三角函数的诱导公式教案

合集下载

三角函数诱导公式 教案

三角函数诱导公式 教案

三角函数诱导公式教案
教案标题:三角函数诱导公式
教案目标:
1. 理解三角函数诱导公式的概念和作用。

2. 掌握使用三角函数诱导公式求解相关问题的方法。

3. 培养学生的数学思维能力和解决问题的能力。

教学步骤:
引入活动:
1. 引导学生回顾正弦函数、余弦函数和正切函数的定义和性质。

2. 提问学生是否知道如何计算较大角度的三角函数值,引出三角函数诱导公式
的概念。

知识讲解:
1. 介绍三角函数诱导公式的定义和推导过程,包括正弦函数、余弦函数和正切
函数的诱导公式。

2. 解释三角函数诱导公式的作用,即通过将大角度化为小角度,简化计算过程。

示例演练:
1. 给出若干实际问题,引导学生运用三角函数诱导公式解决问题。

2. 通过示例演练,让学生熟悉使用三角函数诱导公式的方法。

拓展应用:
1. 提供更复杂的问题,要求学生运用三角函数诱导公式解决。

2. 引导学生思考如何应用三角函数诱导公式解决其他相关问题。

总结归纳:
1. 总结三角函数诱导公式的定义和作用。

2. 强调掌握三角函数诱导公式的重要性和实用性。

作业布置:
1. 布置练习题,要求学生运用三角函数诱导公式解决相关问题。

2. 鼓励学生自主学习,寻找更多应用三角函数诱导公式的例子。

教学反思:
1. 对学生在课堂上的表现进行评价和反馈。

2. 总结教学过程中的不足和需要改进的地方,为下一次教学做准备。

注:以上教案仅供参考,具体教学内容和步骤可以根据实际教学情况进行调整和修改。

三角函数诱导公式教案

三角函数诱导公式教案

三角函数诱导公式(第一课时)一、教学目标1、知识与技能目标掌握正弦、余弦的诱导公式,能较熟练应用诱导公式进行化简、求值。

2、过程与方法目标经历公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的研究方法,学会 观察、归纳、反思。

3、情感与态度目标引导学生获得发现的成就感,逐步养成科学严谨的学习态度,提高代数推理能力。

二、教学重点掌握诱导公式一、二、三、四的推导,能观察分析公式的特点,明确公式用途,熟练驾驭公式.三、教学难点运用诱导公式对三角函数式进行求值、化简以及简单三角恒等式的证明.四、教学过程1、 回顾概念,引出思考到目前为止我们还是只能求0~π之间的一些特殊角的函数值,那么对于sin 360 ,5cos 4π该怎么求呢?是不是有什么公式呢?那么下面我就带领大家一起来探讨下。

首先请一位同学帮助我们一起回顾下三角函数的定义。

2、引导思考、层层深入①问题:α的终边与2k π+α的终边有何关系?三角函数值又有何关系?师:我们目前所掌握的知识就只有三角函数的定义,所以我们从定义出发,α的终边与2k π+α的终边有何关系呢?生:相同。

师:根据三角函数的定义,请问它们对应点的坐标是否相同?生:因为是同一个点,所以相同。

师:根据三角函数的定义,那么它们对应的三角函数值又有怎样的关系呢?生:正弦、余弦值都相等,从而正切值相等。

结论:α的终边与2k π+α的终边相同,在根据三角函数的定义,三角函数值相等。

得到诱导公式一:x y②问题:παα+与的终边有何关系?三角函数值又有何关系?师:在解决了α与2k π+α的三角函数值之间关系后,请大家继续思考παα+与的终边有何关系?三角函数值又有何关系?生:它们终边在同一条直线上师:那仿照公式一的推导方式,对应交点坐标有何关系呢?从而三角函数值又有何关系呢?生:它们与单位圆的交点关于原点对称,所以对应坐标互为相反数。

