值近似估计总体均值y -=122×(180+158+170+185+189+180+184+185+140+179+192+185+190+165+182+170+190+183+175+180+185+147)=177.]。
高考数学一轮复习第十章算法初步统计与统计案例10.2随机抽样学案(理含解析)北师大版

10.2随机抽样必备知识预案自诊知识梳理1.总体、个体、样本、样本容量的概念统计中所考察对象的全体构成的集合看做总体,构成总体的每个元素作为个体,从总体中抽取的所组成的集合叫作样本,样本中个体的叫作样本容量.2.简单随机抽样(1)定义:一般地,设一个总体含有N个个体,从中逐个地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的,就把这种抽样方法叫作简单随机抽样.(2)常用方法:和.(3)应用范围:总体中的个体之间差异程度较小和数目较少.(4)注意事项:利用随机数表抽样时,①选定的初始数和读数的方向是任意的;②对各个个体编号要视总体中的个体数情况而定,且必须保证所编号码的位数一致.3.系统抽样(1)定义:当总体中的个体比较多时,首先把总体分成均衡的若干部分,然后按照预先定出的规则,从每一部分中抽取一个个体,得到所需要的样本,这种抽样方法叫作系统抽样.(2)系统抽样的步骤假设要从容量为N的总体中抽取容量为n的样本.①先将总体的N个个体;②确定,对编号进行.当Nn (n是样本容量)是整数时,取k=Nn;③在第1段用确定第一个个体编号l(l≤k);④按照一定的规则抽取样本.通常是将l加上间隔k得到第2个个体编号,再加k 得到第3个个体编号,依次进行下去,直到获取整个样本.(3)应用范围:总体中的个体数较多.4.分层抽样(1)定义:一般地,在抽样时,将总体分成互不交叉的层,然后按照,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法叫分层抽样.(2)应用范围:适用于总体由差异比较明显的几个部分组成.(3)注意事项:利用分层抽样要注意按比例抽取,若各层应抽取的个体数不都是整数,则应当调整各层容量,即先剔除各层中“多余”的个体.1.不论哪种抽样方法,总体中的每一个个体入样的概率都是相同的.2.系统抽样一般也称为等距抽样,入样个体的编号相差分段间隔k的整数倍.3.分层抽样是按比例抽样,每一层入样的个体数为该层的个体数乘抽样比.考点自诊1.判断下列结论是否正确,正确的画“√”,错误的画“×”.(1)简单随机抽样是一种不放回抽样.( )(2)在抽签法中,先抽的人抽中的可能性大.( )(3)系统抽样在起始部分抽样时采用简单随机抽样.( )(4)用系统抽样从102名学生中选取20名,需剔除2名,这样对被剔除者不公平.( )(5)在分层抽样中,每个个体被抽到的可能性与层数及分层有关.( )2.(2020全国百校高三联考)为了调查某地区不同年龄的教师的工资情况,研究人员在A 学校进行抽样调查,则比较合适的抽样方法为( )A.简单随机抽样B.系统抽样C.分层抽样D.不能确定3.为客观了解上海市民家庭存书量,上海市统计局社情民意调查中心通过电话调查系统开展专项调查,成功访问了2 007位市民,在这项调查中,总体、样本及样本容量分别是( )A.总体是上海市民家庭总数量,样本是2 007位市民家庭的存书量,样本容量是2 007B.总体是上海市民家庭的存书量,样本是2 007位市民家庭的存书量,样本容量是2 007C.总体是上海市民家庭的存书量,样本是2 007位市民,样本容量是2 007D.总体是上海市民家庭总数量,样本是2 007位市民,样本容量是2 0074.有200人参加了一次会议,为了了解这200人参加会议的体会,将这200人随机编号为001,002,003,…,200,用系统抽样的方法(等距离)抽出20人,若编号为006,036,041,176,196的5个人中有1个没有抽到,则这个编号是( )A.006B.041C.176D.1965.某工厂生产A ,B ,C 三种不同型号的产品,其中某月生产的产品数量之比依次为m ∶3∶2,现用分层抽样的方法抽取一个容量为120的样本,已知A 种型号产品抽取了45件,则m=( )A.1B.2C.3D.4关键能力学案突破考点简单随机抽样【例1】(1)某校高一共有10个班,编号01至10,某项调查要从中抽取三个班作为样本,现用抽签法抽取样本,每次抽取一个号码,共抽3次,设五班第一次被抽到的可能性为a ,第二次被抽到的可能性为b ,则( )A.a=310,b=29 B.a=110,b=19 C.a=310,b=310 D.a=110,b=110 (2)(2020山西太原高三质检)某口罩生产工厂为了了解口罩的质量,现将生产的50个口罩编号为01,02,…,50,利用如下随机数表从中抽取10个进行检测,若从下表中第1行第7列的数字开始向右依次读取2个数据作为1个编号,则被抽取的第8个个体的编号为( )72 84 71 14 3519 11 58 49 2650 11 17 17 7686 31 57 20 1895 60 78 46 7588 78 28 16 8413 52 53 94 5375 45 69 30 9673 89 65 70 3199 14 43 48 76A.18B.11C.50D.17解题心得应用简单随机抽样时应注意的问题(1)一个抽样试验能否用抽签法,关键看两点:一是抽签是否方便;二是号签是否易搅匀.一般地,当总体容量和样本容量都较小时可用抽签法.(2)在使用随机数法时,如遇到三位数或四位数,可从选择的随机数表中的某行某列的数字计起,每三个或四个作为一个单位,自左向右选取,将超过总体号码或出现重复号码的数字舍去.对点训练1(1)用简单随机抽样的方法从含有6个个体的总体中,抽取一个容量为2的样本,某一个体a“第一次被抽取”的可能性、“第二次被抽取”的可能性分别是()A.16,16B.13,16C.16,13D.13,13(2)某工厂利用随机数表对生产的700个零件进行抽样测试,先将700个零件进行编号,001,002,…,699,700.从中抽取70个样本,下图提供随机数表的第4行到第6行,若从表中第5行第6列开始向右读取数据,则得到的第6个样本编号是()32 21 18 34 2978 64 54 07 3252 42 06 44 3812 23 43 56 7735 78 90 56 4284 42 12 53 3134 57 86 07 3625 30 07 32 8623 45 78 89 0723 68 96 08 0432 56 78 08 4367 89 53 55 7734 89 94 83 7522 53 55 78 3245 77 89 23 45A.623B.328C.253D.007考点系统抽样【例2】(1)(2020河南顶尖计划高三联考)某公司有3 000名员工,将这些员工编号为0001,0002,0003,…,3000,从这些员工中使用系统抽样的方法抽取200人进行“学习强国”的问卷调查,若0084号被抽到,则下面被抽到的是()A.0044号B.0294号C.1196号D.2984号(2)将参加夏令营的600名学生按001,002,…,600进行编号.采用系统抽样的方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分别住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,则三个营区被抽中的人数依次为()A.26,16,8B.25,17,8C.25,16,9D.24,17,9解题心得1.系统抽样适用的条件是总体容量较大,样本容量也较大.2.使用系统抽样时,若总体容量不能被样本容量整除,可以先从总体中随机地剔除几个个体,从而确定分段间隔.3.起始编号的确定应用简单随机抽样的方法,一旦起始编号确定,其他编号便随之确定.4.系统抽样是等距抽样,利用系统抽样抽取的样本编号通常构成等差数列,但如果抽样规则另有说明(非等距抽样),得到样本编号则不一定成等差数列.对点训练2(1)某学校从编号依次为01,02,…,90的90个学生中用系统抽样(等间距抽样)的方法抽取一个样本,已知样本中相邻的两个组的编号分别为14,23,则该样本中来自第四组的学生的编号为( )A.32B.33C.41D.42(2)某校高三年级共有学生900人,编号为1,2,3,…,900,现用系统抽样的方法抽取一个容量为45的样本,若在第一组抽取的编号是5,则抽取的45人中,编号落在区间[479,719]的人数为( )A.10B.11C.12D.13考点 分层抽样【例3】(1)某电视台在因特网上就观众对其某一节目的喜爱程度进行了调查,参加调查的一共有20 000人,其中各种态度对应的人数如下表所示:最喜爱 喜爱 一般 不喜欢4 800 7 200 6 400 1600电视台为了了解观众的具体想法和意见,打算从中抽取100人进行详细的调查,为此要进行分层抽样,那么在分层抽样时,每类人中应抽取的人数分别为( )A.25,25,25,25B.48,72,64,16C.20,40,30,10D.24,36,32,8(2)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取 件.