离散数学高等教育出版社习题七重点题型答案

合集下载

离散数学第七章部分答案

离散数学第七章部分答案

列各组数中,那些能构成无向图的度数列?那些能构成无向简单图的度数列?(1)1,1,1,2,3(2)2,2,2,2,2(3)3,3,3,3(4)1,2,3,4,5(5)1,3,3,3解答:(1),(2),(3),(5)能构成无向图的度数列。

(1),(2),(3)能构成五项简单图的度数列。

设有向简单图D 的度数列为2,2,3,3,入度列为0,0,2,3,试求D 的出度列。

解:因为 出度=度数-入度,所以出度列为2,2,1,0。

设D 是4阶有向简单图,度数列为3,3,3,3。

它的入度列(或出度列)能为1,1, 1,1吗?解:由定理可知,有向图的总入度=总出度。

该有向图的总入度=1+1+1+1=4,总出度=2+2+2+2=8,4!=8,所以它的出度列(或入度列)不能为1,1,1,1。

35条边,每个顶点的度数至少为3的图最多有几个顶点?解:根据握手定理,所有顶点的度数之和为70,假设每个顶点的度数都为3,则 n 为小于等于370的最大整数,即:23 ∴ 最多有23个顶点7.7 设n 阶无向简单图G 中,δ(G )=n-1,问△(G )应为多少?解: 假设n 阶简单图图n 阶无向完全图,在K n 共有2)1(-n n 条边,各个顶点度数之和为n (n-1)∴每个顶点的度数为nn n )1(-=n-1 ∴△(G )=δ(G )=n-1一个n (n ≥2)阶无向简单图G中,n 为奇数,有r 个奇度数顶点,问G的补图G 中有几个奇度顶点?解:在K n 图中,每个顶点的度均为(n-1),n 为奇数,在G中度为奇数的顶点在G 中仍然为奇数,∴共有r 个奇度顶点在G 中7.9 设D是n 阶有向简单图,D’是D的子图,已知D’的边数m ’=n (n-1),问D的边数m 为多少?解: 在D’中m ’=n (n-1) 可见D’为有个n 阶有向完全图,则D=D’ 即D’就是D本身,∴m=n (n-1)有向图D 入图所示。

求D 中长度为4 的通路总数,并指出其中有多少条是回路?又有几条是V3到V4的通路?答: D中长度为四的通路总数:15其中有3条是回路2条是V3到V4的通路评语:此题的结果是对的,但是应该写出求解过程,即:先写出邻接矩阵A,然后求A的四次幂,通过矩阵指出通路或回路的条数。

离散数学课后习题及答案

离散数学课后习题及答案

离散数学课后习题及答案离散数学是计算机科学与数学的重要基础课程之一,它涵盖了很多重要的概念和理论。

为了更好地掌握离散数学的知识,课后习题是必不可少的一部分。

本文将介绍一些常见的离散数学课后习题,并提供相应的答案,希望对读者有所帮助。

一、集合论1. 设A={1,2,3},B={2,3,4},求A∪B和A∩B的结果。

答案:A∪B={1,2,3,4},A∩B={2,3}2. 设A={1,2,3},B={2,3,4},C={3,4,5},求(A∪B)∩C的结果。

答案:(A∪B)∩C={3,4}二、逻辑与命题1. 判断下列命题的真假:a) 若2+2=5,则地球是平的。

b) 若今天下雨,则我会带伞。

c) 若x>0,则x^2>0。

答案:a)假,b)真,c)真。

2. 用真值表验证下列命题的等价性:a) p∧(q∨r) ≡ (p∧q)∨(p∧r)b) p→q ≡ ¬p∨q答案:a)等价,b)等价。

三、关系与函数1. 给定关系R={(1,2),(2,3),(3,4)},求R的逆关系R^-1。

答案:R^-1={(2,1),(3,2),(4,3)}2. 设函数f(x)=x^2,g(x)=2x+1,求复合函数f(g(x))的表达式。

答案:f(g(x))=(2x+1)^2=4x^2+4x+1四、图论1. 给定图G,其邻接矩阵为:0 1 11 0 11 1 0求图G的度数序列。

答案:度数序列为(2,2,2)2. 判断下列图是否为连通图:a) G1的邻接矩阵为:0 1 11 0 01 0 0b) G2的邻接矩阵为:0 1 01 0 10 1 0答案:a)不是连通图,b)是连通图。

五、组合数学1. 从10个不同的球中,任选3个,求共有多少种选法。

答案:C(10,3)=120种选法。

2. 求下列排列的循环节:a) (123)(45)(67)b) (12)(34)(56)(78)答案:a)循环节为(123)(45)(67),b)循环节为(12)(34)(56)(78)。

离散数学7习题解答

离散数学7习题解答

第7章习题解答7.1 (1),(2),(3),(5) 都能构成无向图的度数列,其中除⑸ 外又都能构成无向简单图的度数列.n 分析1 °非负整数列d!,d2,…,d n能构成无向图的度数列当且仅当di为i 4偶数,即d!,d2,…,d n中的奇数为偶数个.(1),(2),(3),(5) 中分别有4个,0个,4 个,4个奇数,所以,它们都能构成无向图的度数列,当然,所对应的无向图很可能是非简单图.而⑷中有3个奇数,因而它不能构成无向图度数列.否则就违背了握手定理的推论.2° (5)虽然能构成无向图的度数列,但不能构成无向简单度数列.否则,若存在无向简单图G,以1,3,3,3 为度数列,不妨设G中顶点为v! ,v2, v3,v4,且d(V i) =1,于是d(V2)=d(V3)=d(V4)=3.而V!只能与v?""之一相邻,设w 与v?相邻,这样一来,除V2能达到3度外,V3 ,V4都达不到3度,这是矛盾的.在图7.5所示的4个图中,(1)以1为度数列,(2)以2为度数列,(3)以3为度数列,(4)以4为度数列(非简单图).7.2设有几简单图D以2,2,3,3为度数列,对应的顶点分别为V1,V2, V3,V4 ,由于d(v)二 d (v) d_(v),所示,d (vj - d -(y) = 2 - 0 = 2,d(V2) = d(V2)-d “2)= 2—0 =2,d (vj =d(V s) _d—(V3) =3_2 =1,d (V4) = d(V q) _ d^v。