再根据三角函数的定义(横坐标对应余弦,纵坐标对应正弦),sin()sin παα+=-,cos()cos παα+=-,tan()tan παα+=。

三角函数的诱导公式 精品教案

三角函数的诱导公式 精品教案
我们知道减法是加法的逆运算,因此
πα=π+(α),故sin(πα)
=sin(π+(α))=-sin(α)
=sinα
3.组织学生分组探索角角、角-和角的三角函数之间的关系。
先让学生先独立思考,然后小组交流。在学生交流时教师巡视,让两个小组到黑板上展示。同时派出优秀学生到其他小组提供帮助。
4.在学生解答后教师用几何画板演示其中的角也可以为任意角,验证学生的结论。
《高中数学课程标准》




1.知识与技能
借助单位圆,推导出诱导公式,能正确运用诱导公式将任意角的三角函数化为锐角的三角函数,掌握有关三角函数求值问题。
2.过程与方法
经历诱导公式的探索过程,体验未知到已知、复杂到简单的转化过程,培养化归思想。
3.情感、态度与价值观
感受数学探索的成功感,激发学习数学的热情,培养学习数学的兴趣,增强学习数学的信心。
三角函数的诱导公式(一)教学设计
宁德五中刘久余
课题
三角函数的诱导公式
项目
内容
理论依据或意图











“三角函数的诱导公式”是普通高中课程标准实验教科书人教A版必修4第一章第三节,其主要内容是三角函数的诱导公式中的公式二至公式六。它是圆的对称性的“代数表示”。利用对称性,探究角的终边分别关于原点或坐标轴对称的角的三角函数值之间的关系,体现“数形结合”的数学思想;诱导公式的主要用途是把任意角的三角函数值问题转化为求锐角的三角函数值,体现“转化”的数学思想。诱导公式学习还反映了从特殊到一般的归纳思维形式,对培养学生的创新意识、发展学生的思维能力具有积极的作用。本节内容共需二课时,第一课时教学内容为公式二、三、四。第二课时的教学内容为公式五、六。

三角函数的诱导公式教案

三角函数的诱导公式教案

1.3三角函数的诱导公式(2)教学目标知识与技能:1、借助于单位圆,推导出正弦、余弦的诱导公式(公式五、公式六);特别是学习从单位圆的对称性与任意角终边的对称性中,发现问题,提出研究方法(利用坐标的对称性,从三角函数定义得出相应的关系式)。

2、能进一步运用诱导公式将任意角的三角函数化为锐角的三角函数,并解决有关三角函数式的求值、化简与和恒等式的证明问题;3、能通过公式的运用,体会未知到已知,复杂到简单的转化过程,提高分析和解决问题的能力。

过程与方法:通过诱导公式的推导,培养学生的观察力、归纳能力,领会数学的化归思想方法,使学生体验和理解从一般到特殊的数学化归推理方式。

情感、态度、价值观:通过诱导公式的推导,培养学生主动探索、勇于发现的创新意识和创新精神。

重点与难点重点:借助于单位圆,推导出诱导公式五、六,诱导公式的应用。

难点:掌握六组诱导公式并能灵活运用教学过程:(一)复习回顾上节课我们学习了三角函数的诱导公式一到公式四,大家还记得是哪几个公式吗? 回顾三角函数的诱导公式一到公式四,这几个公式分别体现了角α与角πα+、α-、πα-之间的关系,用诱导公式可将任意角的三角函数化为锐角的三角函数,其一般步骤是:1、化负角的三角函数为正角的三角函数;2、化为[) 360,0内角的三角函数;3、化为锐角的三角函数。