(3)我国古代数学专著《九章算术》中有一衰分问题:今有北乡八千一百人,西乡七千四百八十八人,南乡六千九百一十二人,凡三乡,发役三百人,则北乡遣( )A.104人B.108人C.112人D.120人解题心得分层抽样问题类型及解题思路(1)求某层应抽个体数量:按该层所占总体的比例计算.(2)已知某层个体数量,求总体容量或反之:根据分层抽样就是按比例抽样,列比例式进行计算.(3)确定是否应用分层抽样:分层抽样适用于总体中个体差异较大的情况.对点训练3(1)某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种,10种,30种,20种,现从中抽取一个容量为20的样本进行食品安全检测,若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是 .(2)某林场共有白猫与黑猫1 000只,其中白猫比黑猫多400只,为调查猫的生长情况,采用分层抽样的方法抽取一个容量为n 的样本,若样本中黑猫有6只,则n= .(3)我国南宋数学家秦九韶所著《数书九章》中有“米谷粒分”问题:粮仓开仓收粮,粮农送来米512石,验得米内夹谷,抽样取米一把,数得216粒内夹谷27粒,则这批米内夹谷约( )A.128石B.64石C.256石D.32石10.2 随机抽样必备知识·预案自诊知识梳理1.一部分个体 数目2.(1)不放回 机会都相等(2)抽签法 随机数法3.(2)编号 分段间隔k 分段 简单随机抽样 (l+k ) (l+2k )4.(1)一定的比例考点自诊1.(1)√ (2)× (3)√ (4)× (5)×2.C 因为调查教师的工资情况需要分年龄,所以使用分层抽样的方法能够正确反映不同年龄的教师的工资情况,按照年龄分层抽样.3.B 根据题目可知,总体是上海市民家庭的存书量,样本是2007位市民家庭的存书量,样本容量是2007,故选B .4.B 由题意,从200人中用系统抽样的方法抽取20人,所以抽样的间隔为20020=10,若在第1组中抽取的数字为006,则抽取的号码满足6+(n-1)×10=10n-4,其中n ∈N *,其中当n=4时,抽取的号码为36;当n=18时,抽取的号码为176;当n=20时,抽取的号码为196,所以041这个编号不在抽取的号码中,故选B .5.C ∵用分层抽样方法抽取一个容量为120的样本,A 种型号产品抽取了45件,又∵某工厂生产A ,B ,C 三种不同型号的产品,某月生产产品数量之比依次为m ∶3∶2,∴根据分层抽样的性质得m m+3+2=45120,解得m=3.故选C.关键能力·学案突破例1(1)D (2)D (1)由简单随机抽样的定义知,在每次抽取中每个个体都有相同的可能性被抽到,故五班在每次抽样中被抽到的可能性都是110,所以a=110,b=110.(2)随机数表中第1行第7列的数字为1,所以第一个抽取的为14,被抽取的10个个体的编号依次为14,35,19,11,49,26,50,17,31,20,所以被抽取的第8个个体编号为17.对点训练1(1)A (2)A (1)由于简单随机抽样中每个个体每次被抽到的机会均等,所以个体a “第一次被抽取”的可能性与“第二次被抽取”的可能性是相同的,都为16.故选A.(2)从第5行第6列开始向右读取数据,第一个数为253,第二个数是313,第三个数是457,下一个数是860,不符合要求,下一个数是736,不符合要求,下一个是253,重复,第四个是007,第五个是328,第六个是623,故选A .例2(1)B (2)B (1)由题意得,抽出的号码为以15为公差的等差数列,因为0084号被抽到,所以可知被抽得的号码与84的差为15的整数倍.294-84=210=15×14,其他选项均不满足.故选B .(2)由题意及系统抽样的定义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k (k ∈N *)组抽中的号码是3+12(k-1).令3+12(k-1)≤300,得k ≤1034,因此第Ⅰ营区被抽中的人数是25;令300<3+12(k-1)≤495,得1034<k ≤42,因此第Ⅱ营区被抽中的人数是42-25=17;第Ⅲ营区被抽中的人数为50-25-17=8.对点训练2(1)A (2)C (1)因为由题可知相邻的两个组的编号分别为14,23,所以样本间隔为23-14=9,所以第一组的编号为14-9=5,所以第四组的编号为5+3×9=32,故选A .(2)900人中抽取样本容量为45的样本,样本组距为900÷45=20,又第一组抽取的编号是5,则编号落在区间[479,719]的人数为(719-479)÷20=12,故选C .例3(1)D (2)18 (3)B (1)(方法1)根据分层抽样的性质得10020000=1200,所以每类人中应抽取的人数分别为4800×1200=24,7200×1200=36,6400×1200=32,1600×1200=8.(方法2)最喜爱、喜爱、一般、不喜欢的比例为4800∶7200∶6400∶1600=6∶9∶8∶2,所以每类人中应抽取的人数分别为66+9+8+2×100=24,96+9+8+2×100=36,86+9+8+2×100=32,26+9+8+2×100=8. (2)因为样本容量n=60,产品总数N=200+400+300+100=1000,所以n N =601000=350.因此应从丙种型号的产品中抽取300×350=18(件). (3)由题意可知,这是一个分层抽样的问题,其中北乡可抽取的人数为300×81008100+7488+6912=300×810022500=108.对点训练3(1)6 (2)20 (3)B (1)本题主要考查对分层抽样的理解.根据分层抽样的性质得2040+10+30+20=15,则抽取的植物油类种数是10×15=2,抽取的果蔬类食品种数是20×15=4,所以抽取的植物油类与果蔬类食品种数之和是2+4=6.(2)由题意,白猫、黑猫分别有700,300只,由分层抽样的特点,得n 1000=6300,解得n=20,故答案为20.(3)由题意,抽得样本中含谷27粒,占样本的比例为27216=18,则由此估计总体中谷的含量约为512×18=64(石).。
高中数学 《抽样方法》教案(2) 北师大版必修3

统计、抽样方法一、教学目标1. 随机抽样。
2. 用样本估计总体。
3. 变量的相关性。
二、知识提要1. 抽样当总体中的个体较少时,一般可用简单随机抽样;当总体中的个体较多时,一般可用系统抽样;当总体由差异明显的几部分组成时,一般可用分层抽样,而简单随机抽样作为一种最简单的抽样方法, 又在其中处于一种非常重要的地位 . 实施简单随机抽样, 主要有两种方法:抽签法和随机数表法 .系统抽样适用于总体中的个体数较多的情况,因为这时采用简单随机抽样就显得不方便, 系统抽样与简单随机抽样之间存在着密切联系,即在将总体中的个体均匀分后的每一段进行抽样时,采用的是简单随机抽样;与简单随机抽样一样,系统抽样也属于等概率抽样 .分层抽样在内容上与系统抽样是平行的,在每一层进行抽样时,采用简单随机抽样或系统抽样,分层抽样也是等概率抽样 .2. 样本与总体用样本估计总体是研究统计问题的一种思想方法 . 当总体中的个体取不同数值很少时,其频率分布表由所取样本的不同数值及其相应的频率来表示,其几何表示就是相应的条形图, 当总体中的个体取不同值较多,甚至无限时,其频率分布的研究要用到初中学过的整理样本数据的知识 .用样本估计总体,除在整体上用样本的频率分布去估计总体的分布以外,还可以从特征数上进行估计,即用样本的平均数去估计总体的平均数,用关于样本的方差(标准差去估计总体的方差(标准差 .3. 正态分布正态分布在实际生产、生活中有着广泛的应用,很多变量,如测量的误差、产品的尺寸等服从或近似服从正态分布,利用正态分布的有关性质可以对产品进行假设检验 .4. 线性回归直线设 x 、 y 是具有相关关系的两个变量,且相应于 n 组观察值的 n 个点大致分布在一条直线的附近,我们把整体上这 n 个点最接近的一条直线叫线性回归直线 .三、基础训练1. 一个总体中共有 10个个体,用简单随机抽样的方法从中抽取一容量为 3的样本,则某特定个体入样的概率是 (A.310C 3B.89103⨯⨯C.103 D.101 2. (2004年江苏, 6某校为了了解学生的课外阅读情况,随机调查了 50名学生,得到他们在某一天各自课外阅读所用时间的数据, 结果用下面的条形图表示 . 