)= 3 _ 3 = 0由此可知,D 的出度列为2,2,1,0,且满足a dd -(V i ).请读者画出一个有向图•以2,2,3,3为度数列,且以0,0,2,3为入度列,以2,2,1,0为出度列.7.3 D 的入度列不可能为 1,1,1,1.否则,必有出度列为 2,2,2,2(因为 d(v) =d (v) d~(v)),)此时,入度列元素之和为4,不等于出度列元素之和 8,这 违背握手定理.类似地讨论可知,1,1,1,1也不能为D 的出席列.7.4不能.N 阶无向简单图的最大度 厶_ n 一1.而这里的n 个正整数彼此不同 因而这n 个数不能构成无向简单图的度数列,否则所得图的最大度大于n,这与最 大度应该小于等于n-1矛盾.7.5 (1) 16个顶点.图中边数m=16,设图中的顶点数为n.根据握手定理可n知 2m =32 二' d(vj=2 ni 4所以,n =16.(2) 13个顶点.图中边数m =21,设3度顶点个数为x,由握手定理有2m =42 =3 4 3x由此方程解出x =10.于是图中顶点数n =3 10 =13. (3) 由握手定理及各顶点度数均相同,寻找方程2 24 = nk的非负整数解,这里不会出现n,k 均为奇数的情况.其中n 为阶级,即顶点 数,k 为度数共可得到下面10种情况.① 个顶点,度数为48.此图一定是由一个顶点的24个环构成,当然为非简单⑥ 个顶点,每个顶点的度数均为6.所对应的非同构的图中有简单图,也有非 简单图.② 2个顶点,每个顶点的度数均为 非简单图.③ 3个顶点,每个顶点的度数均为 ④ 4个顶点,每个顶点的度数均为⑤ 6个顶点,每个顶点的度数均为 24.这样的图有多种非同构的情况,一定为 16.所地应的图也都是非简单图. 12.所对应的图也都是非简单图.8,所对应的图也都是非简单图.⑦ 12个顶点,每个顶点的度数均为4.所对应的非同构的图中有简单图,也 有非简单图•⑧ 16个顶点,每个顶点的度数均为3,所对应的非同构的图中有简单图,也有 非简单图•⑨ 24个顶点,每个顶点的度数均为2.所对应的非同构的图中有简单图,也有 非简单图•⑩ 48个顶点,每个顶点的度数均为1,所对应的图是唯一的,即由24个K 2构 成的简单图•分析 由于n 阶无向简单图G 中,:(G)< n —1,的以①-⑤所对应的图不可能 有简单图•⑥-⑨既有简单图,也有非简单图,读者可以画出若干个非同构的图,而 ⑩只能为简单图•7.6 设G 为n 阶图,由握手定理可知n70 =2 35 八 d(vj _3n ,i吕所以,这里,乂为不大于x 的最大整数,例如.2」=2,25」=2,空=23..3 一7.7由于:(G) = n-1,说明G 中任何顶点v 的度数d(v)八(G) = n-1,可是由于G 为简单图,因而列G)乞n -1,这又使得d(v)岂n -1,于是d(v)二n-1,也就 是说,G 中每个顶点的度数都是n-1,因而应有"G)乞n-1.于是G 为(n-1)阶正 则图,即G 为n 阶完全图K n .7.8由G 的补图G 的定义可知,G G 为K n ,由于n 为奇数,所以,K n 中各 项顶点的度数n -1为偶数.对于任意的V(G),应有v V(G),且d G (v)_d G (v)二 dg(v)二 n -1其中d G (v)表示v 在G 中的度数,d G(v)表示v 在G 中的度数.由于n_1为偶 数,所|70= 23.以,d G(v)与d G(v)同为奇数或同为偶数,因而若G有r个奇度顶点,则G也有r个奇度顶点.7.9由于D' D,所以,m'空m.而n阶有向简单图中,边数m乞n(n 一1),所以, 应有n(n _1) = m\ m 乞n(n -d)这就导致m = n(n -1),这说明D为n阶完全图,且D' = D .7.10图7.6给出了K4的18个非同构的子图,其中有11个生成子图(8-18), 其中连通的有6个11,12,13,14,16,17). 图7.6中,n,m分别为顶点数和边数.7.11 K4有11个生成子图,在图7.6中,它们分别如图8-18所示.要判断它们之中哪些是自补图,首先要知道同构图的性质,设G1与G2的顶点数和边数.若G1三G?,贝U门丄=门2「且m<i = m?.国(8)的补图为(14) -K4 ,它们的边数不同,所以,不可能同构.因而(8)与(14) 均不是自补图类似地,(9)的补图为(13),它们也非同构,因而它们也都不是自补图.(10)与(12)互为补图,它们非同构,因而它们都不是自补图.(15)与(17)互为补图,它们非同构,所以,它们都不是自补图•类似地,(16)与(18)互为补图且非同构,所以,它们也都不是自补图•而(11)与自己的补图同构,所以,(11)是自补图•7.12 3阶有向完全图共有20个非同构的子图,见图7.7所示,其中⑸-(20)为生成子图,生成子图中(8),(13),(16),(19) 均为自补图.分析在图7.7所示的生成子图中,(5)与(11)互为补图,(6)与(10)互为补图,(7)与(9)互为补图,(12)与(14)互为补图,(15)与(17)互为补图,(18)与(20) 互为补图,以上互为补图的两个图边数均不相同,所以,它们都不是自补图.而(8),(13),(16),(19)4 个图都与自己的补图同构,所以,它们都是自补图.7.13 不能.分析在同构的意义下,G,G2,G3都中K4的子图,而且都是成子图.而K4的两条边的生成子图中,只有两个是非同构的,见图7.6中(10)与(15)所示.由鸽巢原理可知,G,G2,G3中至少有两个是同构的,因而它们不可能彼此都非同构.鸽巢原理m只鸽飞进n个鸽巢,其中m 一n ,则至少存在一巢飞入至少[凹]只n鸽子.这里x表示不小于x的最小整数.例如,|2 = 2, |2.5 =3.7.14 G是唯一的,即使G是简单图也不唯一.分析由握手定理可知2m = 3n,又由给的条件得联立议程组'2m =3 n 、2n —3 = m.解出n = 6,m二9.6个顶点,9条边,每个顶点的度数都是3的图有多种非同构的情况,其中有多个非简单图(带平行边或环),有两个非同构的简单图,在图7.8 中(1),(2)给出了这两个非同构的简单图.满足条件的非同构的简单图只有图7.8中,(1),(2)所示的图,(1)与⑵所示的图,(1) 与(2)是非同构的.注意在⑴中不存在3个彼此相邻的顶点而在⑵ 中存在3个彼此相邻的顶点,因而⑴图与(2)图非同构.下面分析满足条件的简单图只有两个是非同构的.首先注意到(1)中与(2)中图都是K6的生成子图,并且还有这样的事实,设G,G2都是n阶简单图,则G^G2当且仅当G^e G2 ,其中G,G2分别为G与G2的补图.满足要求的简单图都是6阶9条边的3正则图,因而它们的补图都为6阶6条边的2正则图(即每个顶点度数都是2).而K6的所有生成子图中,6条边2正则的非同构的图只有两个,见图7.8中(3),(4)所示的图,其中(3) 为(1)的补图,(4)为(2)的补图,满足要求的非同构的简单图只有两个.但满足要求的非同简单图有多个非同构的,读者可自己画出多个来.7.15将K6的顶点标定顺序,讨论X所关联的边.由鸽巢原理(见7.13题),与V1关联的5条边中至少有3条边颜色相同,不妨设存在3条红色边,见图7.9 中⑴ 所示(用实线表示红色的边)并设它们关联另外3个顶点分别为V2,v4,V6.