可概括为:“负化正,大化小,化到锐角为终了”。

(二)小试牛刀1求值:1、=619cos π 23- 2、=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-+35tan 2623cos 449sin 2πππ2 2化简:()()()()()ααπαπαπαπα---+---+-+cos cos sin 2)(cos 2sin sin 122=αtan (三)新知探究问题一:角的终边除了有终边相同、关于x 轴、y 轴、原点对称这些特殊关系外,角的终边还有其他的对称关系? 若απβ-=2,则βα,的终边具有什么关系?若角βα,的终边关于直线x y =对称,它们分别与单位圆交于点21,P P ,则21,P P 的坐标分别是什么?它们有什么关系?根据三角函数的定义,点()βαcos ,cos 1p ,()ββsin ,cos 2P ,又点21,P P 关于直线x y =对称,则()()⎪⎪⎩⎪⎪⎨⎧=-+-+=+0sin sin 22cos cos 222sin sin 2cos cos αβαββαβα 由此可得⎩⎨⎧==αβαβcos sin sin cos ,从而得到公式五⎪⎪⎩⎪⎪⎨⎧=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-ααπααπcos 2sin sin 2cos 所以,由公式五知ααααπαπαπtan 1sin cos 2cos 2sin 2tan ==⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛- 问题二:能否用已有公式得出απ+2的正弦、余弦与α的正弦、余弦之间的关系式? 由公式二和五可知:()αααπαπcos cos )(2sin 2sin =-=⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛+ ()αααπαπsin sin )(2cos 2cos -=-=⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛+ 所以,诱导公式六:ααπααπsin 2cos cos 2sin -=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+ 由此,απαπαπα±±-∈+2,,),(2Z k k 都可表示成()Z k k ∈±∙απ2诱导公式总结:口诀:奇变偶不变,符号看象限。

三角函数的诱导公式教案

三角函数的诱导公式教案

三角函数的诱导公式教案本节课主要介绍了四组诱导公式以及如何利用这些公式求解任意角的三角函数值,并进行简单的化简与证明。

教学重点是理解四组诱导公式,教学难点是推导过程和符号的确定方法。

教学方法是启发式结合讨论式教学方法,结合多媒体课件演示。

教学工具是多媒体电脑和投影仪。

在问题情景中,教师提出了一个关键问题:如何来求任意角的三角函数值。

学生通过小组讨论,找出了可以解决的和目前无法解决的问题,并尝试借助前面研究的知识求解。

学生们画出了一个单位圆,并以每两排为一组前后左右相互讨论,分别画出另外四个角的终边和单位圆的交点,每组推出一名代表发言,总结出“终边相同的角的三角函数值相同”的规律。

教师指导学生们将这个规律推广到任意的角,并用符号表示,引出了第一组诱导公式:sin(2k)sin。

教师通过多媒体课件演示,让学生们理解推导过程,并进行简单的化简与证明。

随后,教师介绍了剩下三组诱导公式,并让学生们进行练和探究。

本节课的教学目标不仅包括知识目标,还包括能力目标和情感目标与价值观。

通过不断设置悬念、疑问,引起学生的困惑与惊讶,激发学生的好奇心和求知欲,培养学生数学探究与交流的能力,增强学生研究数学的自信心。

cos(α+2kπ)=cosα,tan(α+2kπ)=tanα(其中k∈Z),sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanα,sin(π-α)=sinα,cos(π-α)=-cosα,tan(π-α)=-tanα,sin(π+α)=-sinα,cos(π+α)=-cosα,tan(π+α)=tanα,sin(2π-α)=sinα,cos(2π-α)=cosα,tan(2π-α)=tanα。