根据条形图可得这 50名学生这一天平均每人的课外阅读时间为 (hA.0.6 hB.0.9 hC.1.0 hD.1.5 h3. 如果随机变量ξ~N (μ, σ2 ,且E ξ=3, D ξ=1,则 P (-1<ξ≤ 1等于( A.2Φ(1-1 B. Φ(4-Φ(2C. Φ(2-Φ(4D. Φ(-4-Φ(-24. . 为考虑广告费用 x 与销售额 y 之间的关系,抽取了 5家餐厅,得到如下数据:现要使销售额达到 6万元,则需广告费用为 ______.(保留两位有效数字四、典型例题【例 1】某批零件共 160个,其中,一级品 48个,二级品 64个,三级品 32个,等外品 16个 . 从中抽取一个容量为 20的样本 . 请说明分别用简单随机抽样、系统抽样和分层抽样法抽取时总体中的每个个体被取到的概率均相同 .【例 2】已知测量误差ξ~N (2, 100 (cm ,必须进行多少次测量,才能使至少有一次测量误差的绝对值不超过 8 cm的频率大于 0.9?五、达标检测1. 对总数为 N 的一批零件抽取一个容量为 30的样本,若每个零件被抽取的概率为 0.25, 则 N 等于 (A.150B.200C.120D.1002. 设随机变量ξ~N (μ, σ ,且P (ξ≤ C =P(ξ>C ,则 C 等于 (A.0B. σC.-μD.μ3. (2003年全国, 14 某公司生产三种型号的轿车, 产量分别为 1200辆、 6000辆和 2000辆,为检验该公司的产品质量,现用分层抽样的方法抽取 46辆进行检验,这三种型号的轿车依次应抽取 ______辆、 ______辆、 ______辆 .4. 某厂生产的零件外直径ξ~N (8.0, 1.52 (mm ,今从该厂上、下午生产的零件中各随机取出一个,测得其外直径分别为 7.9 mm和 7.5 mm,则可认为 (A. 上、下午生产情况均为正常B. 上、下午生产情况均为异常C. 上午生产情况正常,下午生产情况异常D. 上午生产情况异常,下午生产情况正常 5. 随机变量ξ服从正态分布 N (0, 1 ,如果P (ξ<1 =0.8413,求 P (-1<ξ<0 .6. 公共汽车门的高度是按照确保 99%以上的成年男子头部不跟车门顶部碰撞设计的, 如果某地成年男子的身高ξ~N (173, 72 (cm ,问车门应设计多高?基础训练1.解析:简单随机抽样中每一个体的入样概率为Nn . 答案:C2.解析:一天平均每人的课外阅读时间应为一天的总阅读时间与学生数的比,即5050. 2105. 1100. 1205. 050⨯+⨯+⨯+⨯+⨯=0.9 h.答案:B3.解析:对正态分布, μ=Eξ=3, σ2=Dξ=1,故 P (-1<ξ≤ 1 =Φ(1-3-Φ(-1-3 =Φ(-2-Φ(-4 =Φ(4-Φ(2 .答案:B4.解析:先求出回归方程 yˆ=bx+a,令y ˆ=6,得 x=1.5万元 . 答案:1.5万元典型例题【例 1】剖析:要说明每个个体被取到的概率相同,只需计算出用三种抽样方法抽取个体时,每个个体被取到的概率 .解:(1 简单随机抽样法:可采取抽签法, 将 160个零件按 1~160编号, 相应地制作1~160号的 160个签,从中随机抽 20个 . 显然每个个体被抽到的概率为16020=81. (2系统抽样法:将 160个零件从 1至 160编上号,按编号顺序分成 20组,每组 8个 . 然后在第 1组用抽签法随机抽取一个号码,如它是第 k 号(1≤ k ≤ 8 ,则在其余组中分别抽取第 k+8n(n=1, 2, 3,…, 19号,此时每个个体被抽到的概率为 81.(3分层抽样法:按比例16020=81,分别在一级品、二级品、三级品、等外品中抽取 48×81=6个, 64×81=8个,32×81=4个, 16×81=2个, 每个个体被抽到的概率分别为 486, 648, 324, 162,即都是 81. 综上可知,无论采取哪种抽样,总体的每个个体被抽到的概率都是 81.评述:三种抽样方法的共同点就是每个个体被抽到的概率相同,这样样本的抽取体现了公平性和客观性 .思考讨论:现有 20张奖券,已知只有一张能获奖,甲从中任摸一张,中奖的概率为201, 刮开一看没中奖 . 乙再从余下 19张中任摸一张,中奖概率为191,这样说甲、乙中奖的概率不一样,是否正确 ?【例 2】解:设η表示 n 次测量中绝对误差不超过 8 cm的次数,则η~B (n , p .其中P=P(|ξ|<8 =Φ(1028--Φ(1028-- =Φ(0.6-1+Φ(1 =0.7258-1+0.8413=0.5671.由题意,∵ P (η≥ 1 >0.9, n 应满足P (η≥ 1 =1-P (η=0 =1-(1-p n>0.9,∴ n>5671. 01lg( 9. 01lg(--=4329. 0lg 1-=2.75.因此,至少要进行 3次测量,才能使至少有一次误差的绝对值不超过 8 cm的概率大于 0.9. 达标检测1.解析:∵N30=0.25,∴ N=120. 答案:C2.解析:由正态曲线的图象关于直线x=μ对称可得答案为 D. 答案:D3.解析:因总轿车数为 9200辆,而抽取 46辆进行检验,抽样比例为 920046=2001,而三种型号的轿车有显著区别 . 根据分层抽样分为三层按2001比例分别有 6辆、 30辆、 10辆 . 答案:6 30 104.解析:根据3σ原则,在 8+3×1.5=8.45(mm 与 8-3×1.5=7.55(mm 之外时为异常 . 答案:C5.解:∵ ξ~N (0, 1 ,∴ P (-1<ξ<0 =P(0<ξ<1 =Φ(1-Φ(0 =0.8413-0.5=0.3413.6.解:设公共汽车门的设计高度为 x cm,由题意,需使P (ξ≥ x <1%.∵ ξ~N (173, 72,∴ P (ξ≤ x =Φ(7173-x >0.99. 查表得7173-x >2.33,∴ x >189.31,即公共汽车门的高度应设计为 190 cm ,可确保 99%以上的成年男子头部不跟车门顶部碰撞 .。
高三数学 第9章 第1节 算法与算法框图导学案北师大版(

第九章算法初步、统计与统计案例[深研高考·备考导航]为教师备课、授课提供丰富教学资源[五年考情]考点算法、算法框图、基本算法语句全国卷Ⅰ·T9全国卷Ⅱ·T8全国卷Ⅲ·T7全国卷Ⅰ·T9全国卷Ⅱ·T8全国卷Ⅰ·T7全国卷Ⅱ·T7全国卷Ⅰ·T5全国卷Ⅱ·T6全国卷·T6随机抽样———全国卷Ⅰ·T3—用样本估计总体全国卷Ⅱ·T10全国卷Ⅲ·T4全国卷Ⅱ·T18全国卷Ⅰ·T18全国卷Ⅱ·T19全国卷·T18变量间的相关关系与统计案例全国卷Ⅲ·T18全国卷Ⅰ·T19全国卷Ⅱ·T19——综合近5年全国卷高考试题,我们发现高考命题在本章呈现以下规律:1.从考查题型看:一般有1个客观题,1个解答题;从考查分值看,在17分左右.基础题主要考查对基础知识和基本方法的掌握,中档题主要考查数据的处理能力和综合应用能力.2.从考查知识点看:主要考查算法框图、简单随机抽样、用样本估计总体、变量间的相关关系与统计案例.突出对数形结合思想、转化与化归思想、分类讨论思想以及探究、创新能力的考查.3.从命题思路上看:(1)求算法框图的执行结果.(2)确定选择结构中的条件与循环结构中的循环变量,完善算法框图.(3)随机抽样中的系统抽样与分层抽样.(4)样本的平均数、频率、中位数、众数、方差;频率分布直方图、茎叶图;变量间的相关关系中的线性回归分析及独立性检验的基本思想及其初步应用.[导学心语]1.深刻理解并掌握以下概念算法中三种结构的功能,抽样方法的操作步骤,数字特征的含义及计算,频率分布直方图和茎叶图的画法,回归分析中线性回归方程的含义及求法和独立性检验的基本思想.2.突出重点、控制难度本章命题背景新颖、重点内容突出:如算法框图的执行结果与条件判断、统计图表与样本数字特征等,但题目难度不超过中等程度,复习时注意新材料、新背景的题目,重基础,控制好难度.3.注重交汇,突出统计思想强化统计思想方法的应用,注重知识的交汇渗透,如算法框图与数列、统计与函数、统计图表与概率.复习时善于把握命题新动向,抓住命题的增长点,强化规范性训练,力争不失分、得满分.第一节算法与算法框图[考纲传真] 1.了解算法的含义,了解算法的思想.2.理解算法框图的三种基本逻辑结构:顺序、条件分支、循环.3.理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义.1.算法的含义算法是解决某类问题的一系列步骤或程序,只要按照这些步骤执行,都能使问题得到解决.2.算法框图在算法设计中,算法框图(也叫程序框图)可以准确、清晰、直观地表达解决问题的思想和步骤,算法框图的三种基本结构:顺序结构、选择结构、循环结构.3.