若V2,V4, V6构成的K g中还有红色边,比如边(V2M)为红色,则Vj^M构成的K g为红色K3,见图7.9中⑵ 所示.若V2,V4,V6构成的K3各边都是蓝色(用虚线表示), 则V2,V4,V6构成的K a为蓝色的.珂7.16在图7.10所示的3个图中,(1)为强连通图,(2)为单向连通图,但不是强连通的,(3)是弱连通的,不是单向连通的,更不是强连通的.图7. 10分析在⑴中任何两个顶点之间都有通路,即任何两个顶点都是相互可达的,因而它是强连能的.(2)中c不可达任何顶点,因而它不是强连通的,但任两个顶点存在一个顶点可达另外一个顶点,所以,它是单向可达的.(3)中a,c互相均不可达,因而它不是单向连通的,更不是强连通的.判断有向图的连通性有下面的两个判别法.1°有向图D是强连通的当且仅当D中存在经过每个顶点至少一次的回路.2°有向图D是单向连通的当且仅当D中存在经过每个顶点至少一次的通路.(1)中abcda为经过每个顶点一次的回路,所以,它是强连能的.(2)中abdc 为经过每个顶点的通路,所以,它是单向连通的,但没有经过每个顶点的回路,所以,它不是强连通的.(3)中无经过每个顶点的回路,也无经过每个顶点的通路,所以,它只能是弱连通的.7.17 G-E'的连通分支一定为2,而G-V'的连通分支数是不确定的.分析设E'为连通图G的边割集,则G - E'的连通分支数p(G - E')二2,不可能大于2.否则,比如p(G -E') =3,则G -E'由3个小图G「G2,G3组成,且E'中边的两个端点分属于两个不同的小图.设E"中的边的两个端点一个在G中,另一个在G 2中,则E " E ',易知p(G 一 E") =2 ,这与E '为边割集矛盾,所以, p(G 一 E") =2.但p(G-V ')不是定数,当然它大于等于2,在图7.11中,V 二{u,v }为⑴的点 割集,p(G-V)=2,其中G 为(1)中图.V ={v }为⑵ 中图的点割集,且v 为割tin i点,p(G -V ) =4,其中G 为⑵中图.屛1;■<]>£ 7.11(2)7.18解此题,只要求出D 的邻接矩阵的前4次幕即可.D 中长度为4的通路数为A 4中元素之和,等于15,其中对角线上元素之和为 3,即D 中长度为3的回路数为3. V 3到V 4的长度为4的通路数等于a 34)= 2.分析 用邻接矩阵的幕求有向图D 中的通路数和回路数应该注意以下几点: 1 °这里所谈通路或回路是定义意义下的,不是同构意义下的.比如,不同始 点(终点)的回路2 ° 这里的通路或回路不但有初级的、简单的,还有复杂的.例 如,V 1,V 2,w,V 2,V 1是一条长为4的复杂回路.3°回路仍然看成是通路的特殊情况.读者可利用A 2, A 3,求D 中长度为2和3的通路和回路数. 7.19 答案A:④.分析G 中有N k 个k 度顶点,有(n — NQ 个(k 1)度顶点,由握手定理可知0 11010 0 0 A = 0 10 1 .0 0 0 0一A 2A 3A 4~1 1 0 11 1 0 0 0 1 0 0 1211n、d(V j) =k N k(k 1)(n - N k) =2mi 4=N k=n (k 1)-2 n.7.20答案A:②;B:③.分析在图7.12中,图(1)与它的补同构,再没有与图(1)非同构的自补图了所以非同构的无向的4阶自补图只有1个.图⑵与它的补同构,图⑶与它的补也同构,而图⑵ 与图⑶ 不同构,再没有与(2),(3)非同构的自补图了,所以,非同械的5阶自补图有2个.<1)(Z) ⑶圉7.127.21答案A:④;B:③;C:④;D:①.分析(1)中存在经过每个顶点的回路,如adcba..(2)中存在经过每个顶点的通路,但无回路.(3)中无经过每个顶点至少一次的通路,其实,b,d两个顶点互不可达.(4)中有经过每个顶点至少一次的通路,但无回路,aedcbd为经过每个顶点的通路.(5)中存在经过每个顶点至少一次的回路,如aedbcdba.(6)中也存在经过每个顶点的回路,如baebdcb.由7.16题可知,(1),(5) ,(6) 是强连通的,(1),(2),(4),(5),(6) 是单向连能的,(2),(4)是非强连通的单向连通图.注意,强连通图必为单向连通图.6个图中,只有(3)既不是强连通的,也不是连通的,它只是弱连通图.在⑶中,从a到b无通路,所以d, ::: a,b「:,而b到a有唯一的通路ba,所以d b, a =1.7.22 答案A: ①;B:⑥㈩C:②;D:④.分析用Dijkstra标号法,将计算机结果列在表7.1中.表中第x列最后标定y/Z表示b到x的最短路径的权为y,且在b到x的最短路径上,Z邻接到x,即x的前驱元为Z.由表7.1可知,a的前驱元为c(即a邻接到c),c的前驱元为b, 所以,b到a的最短路径为bca,其权为4.类似地计论可知,b到c的最短路径为be,其权为1.b到d的最短路径为bcegd ,其权为9.b到e的最短路径为bee,其权为7.7.23 答案A:⑧;B:⑩ C:③;D:③和④.分析按求最早、最晚完成时间的公式,先求各顶点的最早完成时间,再求最晚完成时间,最后求缓冲时间(1)最早完成时间:TE(vJ =0-_(V2)二{vM, TE(v2) =max{0 3} =3-_(V3)二{vz}, TE(v3) =max{0 2,3 C} -3厂(vj 二{WM},TE(vJ =max{0 4,3 2} = 5-(V5)二M M},TE(V5)= max{34,3 4} - 711 /11TL(V 9)=13 -(V 8)二{V 9},TL(v 8) =mi n{13_1} =12; -(V 6) ={V 8},TL(v 6) = mi n{12 -3 = 9; -(V 7)二 g},TL(v 7) =mi n{12 —1} =11; -(V 5) ={V 6,V 9}, TL(v 5) =min{9-0,13 -6} = 7; :(V 4)*7}, TL (V4)= min {11-5=6; -(V 3)二{V 4,V 5,V 6},TL(v 3) =min{6-2.7-4.9-4二 5; (v 2 ) = {v 3, V 5}, TL(v 2) =mi n{3-0.7-4} =3; ;(vj ={V 2,V 3,V 4},TL(vJ = mi n{ 3 —3.3 —2,6 —'4} = 0;(3)缓冲时间: TS(V i )二TS(V 2)=TS(V 3)=TS(V 5)=TS(V 9)=0 TS(V 4)=1,TS (V 6)=2,TS (V 7)=TS (V 8)=1.(4)关键路径有两条: V 1,V 2,V 5,V 9 和 V 1,V 2,V 3,V 5,V 9.-一山)={V 4,V 5},TE(v 7) = max{5 5,10 0} =10 (V 8 ) = { V 6, V 7 }, TE(v 8) = max{7 3,10 1} =11-讥)二{V 5,V 8},TE(v 9) =max{7 6,11 1} =13 -_(V 6)二“他},TE(v 6) =max{3 4,7 0} = 7 (2)最晚完成时间:。