这些公式的作用是把任意角的三角函数化为与之等价的正角或者锐角的三角函数,或者把负角化为正角的三角函数。

这样可以简化计算,同时也为研究三角函数的周期性提供了基础。

2、我们还总结了一些规律,如函数名不变,正号是余弦;负变正;钝角化锐角,正弦不变号;第三象限角,正切不变号。

三角函数诱导公式 教案

三角函数诱导公式  教案

第一章三角函数1.3 三角函数诱导公式教案德卧中学高中部数学组一、教学目标1.知识目标:①识记诱导公式(公式一——公式八).②理解和掌握公式的内涵及结构特征,会运用诱导公式求三角函数的值,并进行简单三角函数式的化简和证明.2.能力目标:①通过对诱导公式八的推导,培养学生的观察力、分析归纳能力,领会数学的归纳转化思想方法.②通过诱导公式的推导、分析公式的结构特征,使学生体验和理解从特殊到一般的数学归纳推理思维方式.③通过基础训练题组和能力训练题组的练习,提高学生分析问题和解决问题的实践能力.3.情感目标:①通过诱导公式八的推导,培养学生主动探索、勇于发现的科学精神,培养学生的创新意识和创新精神.②通过归纳思维的训练,培养学生踏实细致、严谨科学的学习习惯,渗透从特殊到一般、把未知转化为已知的辨证唯物主义思想.二、教学重点:诱导公式八的推到及应用.三、教学难点:诱导公式结构特征的认识及应用.四、教学过程(一)复习引入师:请同学们回忆前面我们所学过的七个诱导公式生:公式一:()()().tan2tan,cos2cos,sin2sinααπααπααπ=+=+=+kkk期中:Zk∈.公式二:()()().tan tan ,cos cos ,sin sin ααπααπααπ=+-=+-=+ 公式三:()()().tan tan ,cos cos ,sin sin αααααα-=-=--=-公式四:()()().tan tan ,cos cos ,sin sin ααπααπααπ-=--=-=- 公式五:.sin 2cos ,cos 2sin ααπααπ=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-公式六:.sin 2cos ,cos 2sin ααπααπ-=⎪⎭⎫⎝⎛+=⎪⎭⎫⎝⎛+ 公式七:()()().tan 2tan ,cos 2cos ,sin 2sin ααπααπααπ-=-=--=-k k k 其中Z k ∈(二)探究新知我们通过观察公式一到公式七的结构特征我们可以得出当Z n n k ∈+=,12时,ααπααπsin 2cos ,cos 2sin ±=⎪⎭⎫ ⎝⎛±±=⎪⎭⎫ ⎝⎛±k k , 当Z n n k ∈=,2时,ααπααπcos 2cos ,sin 2sin ±=⎪⎭⎫ ⎝⎛±±=⎪⎭⎫⎝⎛±k k ,其中απ±2k 的终边所在象限决定函数值的符号,判断απ±2k 所在象限时,无论α为何值我们都将其看作是锐角。

诱导公式教案

诱导公式教案

课 题:1.2.3三角函数的诱导公式(一)1.教学目标知识与技能(1)掌握三角函数诱导公式二~四的推导方法,体验数学知识的“发现”过程;(2)掌握三角函数诱导公式二~四的应用,能正确运用诱导公式求任意角的三角函数值,以及进行简单三角函数式的化简与恒等式证明;(3)培养学生借助图形直观进行观察、感知、探究、发现的能力,进一步理解掌握数形结合思想方法,通过诱导公式的证明,培养学生逻辑思维能力及运算能力。

过程与方法(1) 借助单位圆推导诱导公式,特别是学习从单位圆的对称性与任意角终边的对称性中,发现问题(任意角α的三角函数值与α- ,πα- ,πα+ 的三角函数值之间有内在联系),提出研究方法(利用坐标的对称性,从三角函数定义得出相应的关系式);(2) 体会未知到已知、复杂到简单的转化过程。