三种基本逻辑结构(1)顺序结构:按照步骤依次执行的一个算法,称为具有“顺序结构”的算法,或者称为算法的顺序结构.其结构形式为图911(2)选择结构:需要进行判断,判断的结果决定后面的步骤,像这样的结构通常称作选择结构.其结构形式为图912(3)循环结构:指从某处开始,按照一定条件反复执行某些步骤的情况.反复执行的处理步骤称为循环体.其基本模式为图9134.基本算法语句任何一种程序设计语言中都包含五种基本的算法语句,它们分别是:输入语句、输出语句、赋值语句、条件语句和循环语句.5.赋值语句(1)一般形式:变量=表达式.(2)作用:将表达式所代表的值赋给变量.6.条件语句(1)If—Then—Else语句的一般格式为:(2)If—Then语句的一般格式是:7.循环语句(1)For语句的一般格式:(2)Do Loop语句的一般格式:1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)算法框图中的图形符号可以由个人来确定.()(2)一个算法框图一定包含顺序结构,但不一定包含选择结构和循环结构.()(3)选择结构的出口有两个,但在执行时,只有一个出口是有效的.()(4)在算法语句中,X=X+1是错误的.()[答案](1)×(2)√(3)√(4)×2.(教材改编)根据给出的算法框图,计算f(-1)+f(2)=()图914A.0B.1 C.2 D.4A[f(-1)=4×(-1)=-4,f(2)=22=4,∴f(-1)+f(2)=-4+4=0.]3.(·贵阳调研)执行如图915所示的算法框图,输出S的值为()图915A.-32B.32C.-12D.12D[按照算法框图依次循环运算,当k=5时,停止循环,当k=5时,S=sin 5π6=12.]4.(·全国卷Ⅱ)中国古代有计算多项式值的秦九韶算法,如图916是实现该算法的算法框图.执行该算法框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=()图916A.7B.12C.17D.34C[输入x=2,n=2.第一次,a=2,s=2,k=1,不满足k>n;第二次,a=2,s=2×2+2=6,k=2,不满足k>n;第三次,a=5,s=6×2+5=17,k=3,满足k>n,输出s=17.]5.执行算法框图917,若输入的x的值为1,则输出的y的值是________.【导学号:57962430】图91713[当x=1时,1<2,则x=1+1=2,当x=2时,不满足x<2,则y=3×22+1=13.]算法框图的基本结构若输入x 的值为1,则输出y 的值为( )图918A .2B .7C .8D .128(2)(·北京高考)执行如图919所示的算法框图,若输入的a 值为1,则输出的k 值为( )图919A .1B .2C .3D .4(1)C (2)B [(1)由算法框图知,y =⎩⎨⎧2x ,x ≥2,9-x ,x <2.∵输入x 的值为1,比2小,∴执行的程序要实现的功能为9-1=8,故输出y 的值为8.(2)初始值k=0,a=1,b=1.第一次循环a=-12,k=1;第二次循环,a=-2,k=2;第三次循环,a=1,此时a=b=1,输出k=2.][规律方法] 1.(1)利用选择结构解决算法问题时,要根据题目的要求引入一个或多个判断框.(2)判断框内的条件不同,对应的下一图框中的内容和操作要相应地进行变化,故要逐个分析判断框内的条件.2.解决循环结构问题时,要弄清程序中的循环变量,并弄清循环变量和终止条件之间的对应关系,避免出现循环次数与条件不对应的错误.[变式训练1](1)根据如图9110所示算法框图,当输入x为6时,输出的y=()图9110A.1B.2C.5D.10(2)我国古代数学典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”现用算法框图描述,如图9111所示,则输出结果n=()【导学号:57962431】图9111A.4B.5C.2D.3(1)D(2)A[(1)当x=6时,x=6-3=3,此时x=3≥0;当x=3时,x=3-3=0,此时x=0≥0;当x=0时,x=0-3=-3,此时x=-3<0,则y=(-3)2+1=10.(2)该算法框图运行4次,第1次循环,a=1,A=1,S=2,n=1;第2次循环,a=12,A=2,S=92,n=2;第3次循环,a=14,A=4,S=354,n=3;第4次循环,a=18,A=8,S=1358,n=4,此时循环结束,则输出的n=4,故选A.]算法框图的识别与完善(·全国卷Ⅰ)执行下面的算法框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()图9112 A.y=2x B.y=3xC.y=4x D.y=5xC[输入x=0,y=1,n=1,运行第一次,x=0,y=1,不满足x2+y2≥36;运行第二次,x=12,y=2,不满足x2+y2≥36;运行第三次,x=32,y=6,满足x2+y2≥36,输出x=32,y=6.由于点⎝⎛⎭⎪⎫32,6在直线y=4x上,故选C.]☞角度2完善算法框图执行如图9113所示的算法框图,若输出k的值为8,则判断框内可填入的条件是()图9113A.s≤34B.s≤56C.s≤1112D.s≤2524C[执行第1次循环,则k=2,s=12,满足条件.执行第2次循环,则k=4,s=12+14=34,满足条件.执行第3次循环,则k=6,s=34+16=1112,满足条件.执行第4次循环,k=8,s=1112+18=2524,不满足条件,输出k=8,因此条件判断框应填s≤11 12.][规律方法] 1.(1)第1题的关键在于理解算法框图的功能;(2)第2题要明确何时进入或退出循环体,以及累加变量的变化.2.解答此类题目:(1)要明确算法框图的顺序结构、选择结构和循环结构;(2)理解算法框图的功能;(3)要按框图中的条件运行程序,按照题目的要求完成解答. 基本算法语句A .25B .30C .31D .61C [由题知,算法语句是一个分段函数y =f (x )=⎩⎨⎧0.5x ,x ≤50,25+0.6(x -50),x >50,∴y =f (60)=25+0.6×(60-50)=31.][规律方法] 1.本题主要考查条件语句,输入、输出语句与赋值语句,要注意赋值语句一般格式中的“=”不同于等式中的“=”,其实质是计算“=”右边表达式的值,并将该值赋给“=”左边的变量.2.解决此类问题关键要理解各语句的含义,以及基本算法语句与算法结构的对应关系.[变式训练2] 按照如下程序运行,则输出k 的值是________.3 [第一次循环,x =7,k =1;第二次循环,x =15,k =2;第三次循环,x =31,k =3.终止循环,输出k 的值是3.][思想与方法]1.每个算法结构都含有顺序结构,循环结构中必定包含一个选择结构,用于确定何时终止循环体,循环结构和选择结构都含有顺序结构.2.在画算法框图时首先要进行结构的选择.若所要解决的问题不需要分情况讨论,只用顺序结构就能解决;若所要解决的问题要分若干种情况讨论时,就必须引入选择结构;若所要解决的问题要进行许多重复的步骤,且这些步骤之间又有相同的规律时,就必须应用循环结构.[易错与防范]1.赋值号左边只能是变量(不是表达式),在一个赋值语句中只能给一个变量赋值.2.注意选择结构与循环结构的联系:循环结构有重复性,选择结构具有选择性没有重复性,并且循环结构中必定包含一个选择结构,用于确定何时终止循环体.。
高中数学《抽样方法》教案北师大版必修

高中数学《抽样方法》教案北师大版必修一、教学目标:1. 让学生理解掌握简单随机抽样、分层抽样和系统抽样的基本方法。
2. 培养学生运用抽样方法解决实际问题的能力。
3. 让学生体会数学与现实生活的联系,培养学生的数学应用意识。
二、教学重点与难点:1. 教学重点:简单随机抽样、分层抽样和系统抽样的方法及其应用。
2. 教学难点:分层抽样和系统抽样的原理及其操作。
三、教学过程:1. 导入:通过现实生活中的实例,引发学生对抽样方法的思考,激发学生的学习兴趣。
2. 自主学习:学生通过阅读教材,理解简单随机抽样、分层抽样和系统抽样的基本方法。
3. 课堂讲解:讲解简单随机抽样、分层抽样和系统抽样的原理,并通过例题演示其操作过程。
4. 动手实践:学生分组进行抽样实践,运用所学方法解决实际问题。
5. 归纳总结:教师引导学生总结抽样方法的应用及注意事项。
四、课后作业:1. 完成教材课后练习题。
五、教学评价:1. 课堂讲解评价:评价学生对抽样方法的理解掌握程度。
2. 课后作业评价:评价学生运用抽样方法解决实际问题的能力。
3. 实践操作评价:评价学生在动手实践中的操作技能及团队协作能力。