离散数学高等教育出版社版答案(第一部分)

离散数学高等教育出版社版答案(第一部分)

离散数学高等教育出版社版答案(第一部分)习题一1.下列句子中,哪些是命题?在是命题的句子中,哪些是简单命题?哪些是真命题?哪些命题的真值现在还不知道?(1)中国有四大发明.答:此命题是简单命题,其真值为1.(2)是无理数.答:此命题是简单命题,其真值为1.(3)3是素数或4是素数.答:是命题,但不是简单命题,其真值为1.答:不是命题.(4)2x+ <3 5(5)你去图书馆吗?答:不是命题.(6)2与3是偶数.答:是命题,但不是简单命题,其真值为0. (7)刘红与魏新是同学.答:此命题是简单命题,其真值还不知道. (8)这朵玫瑰花多美丽呀!答:不是命题.(9)吸烟请到吸烟室去!答:不是命题.(10)圆的面积等于半径的平方乘以π.答:此命题是简单命题,其真值为1.(11)只有6是偶数,3才能是2的倍数.真值为1.(3)2.5是自然数.答:否定式:2.5不是自然数. p:2.5是自然数.q:2.5不是自然数. 其否定式q 的真值为1.(4)ln1是整数.答:否定式:ln1不是整数. p:ln1是整数. q:ln1不是整数. 其否定式q的真值为1.4.将下列命题符号化,并指出真值.(1)2与5都是素数答:p:2是素数,q:5 是素数,符号化为p q∧ ,其真值为1.(2)不但π是无理数,而且自然对数的底e也是无理数.答:p:π是无理数,q:自然对数的底e是无理数,符号化为p q∧ ,其真值为1.(3)虽然2是最小的素数,但2不是最小的自然数.答:p:2是最小的素数,q:2是最小的自然数,符号化为p q∧¬ ,其真值为1.(4)3是偶素数.答:p:3是素数,q:3是偶数,符号化为p q∧ ,其真值为0.(5)4既不是素数,也不是偶数.答:p:4是素数,q:4是偶数,符号化为¬ ∧¬p q,其真值为0.5.将下列命题符号化,并指出真值.(1)2或3是偶数.(2)2或4是偶数.(3)3或5是偶数.(4)3不是偶数或4不是偶数.(5)3不是素数或4不是偶数.答: p:2是偶数,q:3是偶数,r:3是素数,s:4 是偶数, t:5是偶数(1)符号化: p q∨ ,其真值为1.(2)符号化:p r∨ ,其真值为1.(3)符号化:r t∨ ,其真值为0.(4)符号化:¬ ∨¬q s,其真值为1.(5)符号化:¬ ∨¬r s,其真值为0.6.将下列命题符号化.(1)小丽只能从筐里拿一个苹果或一个梨.答:p:小丽从筐里拿一个苹果,q:小丽从筐里拿一个梨,符号化为: p q∨ .(2)这学期,刘晓月只能选学英语或日语中的一门外语课.答:p:刘晓月选学英语,q:刘晓月选学日语,符号化为:(¬ ∧ ∨ ∧¬p q) (p q) .7.设p:王冬生于1971 年,q:王冬生于1972年,说明命题“王冬生于1971 年或1972年”既可以化答:列出两种符号化的真值表:p q0 0 0 00 1 1 11 0 1 11 1 0 1根据真值表,可以判断出,只有当p与q同时为真时两种符号化的表示才会有不同的真值,但结合命题可以发现,p与q不可能同时为真,故上述命题有两种符号化方式.8.将下列命题符号化,并指出真值.(1)只要;(2)如果;(3)只有;(4)除非;(5)除非;(6).答:设p:.符号化真值 (1) 1 (2) 1 (3) 0 (4) 0 (5)(6)1 9.设p :俄罗斯位于南半球,q :亚洲人口最多,将下面命题用自然语言表述,并指出其真值: (1); (2);; (3); (4); (5); (6); (7).答:根据题意,p 为假命题,q 为真命题. , 则 : ; 设q , 则 :自然语言真值1 (1)只要俄罗斯位于南半球,亚洲人口就最多0 (2)只要亚洲人口最多,俄罗斯就位于南半球1 (3)只要俄罗斯不位于南半球,亚洲人口就最多1 (4)只要俄罗斯位于南半球,亚洲人口就不是最多1 (5)只要亚洲人口不是最多,俄罗斯就位于南半球0 (6)只要俄罗斯不位于南半球,亚洲人口就不是最多1 (7)只要亚洲人口不是最多,俄罗斯就不位于南半球10.设p:9是3的倍数,q:英国与土耳其相邻,将下面命题用自然语言表述,并指出真值:(1);(2);(3);(4).答:根据题意,p 为真命题,q 为假命题.自然语言真值 (1) 9是3的倍数当且仅当英语与土耳其相邻 0 (2) 9是3的倍数当且仅当英语与土耳其不相邻 1 (3) 9不是3的倍数当且仅当英语与土耳其相邻1(4) 9不是3的倍数当且仅当英语与土耳其不相邻0 11.将下列命题符号化,并给出各命题的真值:(1)若2+2=4,则地球是静止不动的; (2)若2+2=4,则地球是运动不止的; (3)若地球上没有树木,则人类不能生存; (4)若地球上没有水,则是无理数.答:命题1命题2 符号化真值 (1) p:2+2=4 q:地球是静止不动的 0 (2) p:2+2=4 q:地球是静止不动的1(3)p:地球上有树木q:人类能生存1(4)p:地球上有树木q:人类能生存1 12.将下列命题符号化,并给出各命题的真值:(1)2+2=4当且仅当3+3=6;(2)2+2=4的充要条件是3+36;(3)2+24与3+3=6互为充要条件;(4)若2+24,则3+3 6,反之亦然.答:设p:2+2=4,q:3+3=6.符号化真值(1) 1(2) 0(3) 0(4) 113.将下列命题符号化,并讨论各命题的真值:(1)若今天是星期一,则明天是星期二;(2)只有今天是星期一,明天才是星期二;(3)今天是星期一当且仅当明天是星期二;(4)若今天是星期一,则明天是星期三.答:设p:今天是星期一,q:明天是星期二,r:明天是星期三.符号化真值讨论(1) 不会出现前句为真,后句为假的情况(2) 不会出现前句为真,后句为假的情况(3) 必然为1(4) 若p为真,则真值为0;若p为假,则真值为114.将下列命题符号化:(1)刘晓月跑得快,跳得高;(2)老王是山东人或者河北人;(3)因为天气冷,所以我穿了羽绒服;(4)王欢与李乐组成一个小组;(5)李欣与李末是兄弟;(6)王强与刘威都学过法语;(7)他一面吃饭,一面听音乐;(8)如果天下大雨,他就乘班车上班;(9)只有天下大雨,他才乘班车上班;(10)除非天下大雨,否则他不乘班车上班;(11)下雪路滑,他迟到了;(12) 2与4都是素数,这是不对的; (13)“2或4是素数,这是不对的”是不对的. 答:命题1 命题2 命题3符号化(1)p:刘晓月跑得快 q:刘晓月跳得高 -(2) p:老王是山东人q:老王是河北人-(3) p:天气冷q:我穿羽绒服 -(4) p:王欢与李乐组成一个小组 --p:王欢与李乐组成一个小组 (5) p:李辛与李末是兄弟 - -p:李辛与李末是兄弟(6)p:王强学过法语q:刘威学过法语-(7) p:他吃饭q:他听音乐 -(8)p:天下大雨 q:他乘车上班 -(9)p:天下大雨 q:他乘车上班 - (10)p:天下大雨 q:他乘车上班 -(11) p:下雪 q:路滑 r:他迟到了(12)p:2是素数q:4是素数- (13)p:2是素数 q:4是素数-15.设p :2+3=5.q :大熊猫产在中国.r:太阳从西方升起. 求下列符合命题的真值: (1)(2) (3)(4)解:p真值为1,q真值为1,r真值为0.(1)0,(2)0,(3)0,(4)116.当p,q的真值为0,r,s的真值为1时,求下列各命题公式的真值:(1)(2)(3)(4)解:(1)0,(2)0,(3)0,(4)117.判断下面一段论述是否为真:“是无理数.并且,如果3是无理数,则也是无理数.另外,只有6能被2整除,6才能被4整除.”是无理数s: 6能被2整除t:6能被4整除符号化为:,该式为重言式,所以论述为真。