情感态度与价值观通过本节的学习,让学生感受数学探索的成功感,从而激发学生学习数学的热情,培养学生学习数学的兴趣,增强他们学习数学的信心。

2.教学重点:用联系的观点,发现、证明及运用诱导公式,体会数形结合思想、化归思想在解决数学问题中的指导作用。

教学难点:如何引导学生从单位圆的对称性与任意角终边的对称性中,发现终边分别与α的终边关于原点、x 轴、y 轴对称的角与α之间的数量关系,并提出研究方法。

3.教学方法与教学手段:引导合作探究式教学并结合多媒体教学4.教学过程:(一)复习引入:1.利用单位圆表示任意角α的正弦值和余弦值;2.画出一组特殊角的图象(体会特殊到一般的思想)(二)新课讲解:问题1:360?k αα+⋅角与的正弦,余弦,正切值有什么关系公式一: ααsin )360sin(=︒⋅+k ααcos )360cos(=︒⋅+kααtan )360tan(=︒⋅+k (其中Z ∈k )诱导公式(一)的作用:把任意角的正弦、余弦、正切化为0º―360º之间角的正弦、余弦、正切,其方法是先在0º―360º内找出与角α终边相同的角,再把它写成诱导公式(一)的形式,然后得出结果。

三角函数的诱导公式(教案)4

三角函数的诱导公式(教案)4

1.2.3三角函数的诱导公式(第1课时)一、教学目标1.知识与技能(1)能够理解借助三角函数的定义及单位圆中的三角函数线推导三角函数的诱导公式。

(2)能够运用诱导公式,把任意角的三角函数的化简、求值问题转化为锐角三角函数的化简、求值问题。

2.过程与方法(1)经历由几何直观探讨数量关系式的过程,培养数学发现能力和概括能力。

(2)通过对诱导公式的探求和运用,培养化归能力,提高分析问题和解决问题的能力。

3.情感、态度、价值观(1)通过对诱导公式的探求,培养学生的探索能力、钻研精神和科学态度。

(2)在诱导公式的探求过程中,运用合作学习的方式进行,培养学生团结协作的精神。

二、教学重点与难点教学重点是,探求π-α的诱导公式。

π+α,-α与的诱导公式在小结π-α的诱导公式发现过程的基础上,在教师的引导下由学生推出。

教学难点是,对角α的任意性的理解。

π+α,-α与角α终边位置的几何关系。

以及发现由终边位置关系导致(与单位圆交点)的坐标关系,运用任意角三角函数的定义导出诱导公式的“路线图”。

三、教学方法与教学手段问题教学法、合作学习法,多媒体课件四、教学过程(一)问题提出如何将任意角三角函数求值问题转化为0°~360°角三角函数求值问题。

〖设计意图〗哈尔莫斯说:问题是数学的心脏。

数学教学应当从问题开始。

教师把数学教学的锚,抛在学生最近发展区内,为教学的展开提供知识和思维的生长点。

这个问题虽然是一个特殊的问题,但是将为后面特殊问题一般化作出铺垫。

一般地,由三角函数的定义可以知道,终边相同的角的同一三角函数值相等,即有:sin(α+k·360°) = sinα,cos(α+k·360°) = co sα,(k∈Z) (公式一)三角函数看重的就是终边位置关系.这组公式用弧度制可以表示成运用这组诱导公式,我们可以把任意角转化为0°~360°角,所以这组公式称为“诱导公式”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数的诱导公式(第一课时)教学目标:1、知识目标:理解四组诱导公式及其探究思路,学会利用四组诱导公式求解任意角的三角函数值,会进行简单的化简与证明。

2、能力目标:培养学生数学探究与交流的能力,培养学生直觉猜想与抽象概括的能力。

3、情感目标与价值观:通过不断设置悬念、疑问,来引起学生的困惑与惊讶,激发学生的好奇心和求知欲,通过小组的合作与交流,来增强学生学习数学的自信心。

教学重点:理解四组诱导公式利用四组诱导公式求任意角的三角函数值和简单的化简与证明。

教学难点:四组诱导公式的推导过程为了区分下节课的几组公式,要理解为何名称不变 理解确定符号的方法教学方法:启发式结合讨论式教学方法,结合多媒体课件演示 教学工具:多媒体电脑,投影仪 教学过程:一.问题情景:回顾前面已经学习的理论知识,我们已经学习了任意角的三角函数的定义,学习了三角函数线,还有同角三角函数关系,但是我们还有一个关键问题没有解决,那就是:我们如何来求任意角的三角函数值呢?二.学生活动: 小组讨论:1、找出我们可以解决的和目前无法解决的2、对于还无法解决的,可否借助前面学习的知识求解3、这些角之间有何关联 教师指导:我们前面学过了三角函数的定义和三角函数线,知道角的终边和单位圆的交点的坐标就是角对应的三角函数值,大家先画出一个单位圆,然后把第一个角的终边画出来,它和单位圆的交点记为(00,x y ),然后我们以每两排为一组前后左右可以相互讨论,分别画出另外四个角的终边和单位圆的交点,每组画一个,然后每组推出一名代表发言,看看你在画图的时候发现了什么。