六、教学内容与目标:章节名称:简单随机抽样教学内容:1. 理解简单随机抽样的概念。
2. 学会使用抽签法和随机数法进行简单随机抽样。
3. 理解简单随机抽样的特点及其在实际应用中的重要性。
教学目标:1. 学生能正确理解简单随机抽样的定义和原理。
2. 学生能够运用抽签法和随机数法进行简单的随机抽样。
3. 学生能够分析简单随机抽样在实际研究中的作用和意义。
七、教学内容与目标:章节名称:分层抽样教学内容:1. 理解分层抽样的概念。
2. 学会根据不同层次进行抽样的方法。
3. 掌握分层抽样的比例分配原则。
教学目标:1. 学生能正确理解分层抽样的概念和原理。
2. 学生能够根据不同层次的特点选择合适的抽样方法。
3. 学生能够运用比例分配原则进行分层抽样,并解释其合理性。
高中数学《抽样方法》教案北师大版必修

高中数学《抽样方法》教案北师大版必修一、教学目标1. 理解简单随机抽样的概念和方法,掌握抽样调查的基本原理。
2. 学会使用列举法、系统法、随机法等方法进行简单随机抽样,并能应用于实际问题。
3. 了解样本容量、总体、个体等基本概念,理解样本估计总体的思想。
4. 培养学生的调查能力、数据分析能力和解决问题的能力。
二、教学重点与难点1. 教学重点:(1)简单随机抽样的概念和方法。
(2)抽样调查的基本原理。
(3)样本容量、总体、个体等基本概念。
2. 教学难点:(1)简单随机抽样的实际应用。
(2)样本估计总体的思想。
三、教学过程1. 导入:通过生活中的实例,如摸彩票、选举等,引出抽样调查的概念,激发学生的兴趣。
2. 知识讲解:(1)介绍总体、个体、样本等基本概念。
(2)讲解简单随机抽样的概念和方法,如列举法、系统法、随机法等。
(3)讲解抽样调查的基本原理。
3. 例题解析:分析实际问题,运用简单随机抽样方法进行解决,解释样本估计总体的思想。
4. 练习与讨论:让学生分组进行练习,讨论如何运用简单随机抽样方法解决实际问题。
四、课后作业2. 完成课后练习题,巩固所学知识。
3. 思考题:选取一个实际问题,尝试运用简单随机抽样方法进行解决。
五、教学反思1. 反思教学效果:了解学生对简单随机抽样概念和方法的掌握程度,对样本估计总体的理解情况。
2. 调整教学方法:针对学生的实际情况,改进教学方法,提高教学效果。
3. 关注学生反馈:听取学生的意见和建议,不断优化教学内容和方法。
六、教学内容与目标1. 学习不同类型的抽样方法:分层抽样、系统抽样、整群抽样和多元抽样。
2. 能够根据研究问题的特点选择合适的抽样方法。
3. 理解抽样调查中可能出现的偏差和误差,并学会如何减小。
七、教学重点与难点1. 教学重点:各种抽样方法的原理和操作步骤。
抽样调查中的误差和偏差的概念。
2. 教学难点:不同抽样方法的适用场景和操作细节。
如何在实际调查中有效减小误差和偏差。
北师大版版高考数学一轮复习算法初步统计与统计案例统计图表用样本估计总体教学案理解析版
[考纲传真] 1.了解分布的意义与作用,能根据频率分布表画频率分布直方图、频率折线图、茎叶图,体会它们各自的特点.2.理解样本数据标准差的意义和作用,会计算数据标准差.3.能从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释.4.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征.理解用样本估计总体的思想,会用样本估计总体的思想解决一些简单的实际问题.1.常用统计图表(1)频率分布表的画法:第一步:求极差,决定组数和组距,组距=错误!;第二步:分组,通常对组内数值所在区间取左闭右开区间,最后一组取闭区间;第三步:登记频数,计算频率,列出频率分布表.(2)频率分布直方图:反映样本频率分布的直方图.横轴表示样本数据,纵轴表示错误!,每个小矩形的面积表示样本落在该组内的频率.(3)频率分布折线图和总体密度曲线1频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.2总体密度曲线:随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.(4)茎叶图的画法:第一步:将每个数据分为茎(高位)和叶(低位)两部分;第二步:将各个数据的茎按大小次序排成一列;第三步:将各个数据的叶依次写在其茎的右(左)侧.2.样本的数字特征(1)众数:一组数据中出现次数最多的那个数据,叫做这组数据的众数.(2)中位数:把n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.(3)平均数:把错误!=错误!称为x1,x2,…,x n这n个数的平均数.(4)标准差与方差:设一组数据x1,x2,x3,…,x n的平均数为错误!,则这组数据的标准差和方差分别是s=错误!;s2=错误![(x1—错误!)2+(x2—错误!)2+…+(x n—错误!)2].错误!1.频率分布直方图中各小矩形的面积之和为1.2.频率分布直方图与众数、中位数与平均数的关系(1)最高的小长方形底边中点的横坐标即是众数.(2)中位数左边和右边的小长方形的面积和是相等的.(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.3.若数据x1,x2,…,x n的平均数为错误!,方差为s2,则数据mx1+a,mx2+a,mx3+a,…,mx n+a的平均数是m错误!+a,方差为m2s2.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势.(2)一组数据的方差越大,说明这组数据越集中. ()(3)频率分布直方图中,小矩形的面积越大,表示样本数据落在该区间的频率越高.(4)茎叶图一般左侧的叶按从大到小的顺序写,右侧的叶按从小到大的顺序写,相同的数据可以只记一次.()[答案] (1)√(2)×(3)√(4)×2.为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数B[标准差反映样本数据的离散波动大小,故选B.]3.数据1,3,4,8的平均数与方差分别是()A.2,2.5B.2,10.5C.4,2D.4,6.5D[平均数为错误!=4,方差为错误!=6.5.]4.某学生在一门功课的22次考试中,所得分数茎叶图如图所示,则此学生该门功课考试分数的极差与中位数之和为()A.117 B.118C.118.5D.119.5B[22次考试中,所得分数最高的为98,最低的为56,所以极差为98—56=42,将分数从小到大排列,中间两数为76,76,所以中位数为76,所以此学生该门功课考试分数的极差与中位数之和为42+76=118.]5.(教材改编)某校为了了解教科研工作开展状况与教师年龄之间的关系,将该校不小于35岁的80名教师按年龄分组,分组区间为[35,40),[40,45),[45,50),[50,55),[55,60],由此得到频率分布直方图如图,则这80名教师中年龄小于45岁的有________人.48 [由频率分布直方图可知45岁以下的教师的频率为5×(0.040+0.080)=0.6,所以共有80×0.6=48(人). ]样本的数字特征的计算与应用1.在某次测量中,得到的A样本数据为81,82,82,84,84,85,86,86,86,若B样本数据恰好是A样本数据分别加2后所得的数据,则A,B两个样本的下列数字特征对应相同的是()A.众数B.平均数C.标准差D.中位数C[由题意可得A,B两组数据的众数分别是86和88,排除A;B组数据的平均数比A组数据的平均数大2,排除B;B组数据的中位数比A组数据的中位数大2,排除D;A,B两组数据的标准差相同,C正确,故选C.]2.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则()甲乙A.甲的成绩的平均数小于乙的成绩的平均数B.甲的成绩的中位数等于乙的成绩的中位数C.甲的成绩的方差小于乙的成绩的方差D.甲的成绩的极差小于乙的成绩的极差C[根据条形统计图可知甲的中靶情况为4环、5环、6环、7环、8环;乙的中靶情况为5环、5环、5环、6环、9环.错误!甲=错误!(4+5+6+7+8)=6,错误!乙=错误!(5×3+6+9)=6,甲的成绩的方差为错误!=2,乙的成绩的方差为错误!=2.4;甲的成绩的极差为4环,乙的成绩的极差为4环;甲的成绩的中位数为6环,乙的成绩的中位数为5环,综上可知C正确,故选C.]3.某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x—y|的值为()A.1B.2C.3D.4D[由题意可知错误!∴错误!∴(x+y)2=x2+y2+2xy,即208+2xy=400,∴xy=96.