离散数学-屈婉玲-耿素云-张立昂-主编-高等教育出版社-课后最全答案

离散数学-屈婉玲-耿素云-张立昂-主编-高等教育出版社-课后最全答案

第一章命题逻辑基本概念课后练习题答案1.将下列命题符号化,并指出真值:(1)p∧q,其中,p:2是素数,q:5是素数,真值为1;(2)p∧q,其中,p:是无理数,q:自然对数的底e是无理数,真值为1;(3)p∧┐q,其中,p:2是最小的素数,q:2是最小的自然数,真值为1;(4)p∧q,其中,p:3是素数,q:3是偶数,真值为0;(5)┐p∧┐q,其中,p:4是素数,q:4是偶数,真值为0.2.将下列命题符号化,并指出真值:(1)p∨q,其中,p:2是偶数,q:3是偶数,真值为1;(2)p∨q,其中,p:2是偶数,q:4是偶数,真值为1;(3)p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;(4)p∨q,其中,p:3是偶数,q:4是偶数,真值为1;(5)┐p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;3.(1)(┐p∧q)∨(p∧┐q),其中,小丽从筐里拿一个苹果,q:小丽从筐里拿一个梨;(2)(p∧┐q)∨(┐p∧q),其中,p:刘晓月选学英语,q:刘晓月选学日语;.4.因为p与q不能同时为真.5.设p:今天是星期一,q:明天是星期二,r:明天是星期三:(1)p→q,真值为1(不会出现前件为真,后件为假的情况);(2)q→p,真值为1(也不会出现前件为真,后件为假的情况);(3)p q,真值为1;(4)p→r,若p为真,则p→r真值为0,否则,p→r真值为1.返回第二章命题逻辑等值演算本章自测答案5.(1):∨∨,成真赋值为00、10、11;(2):0,矛盾式,无成真赋值;(3):∨∨∨∨∨∨∨,重言式,000、001、010、011、100、101、110、111全部为成真赋值;7.(1):∨∨∨∨⇔∧∧;(2):∨∨∨⇔∧∧∧;8.(1):1⇔∨∨∨,重言式;(2):∨⇔∨∨∨∨∨∨;(3):∧∧∧∧∧∧∧⇔0,矛盾式.11.(1):∨∨⇔∧∧∧∧;(2):∨∨∨∨∨∨∨⇔1;(3):0⇔∧∧∧.12.A⇔∧∧∧∧⇔∨∨.第三章命题逻辑的推理理论本章自测答案6.在解本题时,应首先将简单陈述语句符号化,然后写出推理的形式结构*,其次就是判断*是否为重言式,若*是重言式,推理就正确,否则推理就不正确,这里不考虑简单语句之间的内在联系(1)、(3)、(6)推理正确,其余的均不正确,下面以(1)、(2)为例,证明(1)推理正确,(2)推理不正确(1)设p:今天是星期一,q:明天是星期三,推理的形式结构为(p→q)∧p→q(记作*1)在本推理中,从p与q的内在联系可以知道,p与q的内在联系可以知道,p与q不可能同时为真,但在证明时,不考虑这一点,而只考虑*1是否为重言式.可以用多种方法(如真值法、等值演算法、主析取式)证明*1为重言式,特别是,不难看出,当取A为p,B为q时,*1为假言推理定律,即(p→q)∧p→q ⇒ q(2)设p:今天是星期一,q:明天是星期三,推理的形式结构为(p→q)∧p→q(记作*2)可以用多种方法证明*2不是重言式,比如,等值演算法、主析取范式(主和取范式法也可以)等(p→q)∧q→p⇔(┐p∨q) ∧q →p⇔q →p⇔┐p∨┐q⇔⇔∨∨从而可知,*2不是重言式,故推理不正确,注意,虽然这里的p与q同时为真或同时为假,但不考虑内在联系时,*2不是重言式,就认为推理不正确.9.设p:a是奇数,q:a能被2整除,r:a:是偶数推理的形式结构为(p→q┐)∧(r→q)→(r→┐p) (记为*)可以用多种方法证明*为重言式,下面用等值演算法证明:(p→┐q)∧(r→q)→(r→┐p)⇔(┐p∨┐q) ∨(q∨┐r)→(┐q∨┐r) (使用了交换律)⇔(p∨q)∨(┐p∧r)∨┐q∨┐r⇔(┐p∨q)∨(┐q∧┐r)⇔┐p∨(q∨┐q)∧┐r⇔110.设p:a,b两数之积为负数,q:a,b两数种恰有一个负数,r:a,b都是负数.推理的形式结构为(p→q)∧┐p→(┐q∧┐r)⇔(┐p∨q) ∧┐p→(┐q∧┐r)⇔┐p→(┐q∧┐r) (使用了吸收律)⇔p∨(┐q∧┐r)⇔∨∨∨由于主析取范式中只含有5个W极小项,故推理不正确.11.