(给五分钟画图、总结,学生在画图中容易看出另外的几个角和开始的锐角的关系) 三.意义建构: 教师指导:请每组推出的代表发言。

(按顺序,没合适人选时,教师可以随机指出一名代表)第一组:由画图发现0390的角的终边和6π的终边是重合的,它们相差0360,由三角函数定义可知,终边相同的角的同一三角函数值相等,表中第二列和第一列值相同。

教师指导:第一组总结的很好,我们可否也把它推广到任意的角呢?总结一下就是“终边相同的角的三角函数值相同”,如何用符号表示? 诱导公式一: απαsin )2sin(=+k απαcos )2cos(=+kαπαtan )2tan(=+k (其中Z ∈k ) 教师指导:这个公式有什么作用?(学生总结,教师补充) 作用:把任意角的正弦、余弦、正切化为000360之间角的正弦、余弦、正切,其方法是先在000360内找出与角α终边相同的角再把它写成诱导公式(一)的形式,然后得出结果简单来说就是“大化小”。

此处还可以得出三角函数是“多对一”的单值对应,为下面研究函数的周期性打下铺垫。

(此处引出本节课题,在运用公式时,注意“弧度”与“度”两种度量制不要混用) 第二组:由画图发现030-的角的终边和6π的终边是关于x 轴对称的,由三角函数定义可知,它们的余弦值相等,正弦值和正切值互为相反数。

教师指导:第二组总结的也不错,我们可否也把它推广到任意的角?总结一下就是“函数名不变,正号是余弦”,如何用符号表示?诱导公式二: αα-sin sin(=-)ααcos cos(=-)ααtan tan(-=-) 教师指导:这个公式有什么作用?(学生总结,教师补充)作用:把任意负角的正弦、余弦、正切化为该角正角的正弦、余弦、正切,其方法是对于正弦和正切直接提出负号,对于余弦可以直接去掉负号,简单来说就是“负变正”。

此处还可以得出正弦函数与正切函数是奇函数,余弦函数是偶函数。

第三组:由画图发现56π的角的终边和6π的终边是关于y 轴对称的,由三角函数定义可知,它们的正弦值相等,余弦值和正切值互为相反数。

教师指导:第三组总结的也非常好,我们是否也可以把它推广到任意的角?总结一下就是“钝角化锐角,正弦不变号”,如何用符号表示?诱导公式三: ααπsin sin(=-) ααπ-cos cos(=-)ααπtan tan(-=-) 教师指导:这个公式有什么作用?(学生总结,教师补充)作用:主要是建立钝角到锐角的一个桥梁,对任意角也是成立的。

第四组:根据画图得到76π的角的终边和6π的终边是关于原点对称的,由三角函数定义可知,它们的正切值相等,正弦值和余弦值互为相反数。

教师指导:第四组总结的很好,我们可以把它推广到任意的角吗?总结一下就是:“第三象限角,正切不变号”,符号表示?诱导公式四:ααπ-sin sin(=+)ααπ-cos cos(=+)ααπtan tan(=+) 四.数学理论:1、 我们今天学习的四组诱导公式:诱导公式一: απαsin )2sin(=+kαπαcos )2cos(=+kαπαtan )2tan(=+k (其中Z ∈k ) 诱导公式二: αα-sin sin(=-)ααcos cos(=-)ααtan tan(-=-) 诱导公式三: ααπsin sin(=-)ααπ-cos cos(=-)ααπtan tan(-=-) 诱导公式四:ααπ-sin sin(=+)ααπ-cos cos(=+)ααπtan tan(=+) 教师指导:观察这四组诱导公式,然后回答下列问题:1、 公式两边具有什么特点2、 每个公式中符号特点是什么?如何确定符号的?3、 如何记忆这几组公式?小结:函数的名称不变,符号判断是把α“看作”锐角时的符号。