∴(x—y)2=x2+y2—2xy=16,∴|x—y|=4,故选D.][规律方法] 众数、中位数、平均数、方差的意义及常用结论(1)平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述波动大小.(2)方差的简化计算公式:s2=错误![(x错误!+x错误!+…+x错误!)—n错误!2],或写成s2=错误!(x错误!+x错误!+…+x错误!)—错误!2,即方差等于原数据平方的平均数减去平均数的平方.【例1】某良种培育基地正在培育一小麦新品种A,将其与原有的一个优良品种B进行对照试验,两种小麦各种植了25亩,所得亩产量的数据(单位:千克)如下:品种A:357,359,367,368,375,388,392,399,400,405,412,414,415,421,423,423,427,430,430,434,443,445,445,451,454.品种B:363,371,374,383,385,386,391,392,394,394,395,397,397,400,401,401,403,406,407,410,412,415,416,422,430(1)作出品种A与B亩产量数据的茎叶图;(2)用茎叶图处理现有的数据,有什么优点?(3)通过观察茎叶图,对品种A与B的亩产量及其稳定性进行比较,写出统计结论.[解] (1)画出茎叶图如图所示.(2)由于每个品种的数据都只有25个,样本容量不大,画茎叶图很方便;此时茎叶图不仅清晰明了地展示了数据的分布情况,便于比较,没有任何信息损失,而且可以随时记录新的数据.(3)通过观察茎叶图可以看出:1品种A的亩产量的平均数(或均值)比品种B高;2品种A的亩产量的标准差(或方差)比品种B大,故品种A的亩产量的稳定性较差.[规律方法] 茎叶图中的两个关注点(1)重复出现的数据要重复记录,不能遗漏.(2)给定两组数据的茎叶图,估计数字特征,茎上的数字由小到大排列,一般“重心”下移者平均数较大,数据集中者方差较小.易错警示:茎叶图中数字大小排列不一定从小到大排列,一定要看清楚.气质量状况的指数,空气质量按照AQI大小分为六级,0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;大于300为严重污染.从某地一环保人士某年的AQI记录数据中,随机抽取10个,用茎叶图记录如图.根据该统计数据,估计此地该年AQI大于100的天数约为________.(该年为365天)(2)如图所示的茎叶图是甲、乙两位选手在某次比赛中的比赛得分,则下列说法正确的是()A.甲的平均数大于乙的平均数B.甲的中位数大于乙的中位数C.甲的方差大于乙的方差D.甲的平均数等于乙的中位数(1)146 (2)C[(1)该样本中AQI大于100的频数是4,频率为错误!,由此估计该地全年AQI大于100的频率为错误!,估计此地该年AQI大于100的天数约为365×错误!=146.(2)由茎叶图可知,错误!甲=错误!×(59+45+32+38+24+26+11+12+14)=29,错误!乙=错误!×(51+43+30+34+20+25+27+28+12)=30,s错误!=错误!×(302+162+32+92+52+32+182+172+152)≈235.3,s错误!=错误!×(212+132+02+42+102+52+32+22+182)≈120.9,甲的中位数为26,乙的中位数为28.所以甲的方差大于乙的方差.故选C.]频率分布直方图【例2】某城市100户居民的月平均用电量(单位:千瓦时),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x的值.(2)求月平均用电量的众数和中位数.(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240]的用户中应抽取多少户?[解] (1)(0.002+0.009 5+0.011+0.0125+x+0.005+0.0025)×20=1,解得x=0.007 5.即直方图中x的值为0.007 5.(2)月平均用电量的众数是错误!=230.∵(0.002+0.009 5+0.011)×20=0.45<0.5,(0.002+0.009 5+0.011+0.0125)×20=0.7>0.5,∴月平均用电量的中位数在[220,240)内.设中位数为a,则0.45+0.0125×(a—220)=0.5,解得a=224,即中位数为224.(3)月平均用电量在[220,240]的用户有0.0125×20×100=25(户).同理可得月平均用电量在[240,260)的用户有15户,月平均用电量在[260,280)的用户有10户,月平均用电量在[280,300]的用户有5户,故抽取比例为错误!=错误!.∴月平均用电量在[220,240)的用户中应抽取25×错误!=5(户).[规律方法] 频率、频数、样本容量的计算方法(1)错误!×组距=频率.(2)错误!=频率,错误!=样本容量,样本容量×频率=频数.从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125]频数62638228(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?[解] (1)如图所示:(2)质量指标值的样本平均数为错误!=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.质量指标值的样本方差为s2=(—20)2×0.06+(—10)2×0.26+0×0.38+102×0.22+202×0.08=104.所以这种产品质量指标值的平均数的估计值为100,方差的估计值为104.(3)质量指标值不低于95的产品所占比例的估计值为0.38+0.22+0.08=0.68.由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定.1.(2017·全国卷Ⅲ)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了1月至12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳A[对于选项A,由图易知月接待游客量每年7,8月份明显高于12月份,故A错;对于选项B,观察折线图的变化趋势可知年接待游客量逐年增加,故B正确;对于选项C,D,由图可知显然正确.故选A.2.(2018·全国卷Ⅰ)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半A[设新农村建设前经济收入的总量为x,则新农村建设后经济收入的总量为2x.建设前种植收入为0.6x,建设后种植收入为0.74x,故A不正确;建设前其他收入为0.04x,建设后其他收入为0.1x,故B正确;建设前养殖收入为0.3x,建设后养殖收入为0.6x,故C正确;建设后养殖收入与第三产业收入的总和占建设后经济收入总量的58%,故D正确.]。
全国版2017版高考数学一轮复习第九章算法初步统计统计案例9.2随机抽样课件理
由差异明显的几部分组成
【特别提醒】 1.随机数法编号要求:应保证各号数的位数相同,而抽
签法则无限制.
2.不论哪种抽样方法,总体中的每一个个体入样的概率 是相同的.
3.系统抽样是等距抽样,入样个体的编号相差 N 的整 n 数倍.
4.分层抽样是按比例抽样,每一层入样的个体数为该层
的个体数乘以抽样比.
10 D. 27
【解析】选C.根据题意,
9 1 解得n=28.故每个 , n 1 3
个体被抽到的概率为
10 5 . 28 14
【加固训练】
1.下面的抽样方法是简单随机抽样的是(
)
A.在某年明信片销售活动中,规定每100万张为一个开
奖组,通过随机抽取的方式确定号码的后四位为2709的
【解析】选D.总体是指这箱1000袋方便面的质量;个体 是一袋方便面的质量;样本为20袋方便面的质量;样本
容量为20.
2.(必修3P100A组T2(2)改编)某工厂生产A,B,C三种不 同型号的产品,产品的数量之比依次为3∶4∶7,现在用
分层抽样的方法抽出容量为n的样本,样本中A型号产品
有15件,那么样本容量n为 A.50 B.60 ( ) D.80
【规律方法】
1.简单随机抽样的特点
(1)抽取的个体数较少.(2)是逐个抽取.(3)是不放回抽
取.(4)是等可能抽取.只有四个特点都满足的抽样才是
简单随机抽样.
2.抽签法与随机数法的适用情况
(1)抽签法适用于总体中个体数较少的情况,随机数法
适用于总体中个体数较多的情况.
(2)一个抽样试验能否用抽签法,关键看两点:
一是抽签是否方便;二是号签是否易搅匀.一般地,当总 体容量和样本容量都较小时可用抽签法.