略14.证明的命题序列可不惟一,下面对每一小题各给出一个证明① p→(q→r)前提引入② P前提引入③ q→r①②假言推理④ q前提引入⑤ r③④假言推理⑥ r∨s前提引入(2)证明:① ┐(p∧r)前提引入② ┐q∨┐r①置换③ r前提引入④ ┐q ②③析取三段论⑤ p→q前提引入⑥ ┐p④⑤拒取式(3)证明:① p→q前提引入② ┐q∨q①置换③ (┐p∨q)∧(┐p∨p) ②置换④ ┐p∨(q∧p③置换⑤ p→(p∨q) ④置换15.(1)证明:① S结论否定引入② S→P前提引入③ P①②假言推理④ P→(q→r)前提引入⑤ q→r③④假言推论⑥ q前提引入⑦ r⑤⑥假言推理(2)证明:① p附加前提引入② p∨q①附加③ (p∨q)→(r∧s)前提引入④ r∧s②③假言推理⑤ s④化简⑥ s∨t⑤附加⑦ (s∨t)→u前提引入⑧ u⑥⑦拒取式16.(1)证明:① p结论否定引入② p→ ┐q前提引入③ ┐q ①②假言推理④ ┐r∨q前提引入⑤ ┐r③④析取三段论⑥ r∧┐s前提引入⑦ r⑥化简⑧ ┐r∧r⑤⑦合取(2)证明:① ┐(r∨s)结论否定引入② ┐r∨┐s①置换③ ┐r②化简④ ┐s②化简⑤ p→r前提引入⑥ ┐p③⑤拒取式⑦ q→s前提引入⑧ ┐q④⑦拒取式⑨ ┐p∧┐q⑥⑧合取⑩ ┐(p∨q)⑨置换口p∨q前提引入⑾①口┐(p∨q) ∧(p∨q) ⑩口合取17.设p:A到过受害者房间,q: A在11点以前离开,r:A犯谋杀罪,s:看门人看见过A。

离散数学课后习题答案第七章

离散数学课后习题答案第七章

第七章 特 殊 图 类习题7.11.解 因 m=n-1,这里m=6,所以n=6+1=7.2.解 不正确。

与平凡图构成的非连通图中有4个结点3条边,但是它不是树。

3K 3.证明 必要性。

因为G 中有n 个结点,边数m=n-1,又因为G 是连通的,由本节定理1可知,G 为树,因而G 中无回路。

再证充分性。

因为G 中无回路,又因为边数m=n-1,由本节定理1,可知G 为树,所以G 是连通的。

4.解 因 m=n-r,这里n=15,r=3,所以m=15-3=12,即G 有12条边。

5.解6个结点的所有不同构的树如图7-1所示。

图7-16.证明 由定理1,在任意的树中,边数),(m n 1−=n m;所以,由握手定理得)1(22)(1−==∑=n m v d ni i①⑴若T 没有树叶,则由于T 是连通图,所以T 中任一结点均有,从而2)(≥i v d n v d ni i2)(1≥∑= ②则①与②矛盾。

⑵若树T 仅有1片树叶,则其余1−n个结点的度数不小于2,于是121)1(2)(1−=+−≥∑=n n v d ni i③从而①、③相矛盾。

综合⑴,⑵得知T 中至少有两片树叶。

7.解 图7-2⑴中共有两棵非同构的生成树(如图7-3⑴,⑵)。

图7-2⑵中共有3棵非同构的生成树(如图7-3⑶,⑷,⑸)。

⑵⑴⑶⑷ ⑸图7-38.解 在图7-4中共有8棵生成树,如图7-5⑴~⑻所示,第i 生成树用表示。

,,,)8,,2,1( =iT i 7)(8=T W 8)()(61==T W T W 6)()(52==T W T W )()(73==T W T W 9)(4=T W 。

其中T 2,T 5是图中的最小生成树。

9.解 最小生成树T 如图7-7所示,W (T )=18。

a bc da b cda ba bcdabc d⑴⑵⑶⑷⑸⑹⑺ ⑻图7-5图7-4图7-6图7-7习题7.21.解 不一定是。

如图7-8就不是根树.2.解 五个结点可形成3棵非同构的无向树,如图7-9⑴,⑵,⑶所示。

离散数学-第七章习题答案

第7章习题答案1.f(x)=2|x|+1是从整数集合到正整数集合的函数,它的值域是什么?解:它的值域是正奇数集合。

2.试问下列关系中哪个能构成函数?(1){〈x,y〉|x,y∈N,x+y<10}(2){〈x,y〉|x,y∈R,y=x2}(3){〈x,y〉|x,y∈R,y2=x}解;(1)、(3)不满足函数的定义,只有(2)是函数。