口诀:“函数名不变,符号看象限。

”2、 思考:公式的互推与转化:(1) 由公式二、三推导公式四(2)由公式二、三、四任意两个公式,能否推出另外一组公式? (此处安排学生思考可以分成三组讨论,中间两组并成一大组。

)四、 数学应用: 例1、求值 (1)π67sin(2)π411cos (3))1560tan( - 教师指导:做题之前,仔细想想,遇到不同的角,该选择什么样的公式?使用顺序又是如何? 解析:(1)71sinsin()sin 6662ππππ=+=-=- (2)1133coscos(2)cos cos()cos 44444πππππππ=+==-=-=(3)00000tan(1560)tan1560tan(4360120)tan120-=-=-⨯+=-000tan(18060)tan60=--==总结:一般我们在求解任意角的三角函数值的时候,一般遵循的规则为:“负变正,大化小,诱导公式到锐角。

” 例2、判断下列函数的奇偶性(1)x x f cos 1)(-= (2)x x x g sin )(-=教师指导:回忆判断奇偶性的步骤和注意点,思考与本节课所学习内容的联系(公式二)。

解析:(1)因为函数()f x 的定义域为R ,且()1cos()1cos ()f x x x f x -=--=-= ,所以()f x 是偶函数。

(2) 因为()g x 得定义域为R ,且()sin()(sin )(sin )g x x x x x x x -=---=---=--()g x =- 所以()g x 是奇函数。

例3、化简0000sin(1440)cos(1080)cos(180)sin(180)αααα+-----教师指导:含字母问题,如何处理?注意和例1的联系。

()()sin(sin sin sin παπααα+=--=-=-⎡⎤⎣⎦)()()cos(cos cos cos παπααα+=--=--=-⎡⎤⎣⎦)()()tan(tan tan tan παπααα+=--=--=⎡⎤⎣⎦)解析:原式0000sin(3604)cos(3603)cos[(180)]sin[(180)]αααα⨯+-⨯=-+-+00sin cos cos(180)[sin(180)]αααα=+-+sin cos 1(cos )sin αααα==--变式训练:sin(3)cos(4)1.cos(5)sin()πααπαππα+⋅---⋅--解析:原式()sin()cos cos(5)[sin ]παααππα+=+-+sin cos 1cos sin αααα-==-sin [(21)]2sin [(21)]2.()sin(2)cos(2)n n n Z n n απαπαππα⋅+++⋅-+∈--解析:原式(此处学生板书,查漏补缺,第二小题难度较大,因为包含了字母n ,有的同学可能会进行讨论,这样也是可以的,最关键的是要注意符号。

) 课堂练习:1、教材20P 1、2、3 2、已知21)cos(-=+απ,23π<α<2π,则)2sin(απ-=___________________3、化简sin(2)cos(2)tan(24)ππ-+--⋅-=_________________4、00002sin(1110)sin960225)cos(210)---+-=________________ 5、)180sin()180cos()1080cos()1440sin(︒--⋅-︒-︒-⋅+︒αααα=______________________六、回顾与反思:1、本节课学习了哪几组公式?2、如何记忆这几组公式?3、任意给出一个角,如何去求解它的三角函数值?步骤是什么? 七、课后作业:书第24页13、14两题。

sin[()2]2sin[()2]sin(2)cos(2)sin()2sin()sin 2sin sin cos sin cos 3 cos n n n n παπαππαππαπααπααααααα+++--=--++---===-。

相关文档
最新文档