高中数学课本目录(北师大版)
必修1第一章集合集合的含义与表示集合的基本关系集合的基本运算第二章函数生活中的变量关系对函数的进一步认识函数的单调性二次函数性质的研究简单的幂函数第三章指数函数和对数函数正整数指数函数指数概念的扩充指数函数对数对数函数指数增长,幂增长,对数增长的比较第四章函数应用函数与方程实际问题的函数建模必修2第一章立体几何初步简单几何体直观图三视图空间图形的基本关系与公理平行关系垂直关系简单几何体的面积和体积第二章解析几何初步直线与直线的方程圆与圆的方程空间直角坐标系必修3第一章统计从普查到抽样抽样方法统计图表数据的数字特征用样本估计总体统计活动:结婚年龄的变化相关性最小二乘估计第二章算法初步算法的基本思想算法框图的基本结构与设计几种基本语句第三章概率随机时间的概率古典概型模拟方法---概率的应用必修4第一章三角函数周期现象角的概念的推广弧度制正弦函数和余弦函数的定义与诱导公式正弦函数的性质与图像与弦函数的性质与图像正切函数函数()ϕω+=xAy sin的图像三角函数的简单应用第二章平面向量从位移、速度、力到向量从位移的合成到向量的加法从速度的倍数到数乘向量平面向量的坐标从力做的功到平面向量的数量积平面向量数量积的坐标表示向量应用举例第三章三角函数恒等变换两角和与差的三角函数二倍角的三角函数三角函数的简单应用必修5第一章数列数列等差数列等比数列数列在日常经济生活中的应用第二章解三角形正弦定理与余弦定理三角形中的几何计算解三角形的实际应用举例第三章不等式不等关系一元二次不等式基本不等式简单线性规划选修I系列(文史)1—1第一章常用逻辑用语(命题充分条件与必要条件全称量词与存在量词逻辑连接词“或”“且”“非”)第二章圆锥曲线与方程(椭圆抛物线双曲线)第三章变化率与导数(变化的快慢与变化率导数的概念及其几何意义计算倒数导数的四则运算法则)第三章导数的应用(函数的单调性与极值导数在实际问题中的应用)1—2 第一章统计案例(回归分析独立性检验)第二章框图(流程图结构图)第三章推理与证明(归纳与类比数学证明综合法与分析法反证法)第四章数系的扩充与复数的引入(数系的扩充与复数的引入复数的四则运算)选修II系列(理工)2—1第一章常用逻辑用语(命题充分条件与必要条件全称量词与存在量词逻辑连接词“或”“且”“非”)第二章空间向量与立体几何(从平面向量到空间向量空间向量的运算向量的坐标表示和空间向量基本定理用向量讨论垂直于平行夹角的计算距离的计算)第三章圆锥曲线与方程(椭圆抛物线双曲线曲线与方程)2—2第一章推理与证明(归纳于类比综合法与分析法反证法数学归纳法)第二章变化率与导数(变化的快慢与变化率导数的概念及其几何意义计算导数导数的四则运算法则简单复合函数的求导法则)第三章导数的应用(函数的单调性与极值导数在实际问题中的应用)第四章定积分(定积分的概念微积分基本定理定积分的简单应用)第五章复数(数系的扩充与复数的引入复数的四则运算)2—3第一章计数原理(分类加法计数原理和分步乘法计数原理排列组合简单计数问题二项式定理)第二章概率(离散型随机变量及其分布列超几何分布条件概率与独立事件二项分布离散型随机变量的均值与方差正态分布)第三章统计案例(回归分析独立性检验)选修III系列(不做高考内容)文化类:选修3-1 数学史选讲代数类:选修3-6 三等分角与数域扩充选修3-4 对称与群几何类:选修3-3 球面几何选修3-5 欧拉公式与闭曲面分类应用类:选修3-2 信息安全与密码选修IV系列(有高考内容)代数类:选修4-4 坐标系与参数方程选修4-5 不等式选讲选修4-6 初等数论初步几何类:选修4-1 几何证明选讲选修4-2 矩阵与变换分析类: 选修4-3 数列与差分应用类: 选修4-7 优选法与试验设计初步选修4-8 统筹法与图论初步选修4-9 风险与决策选修4-10开关电路与布尔代数*代表模块, 代表专题,其中2个专题组成1个模块.选修3-6 选修3-5选修3-4 选修3-3 选修3-2 选修3-1 选修4-10选修4-4选修4-3选修4-2选修4-1……(注:可编辑下载,若有不当之处,请指正,谢谢!)。
2020版高考数学第9章算法初步、统计与统计案例第2节随机抽样教学案理新人教版
第二节 随机抽样[考纲传真] 1.理解随机抽样的必要性和重要性.2.会用简单随机抽样方法从总体中抽取样本.3.了解分层抽样和系统抽样方法.4.会用随机抽样的基本方法解决一些简单的实际问题.1.简单随机抽样(1)定义:设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N ),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.(2)最常用的简单随机抽样的方法:抽签法和随机数法.2.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本.(1)先将总体的N 个个体编号.(2)确定分段间隔k ,对编号进行分段,当N n 是整数时,取k =N n ,当N n 不是整数时,随机从总体中剔除余数,再取k =N ′n(N ′为从总体中剔除余数后的总数). (3)在第1段用简单随机抽样确定第一个个体编号l (l ≤k ).(4)按照一定的规则抽取样本,通常是将l 加上间隔k 得到第2个个体编号(l +k ),再加k 得到第3个个体编号(l +2k ),依次进行下去,直到获取整个样本.3.分层抽样(1)定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法叫做分层抽样.(2)分层抽样的应用范围 当总体由差异明显的几个部分组成时,往往选用分层抽样.[常用结论]1.不论哪种抽样方法,总体中的每一个个体入样的概率都是相同的.2.系统抽样一般也称为等距抽样,入样个体的编号相差分段间隔k 的整数倍.3.分层抽样是按比例抽样,每一层入样的个体数为该层的个体数乘抽样比.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)简单随机抽样中每个个体被抽到的机会不一样,与先后有关.( )(2)系统抽样在起始部分抽样时采用简单随机抽样.( )(3)要从1 002个学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平.( )(4)分层抽样中,每个个体被抽到的可能性与层数及分层有关.( )[答案] (1)× (2)√ (3)× (4)×2.从50份高三学生期中考试试卷中随机抽出15份进行教研分析,则下列说法正确的是( )A .15名学生是样本B .50名学生是总体C .样本容量是15D .样本容量是50C [本题考查简单随机抽样的概念.样本容量是15.故选C.]3.某学校为了了解高中一年级、二年级、三年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( )A .抽签法B .系统抽样法C .分层抽样法D .随机数法C [总体由差异明显的几部分组成,故最合理的抽样方法是分层抽样法.故选C.]4.(教材改编)某班共有52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号,29号,42号学生在样本中,那么样本中还有一个学生的学号是( )A .10B .11C .12D .16D [由题意可知,分段间隔k =524=13, ∴样本中还有一个学生的学号为3+13=16,故选D.]5.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件.18 [∵样本容量总体个数=60200+400+300+100=350, ∴应从丙种型号的产品中抽取350×300=18(件).]简单随机抽样1.下列抽取样本的方式属于简单随机抽样的个数为( )①从无限多个个体中抽取100个个体作为样本;②盒子里共有80个零件,从中选出5个零件进行质量检验.在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里;③从20件玩具中一次性抽取3件进行质量检验;④某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛.A .0B .1C .2D .3A [①不是简单随机抽样,因为被抽取样本的总体的个数是无限的,而不是有限的;②不是简单随机抽样.因为它是有放回抽样;③不是简单随机抽样.因为这是“一次性”抽取,而不是“逐个”抽取;④不是简单随机抽样.因为不是等可能抽样.故选A.]2.总体由编号为01,02,03,…,49,50的50个个体组成,利用随机数表(以下选取了随机数表中的第1行和第2行)选取5个个体,选取方法是从随机数表第1行的第9列和第10列数字开始由左向右读取,则选出来的第4个个体的编号为( )66 67 40 67 14 64 05 71 95 86 11 05 65 09 68 76 83 20 37 9057 16 00 11 66 14 90 84 45 11 75 73 88 05 90 52 83 20 37 90A .05B .09C .11D .20B [从随机数表第1行的第9列和第10列数字开始由左向右读取,符合条件的数有14,05,11,05,09因为05出现了两次,所以选出来的第4个个体的编号为09.故选B.]3.利用简单随机抽样,从n 个个体中抽取一个容量为10的样本.若第二次抽取时,余下的每个个体被抽到的概率为13,则在整个抽样过程中,每个个体被抽到的概率为( ) A.14B.13C.514D.1027 C [根据题意得,9n -1=13,解得n =28.故每个个体被抽到的概率为1028=514.] 抽签法适用于总体中个体数较少的情况,随机数法适用于总体中个体数较多的情况一个抽样试验能否用抽签法,关键看两点:一是制签是否方便;二是号签是否易搅匀法.【例1】 采用系统抽样方法从1 000人中抽取50人做问卷调查,将他们随机编号1,2,…,1 000.适当分组后在第一组采用简单随机抽样的方法抽到的号码为8.若抽到的50人中,编号落入区间[1,400]的人做问卷A ,编号落入区间[401,750]的人做问卷B ,其余的人做问卷C ,则抽到的人中,做问卷C 的人数为( )A .12B .13C .14D .15A [根据系统抽样的特点可知,所有做问卷调查的人的编号构成首项为8,公差d =1 00050=20的等差数列{a n },∴通项公式a n =8+20(n -1)=20n -12,令751≤20n -12≤1 000,得76320≤n ≤2535,又∵n ∈N *,∴39≤n ≤50,∴做问卷C 的共有12人,故选A.](1)视力检查.现将800名学生从1到800进行编号.已知从33~48这16个数中抽到的数是39,则在第1小组1~16中随机抽取的数是( )A .5B .7C .11D .13 (2)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示:⎪⎪⎪1314150 0 3 4 5 6 6 8 8 8 91 1 12 2 23 34 45 5 56 67 80 1 2 2 3 3 3若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是________.(1)B (2)4 [(1)把800名学生分成50组,每组16人,各小组抽到的数构成一个公差为16的等差数列,39在第3组.所以第1组抽到的数为39-32=7.(2)依题意,可将编号为1~35号的35个数据分成7组,每组有5个数据,从每组中抽取一人.成绩在区间[139,151]上共有20个数据,分在4个小组内,每组抽取1人,共抽取4人.] 分层抽样【例2】 (1)某单位有老年人27人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为42的样本,则分别应抽取老年人、中年人、青年人的人数是( )A .7,11,18B .6,12,18C .6,13,17D .7,14,21(2)一支田径队有男运动员56人,女运动员m 人,用分层抽样抽出一个容量为n 的样本,在这个样本中随机取一个当队长的概率为128,且样本中的男队员比女队员多4人,则m =________.(1)D (2)42 [(1)因为该单位共有27+54+81=162(人),样本容量为42,所以应当按42162=727的比例分别从老年人、中年人、青年人中抽取样本,且分别应抽取的人数是7,14,21.故选D.(2)由题意知n =28,设其中有男队员x 人,女队员有y 人.则⎩⎪⎨⎪⎧ x +y =28,x -y =4,56m =x y .解得x =16,y =12,m =42.] 求某层应抽个体数量:按该层所占总体的比例计算已知某层个体数量,求总体容量或反之:根据分层抽样就是按比例抽样,列比例式进行计算.分样本容量总体容量(1)D 四个单位回收的问卷数依次成等差数列,且共回收1 000份,因报道需要,再从回收的问卷中按单位分层抽取容量为150的样本,若在B 单位抽取30份,则在D 单位抽取的问卷数是( )A .40B .50C .60D .70(2)已知某地区中学生人数和近视情况分别如图1和图2所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为________.图1 图2(1)C (2)200,20 [(1)由题意依次设在A ,B ,C ,D 四个单位回收的问卷数分别为a 1,a 2,a 3,a 4,在D 单位抽取的问卷数为n ,则有30a 2=1501 000,解得a 2=200,又a 1+a 2+a 3+a 4=1 000,即3a 2+a 4=1 000,所以a 4=400,所以n 400=1501 000,解得n =60. (2)样本容量为(3 500+2 000+4 500)×2%=200,抽取的高中生近视人数为2 000×2%×50%=20.]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二节 抽样方法
[考纲传真] 1.理解随机抽样的必要性和重要性.2.会用简单随机抽样方法从总体中抽取样本.3.了解分层抽样和系统抽样的方法.