3.下列集合能够定义函数吗?如果能,求出它们的定义域和值域。

(1){〈1,〈2,3〉〉,〈2,〈3,4〉〉,〈3,〈1,4〉〉,〈4,〈1,4〉〉}(2){〈1,〈2,3〉〉,〈2,〈3,4〉〉,〈3,〈3,2〉〉}(3){〈1,〈2,3〉〉,〈2,〈3,4〉〉,〈1,〈2,4〉〉}(4){〈1,〈2,3〉〉,〈2,〈2,3〉〉,〈3,〈2,3〉〉}解:(1)、(2)、(4)定义的是函数。

(1)的定义域是{1,2,3,4},值域是{〈2,3〉,〈3,4〉,〈1,4〉}(2)的定义域是{1,2,3},值域是{〈2,3〉,〈3,4〉,〈3,2〉}(4)的定义域是{1,2,3},值域是{〈2,3〉}4.设f,g都是函数,并且有f⊆g和dom(g)=dom(f),证明f=g证明:假设f≠g,因为f⊆g和dom(g)=dom(f),则存在x1∈dom(g)和dom(f),使得〈x1,y1〉∈g但〈x1,y1〉∉f,因为f是函数,在定义域上处处有定义,所以必存在y2,使得〈x1,y2〉∈f,由f⊆g得〈x1,y2〉∈g,这与g是函数满足单值性矛盾。

故假设错误,必有f=g。

6.设X={0,1,2},求出X X中的如下函数(1) f2(x)=f(x)(2) f2(x)=x(3) f3(x)=x解:(1)有10个函数,分别是:f1(x)={〈0,0〉,〈1,0〉,〈2,0〉}f2(x)={〈0,1〉,〈1,1〉,〈2,1〉}f3(x)={〈0,2〉,〈1,2〉,〈2,2〉}f4(x)={〈0,1〉,〈1,1〉,〈2,2〉}f5(x)={〈0,2〉,〈1,1〉,〈2,2〉}f6(x)={〈0,0〉,〈1,0〉,〈2,2〉}f7(x)={〈0,0〉,〈1,2〉,〈2,2〉}f8(x)={〈0,0〉,〈1,1〉,〈2,0〉}f9(x)={〈0,0〉,〈1,1〉,〈2,1〉}f10(x)={〈0,0〉,〈1,1〉,〈2,2〉}(2)有4个函数,分别是:f1(x)={〈0,0〉,〈1,1〉,〈2,2〉}f2(x)={〈0,0〉,〈1,2〉,〈2,1〉}f3(x)={〈0,2〉,〈1,1〉,〈2,0〉}f4(x)={〈0,1〉,〈1,0〉,〈2,2〉}(3)有3个函数,分别是:f 1(x )={〈0,0〉,〈1,1〉,〈2,2〉}f 2(x )={〈0,1〉,〈1,2〉,〈2,0〉}f 3(x )={〈0,2〉,〈1,0〉,〈2,1〉}8.设f,g,h 是N → N 的函数, 其中N 是自然数集合,f(n)=n +1, g(n)=2n,⎩⎨⎧=是奇数若是偶数若n n n h 10)(试确定:f f ,f g ,g h ,h g 及(f g) h 。

离散数学答案第二版-高等教育出版社课后答案

第二版高等教育出版社课后答案第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。

(1)p∨(q∧r)⇔0∨(0∧1) ⇔0(2)(p↔r)∧(﹁q∨s) ⇔(0↔1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r) ⇔(1∧1∧1)↔ (0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。

并且,如果3是无理数,则2也是无理数。

另外6能被2整除,6才能被4整除。

”答:p: π是无理数 1q: 3是无理数0r: 2是无理数 1s:6能被2整除 1t: 6能被4整除0命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。

19.用真值表判断下列公式的类型:(4)(p→q) →(⌝q→⌝p)(5)(p∧r) ↔(⌝p∧⌝q)(6)((p→q) ∧(q→r)) →(p→r)答:(4)p q p→q ⌝q ⌝p ⌝q→⌝p (p→q)→(⌝q→⌝p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式(5)公式类型为可满足式(方法如上例)(6)公式类型为永真式(方法如上例)第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) ⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1所以公式类型为永真式(3)P q r p∨q p∧r (p∨q)→(p∧r)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(p→q)∧(p→r)⇔(p→(q∧r))(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨q) ∧⌝(p∧q)证明(2)(p→q)∧(p→r)⇔ (⌝p∨q)∧(⌝p∨r)⇔⌝p∨(q∧r))⇔p→(q∧r)(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨(⌝p∧q)) ∧(⌝q∨(⌝p∧q)⇔(p∨⌝p)∧(p∨q)∧(⌝q∨⌝p) ∧(⌝q∨q)⇔1∧(p∨q)∧⌝(p∧q)∧1⇔(p∨q)∧⌝(p∧q)5.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)解:(1)主析取范式(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔ (⌝p ∧⌝q)∨(⌝q ∧p)∨(⌝q ∧⌝p)∨(p ∧q)∨(p ∧⌝q)⇔ (⌝p ∧⌝q)∨(p ∧⌝q)∨(p ∧q)⇔320m m m ∨∨⇔∑(0,2,3)主合取范式:(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔(⌝p ∨(⌝q ∨p))∧(⌝q ∨(⌝q ∨p))⇔1∧(p ∨⌝q)⇔(p ∨⌝q) ⇔ M 1⇔∏(1)(2) 主合取范式为:⌝(p →q)∧q ∧r ⇔⌝(⌝p ∨q)∧q ∧r⇔(p ∧⌝q)∧q ∧r ⇔0所以该式为矛盾式.主合取范式为∏(0,1,2,3,4,5,6,7)矛盾式的主析取范式为 0(3)主合取范式为:(p ∨(q ∧r))→(p ∨q ∨r)⇔⌝(p ∨(q ∧r))→(p ∨q ∨r)⇔(⌝p ∧(⌝q ∨⌝r))∨(p ∨q ∨r)⇔(⌝p ∨(p ∨q ∨r))∧((⌝q ∨⌝r))∨(p ∨q ∨r))⇔1∧1⇔1所以该式为永真式.永真式的主合取范式为 1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14. 在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r) 前提引入②⌝q∨⌝r ①置换③q→⌝r ②蕴含等值式④r 前提引入⑤⌝q ③④拒取式⑥p→q 前提引入⑦¬p(3)⑤⑥拒取式证明(4):①t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥(q→t)∧(t→q) ⑤置换⑦(q→t)⑥化简⑧q ②⑥假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理(11)p∧q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s 附加前提引入②s→p 前提引入③p ①②假言推理④p→(q→r) 前提引入⑤q→r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p 结论的否定引入②p→﹁q 前提引入③﹁q ①②假言推理④¬r∨q 前提引入⑤¬r ④化简律⑥r∧¬s 前提引入⑦r ⑥化简律⑧r∧﹁r ⑤⑦合取由于最后一步r∧﹁r 是矛盾式,所以推理正确.第四章部分课后习题参考答案3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值:(1) 对于任意x,均有2=(x+)(x).(2) 存在x,使得x+5=9.其中(a)个体域为自然数集合.(b)个体域为实数集合.解:F(x): 2=(x+)(x).G(x): x+5=9.(1)在两个个体域中都解释为)∀,在(a)中为假命题,在(b)中为真命题。

大学_《离散数学》课后习题答案

《离散数学》课后习题答案《离散数学》简介1、集合论部分:集合及其运算、二元关系与函数、自然数及自然数集、集合的基数2、图论部分:图的基本概念、欧拉图与哈密顿图、树、图的矩阵表示、平面图、图着色、支配集、覆盖集、独立集与匹配、带权图及其应用3、代数结构部分:代数系统的基本概念、半群与独异点、群、环与域、格与布尔代数4、组合数学部分:组合存在性定理、基本的计数公式、组合计数方法、组合计数定理5、数理逻辑部分:命题逻辑、一阶谓词演算、消解原理离散数学被分成三门课程进行教学,即集合论与图论、代数结构与组合数学、数理逻辑。

教学方式以课堂讲授为主,课后有书面作业、通过学校网络教学平台发布课件并进行师生交流。

《离散数学》学科内容随着信息时代的到来,工业革命时代以微积分为代表的连续数学占主流的地位已经发生了变化,离散数学的重要性逐渐被人们认识。

离散数学课程所传授的思想和方法,广泛地体现在计算机科学技术及相关专业的诸领域,从科学计算到信息处理,从理论计算机科学到计算机应用技术,从计算机软件到计算机硬件,从人工智能到认知系统,无不与离散数学密切相关。

由于数字电子计算机是一个离散结构,它只能处理离散的或离散化了的数量关系,因此,无论计算机科学本身,还是与计算机科学及其应用密切相关的现代科学研究领域,都面临着如何对离散结构建立相应的数学模型;又如何将已用连续数量关系建立起来的数学模型离散化,从而可由计算机加以处理。

离散数学是传统的逻辑学,集合论(包括函数),数论基础,算法设计,组合分析,离散概率,关系理论,图论与树,抽象代数(包括代数系统,群、环、域等),布尔代数,计算模型(语言与自动机)等汇集起来的一门综合学科。

离散数学的应用遍及现代科学技术的诸多领域。

离散数学也可以说是计算机科学的基础核心学科,在离散数学中的有一个著名的典型例子-四色定理又称四色猜想,这是世界近代三大数学难题之一,它是在1852年,由英国的一名绘图员弗南西斯格思里提出的,他在进行地图着色时,发现了一个现象,“每幅地图都可以仅用四种颜色着色,并且共同边界的国家都可以被着上不同的颜色”。

离散数学第七章课后答案

离散数学习题答案习题二及答案:(P38)5、求下列公式的主析取范式,并求成真赋值: (2)()()p q q r ⌝→∧∧解:原式()p q q r ⇔∨∧∧q r ⇔∧()p p q r ⇔⌝∨∧∧()()p q r p q r ⇔⌝∧∧∨∧∧37m m ⇔∨,此即公式的主析取范式, 所以成真赋值为011,111。

6、求下列公式的主合取范式,并求成假赋值: (2)()()p q p r ∧∨⌝∨解:原式()()p p r p q r ⇔∨⌝∨∧⌝∨∨()p q r ⇔⌝∨∨4M ⇔,此即公式的主合取范式, 所以成假赋值为100。

7、求下列公式的主析取范式,再用主析取范式求主合取范式: (1)()p q r ∧∨解:原式()(()())p q r r p p q q r ⇔∧∧⌝∨∨⌝∨∧⌝∨∧()()()()()()p q r p q r p q r p q r p q r p q r ⇔∧∧⌝∨∧∧∨⌝∧⌝∧∨⌝∧∧∨∧⌝∧∨∧∧ ()()()()()p q r p q r p q r p q r p q r ⇔⌝∧⌝∧∨⌝∧∧∨∧⌝∧∨∧∧⌝∨∧∧ 13567m m m m m ⇔∨∨∨∨,此即主析取范式。

主析取范式中没出现的极小项为0m ,2m ,4m ,所以主合取范式中含有三个极大项0M ,2M ,4M ,故原式的主合取范式024M M M ⇔∧∧。

9、用真值表法求下面公式的主析取范式: (1)()()p q p r ∨∨⌝∧ 解:公式的真值表如下:由真值表可以看出成真赋值的情况有7种,此7种成真赋值所对应的极小项的析取即为主析取范式,故主析取范式1234567m m m m m m m ⇔∨∨∨∨∨∨习题三及答案:(P52-54)11、填充下面推理证明中没有写出的推理规则。

前提:,,,p q q r r s p ⌝∨⌝∨→结论:s证明:① p 前提引入②p q⌝∨前提引入③ q ①②析取三段论④q r⌝∨前提引入⑤ r ③④析取三段论⑥r s→前提引入⑦ s ⑤⑥假言推理15、在自然推理系统P中用附加前提法证明下面推理:(2)前提:()(),()∨→∧∨→p q r s s t u结论:p u→证明:用附加前提证明法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档