1.抽样调查
(1)抽样调查
通常情况下,从调查对象中按照一定的方法抽取一部分,进行调查或观测,获取数据,并以此对调查对象的某项指标作出推断,这就是抽样调查.
(2)总体和样本 调查对象的全体称为总体,被抽取的一部分称为样本.
(3)抽样调查与普查相比有很多优点,最突出的有两点: ①迅速、及时;
②节约人力、物力和财力.
2.简单随机抽样
(1)简单随机抽样时,要保证每个个体被抽到的概率相同.
(2)通常采用的简单随机抽样的方法:抽签法和随机数法.
3.分层抽样
(1)定义:将总体按其属性特征分成若干类型(有时称作层),然后在每个类型中按照所占比例随机抽取一定的样本.这种抽样方法通常叫作分层抽样,有时也称为类型抽样.
(2)分层抽样的应用范围:
当总体是由差异明显的几个部分组成时,往往选用分层抽样.
4.系统抽样
(1)定义:系统抽样是将总体中的个体进行编号,等距分组,在第一组中按照简单随机抽样抽取第一个样本,然后按分组的间隔(称为抽样距)抽取其他样本.这种抽样方法有时也叫等距抽样或机械抽样.
(2)系统抽样的步骤
假设要从容量为N 的总体中抽取容量为n 的样本.
(1)先将总体的N 个个体编号;
(2)确定分段间隔k ,对编号进行分段.当N n (n 是样本容量)是整数时,取k =N n ;
(3)在第1段用简单随机抽样确定第一个个体编号l (l ≤k );
(4)按照一定的规则抽取样本.通常是将l 加上间隔k 得到第2个个体编号(l +k ),再加k 得到第3个个体编号(l +2k ),依次进行下去,直到获取整个样本.
[常用结论]
1.三种抽样方法的共性:等概率抽样,不放回抽样,逐个抽取,总体确定.
2.系统抽样是等距抽样,入样个体的编号相差N n
的整数倍.
3.分层抽样是按比例抽样,每一层入样的个体数为该层的个体数乘以抽样比.
[基础自测]
1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)
(1)简单随机抽样中每个个体被抽到的机会不一样,与先后有关.
( ) (2)系统抽样在起始部分抽样时采用简单随机抽样. ( ) (3)要从1 002个学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平.
( ) (4)分层抽样中,每个个体被抽到的可能性与层数及分层有关.
( )
[答案] (1)× (2)√ (3)× (4)×
2.(教材改编)在“世界读书日”前夕,为了了解某地5 000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5 000名居民的阅读时间的全体是( )
A .总体
B .个体
C .样本的容量
D .从总体中抽取的一个样本
A [从5 000名居民某天的阅读时间中抽取200名居民的阅读时间,样本容量是200,抽取的200名居民的阅读时间是一个样本,每名居民的阅读时间就是一个个体,5 000名居民的阅读时间的全体是总体.]
3.(教材改编)老师在班级50名学生中,依次抽取学号为5,10,15,20,25,30,35,40,45,50的学生进行作业检查,这种抽样方法是( )
A .随机抽样
B .分层抽样
C .系统抽样
D .以上都不是 C [因为抽取学号是以5为公差的等差数列,故采用的抽样方法应是系统抽样.]
4.某公司有员工500人,其中不到35岁的有125人,35~49岁的有280人,50岁以上的有95人,为了调查员工的身体健康状况,从中抽取100名员工,则应在这三个年龄段分别抽取人数为( )
A .33,34,33
B .25,56,19
C .20,40,30
D .30,50,20
B [因为125∶280∶95=25∶56∶19,所以抽取人数分别为25,56,19.]
5.利用简单随机抽样从含有8个个体的总体中抽取一个容量为4的样本,则总体中每个个体被抽到的概率是________.
1 2[总体个数为N=8,样本容量为M=4,则每一个个体被抽到的概率为P=
M
N
=
4
8
=
1
2
.]
1.下列抽样试验中,适合用抽签法的是( )
A.从某厂生产的5 000件产品中抽取600件进行质量检验
B.从某厂生产的两箱(每箱18件)产品中抽取6件进行质量检验
C.从甲、乙两厂生产的两箱(每箱18件)产品中抽取6件进行质量检验
D.从某厂生产的5 000件产品中抽取10件进行质量检验
B[因为A,D中总体的个体数较大,不适合用抽签法;C中甲、乙两厂生产的产品质量可能差别较大,因此未达到搅拌均匀的条件,也不适合用抽签法;B中总体容量和样本容量都较小,且同厂生产的产品可视为搅拌均匀了.]
2.总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )
A.
D[从第1行第5列和第6列组成的数65开始由左到右依次选出的数为08,02,14,07,01,所以第5个个体编号为01.]
【例】采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为
001,002,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为009,抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C ,则抽到的人中,做问卷B 的人数为( )
A .7
B .9
C .10
D .15
C [从960人中用系统抽样方法抽取32人,则将整体分成32组,每组30人,因为第一组抽到的号码为009,则第二组抽到的号码为039,第n 组抽到的号码为a n =9+30·(n -1)
=30n -21,由451≤30n -21≤750,得23615≤n ≤25710
,所以n =016,017,…,025,共有25-16+1=10(人).]
[拓展探究] 若本例中条件变为“若第5组抽到的号码为129”,求第1组抽到的号码.
[解] 设第1组抽到的号码为x ,则第5组抽到的号码为x +(5-1)×30,由x +(5-
1)×30=129,解得x =9,因此第1组抽到的号码为009.
(1)人按001,002,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为 ( )
A .11
B .12
C .13
D .14
(2)中央电视台为了解观众对某综艺节目的意见,准备从502名现场观众中抽取10%进行座谈,现用系统抽样的方法完成这一抽样,则在进行分组时,需剔除________个个体,抽样间隔为________.
(1)B (2)2 10 [(1)由系统抽样定义可知,所分组距为84042
=20,每组抽取一人,因为包含整数个组,所以抽取个体在区间[481,720]的数目为720-48020
=12. (2)把502名观众平均分成50组,由于502除以50的商为10,余数是2,所以每组有10名观众,还剩2名观众,采用系统抽样的方法步骤如下:
第一步,先用简单随机抽样的方法从502名观众中抽取2名观众,这2名观众不参加座谈.
第二步,将剩下的500名观众编号为001,002,003,…,500,并均匀分成50段,每段分50050=10(个)个体.]
1.(2019·贵阳月考)某工厂生产甲、乙、丙三种型号的产品,产品数量之比为3∶5∶7,现用分层抽样的方法抽出容量为n 的样本,其中甲种产品有18件,则样本容量n 等于( ) A .54 B .90 C .45 D .126
B [依题意得33+5+7
×n =18,解得n =90,即样本容量为90.] 2.(2017·江苏高考)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件.
18 [∵样本容量总体个数=60200+400+300+100=350
, ∴应从丙种型号的产品中抽取350
×300=18(件).] 3.已知某地区中小学生人数和近视情况分别如图1和图2所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为________.
图1 图2
200,20 [该地区中小学生总人数为3 500+2 000+4 500=10 000,
则样本容量为10 000×2%=200,其中抽取的高中生近视人数为2 000×2%×50%=20.]。