bandgap带隙基准源电路

合集下载

无运放带隙基准电路设计

无运放带隙基准电路设计

无运放带隙基准电路设计
运放带隙基准电路(opamp bandgap reference circuit)是一种基于运放的电路,用于提供稳定的参考电压。

它的设计基于运放的放大特性和电压反馈机制,通过差分放大和反馈调整,产生一个相对稳定的参考电压。

下面是一种常见的运放带隙基准电路的设计:
1. 选择一个适当的运放芯片,具有低噪声、高增益和低温漂移等特性。

2. 将运放芯片的非反相输入端与反相输入端相连,形成一个差分输入。

3. 将一个稳定的参考电压Vref1与非反相输入端相连。

4. 将运放芯片的反相输入端与一个电阻R1相连,然后将R1与一个稳流二极管D1的阴极相连。

5. 通过调整R1的值,使得二极管D1的电流可以产生一个正向电压降,并且与稳定的参考电压Vref1相等。

6. 将运放芯片的输出端与R1与D1的连接处相连,形成一个反馈回路。

7. 调整运放芯片的反馈电阻R2的值,使得输出电压与稳定的参考电压Vref2相等。

通过以上设计,运放正向反馈的放大特性和电压反馈机制可以保证输出电压与参考电压的稳定性。

同时,稳定的参考电压Vref1的产生通过差分放大和反馈调整的方式可以减少温度、电源等参数的影响。

需要注意的是,具体的设计参数需要根据具体的应用要求来确定,比如参考电压的稳定性要求、输出电压的范围等。

同时,在实际设计过程中,还需要考虑电源稳定性、电路布局和滤波等因素,以确保设计的稳定性和可靠性。

bandgap电路设计报告

bandgap电路设计报告

Bandgap电路设计报告Bandgap电路1)基准电压产生电路由于在之前tsmc035工艺电路设计中得到过验证且性能良好,本次带隙基准设计继续采用如下电路结构。

下图电路中,左边蓝色框内是BG的启动电路,属于下拉型。

电路上电时,如果输出点电压为0,则M1M3支路无电流,M1栅端电压为高,使得M2导通,将H点电压拉低,从而使电路启动。

之后,输出电压约为1.2,则M3导通,M1栅端电压下降,使得M2截止,启动电路不影响主电路的正常工作状态。

需要注意的是,M3的W/L较大,M1的W/L较小时,M2可以截止的较彻底,从而降低对主电路的影响。

图一基准电压产生电路图一中中间部分(M4-M7 & T1T2 & RaRb & OPA)为基准电压产生的主电路,通过Vbe 与ΔVbe的加权组合来实现零温度系数电压。

其中运放OPA的作用是提供VN=VP这一电压关系,共源共栅结构提高电流复制精度使得结果更加准确。

运放需要注意其正负输入端接入电路的位置,要使得最终形成的环路是负反馈的。

M8M9复制一路电流,供给后端的电流产生电路的运放使用。

通过仿真可以发现,此结构的带隙基准的噪声主要来源于运放、M4M5和RaRb,为降低噪声M4M5的过驱动电压取的较大,同时RaRb电阻值取的较小。

电阻值较小直接导致两路电流都较大,由于三极管的Vbe电压不能偏离700mv太多(否则电压温度曲线特性不好),需要适当调整T1T2的m值。

另外,这里的运放偏置是由运放的输出电压提供的,同时与M4M5的栅端相连,可以考虑运放内部与外电路也形成电流复制的结构。

由于存在环路,我们还必须保持环路的稳定性,考虑到运放需要一定的增益(60dB+)使得VN与VP相等,这里采用两级运放,刚好可以将环路的主极点设置在运放第一级的输出端使环路稳定。

根据以上几点的条件,可以得到运放的结构如下图二所示。

其中的两个P管电流源可以看成是与图一中M4和M5成电流复制结构。

《带隙基准电压源》课件

《带隙基准电压源》课件
设计带隙基准电压源的反馈环路,以实现输出电压的稳定和调节。
4. 优化电路参数
根据仿真结果和实际测试数据,对电路参数进行优化,以提高带隙基 准电压源的性能。
电路设计的优化方法
温度补偿
通过引入温度补偿元件或采用 温度补偿技术,减小温度对带 隙基准电压源输出电压的影响

噪声抑制
采用低噪声元件、优化布线方 式和滤波技术等手段,减小带 隙基准电压源输出电压中的噪 声成分。
温漂
02
带隙基准电压源的温漂是指其在一定温度范围内的输出电压变
化量,温漂越小,性能越好。
热稳定性
03
带隙基准电压源在高温下的稳定性,良好的热稳定性可以保证
其在高温环境下正常工作。
04
带隙基准电压源的实现方式
模拟实现方式
01
02
03
运算放大器
使用运算放大器来调整和 稳定带隙基准电压,以实 现高精度和低噪声的输出 。
电阻和电容
通过精密电阻和电容来构 建带隙基准电压源,以实 现温度补偿和稳定性。
差分放大器
使用差分放大器来提高带 隙基准电压的精度和线性 度,以减小温度和电源电 压变化的影响。
数字实现方式
查找表
使用查找表来存储不同温度下的带隙基准 电压值,通过查表方式实现温度补偿。
数字滤波器
使用数字滤波器来处理带隙基准电压的输 出,以提高其稳定性和精度。
数字控制环路
使用数字控制环路来调整带隙基准电压的 输出,以实现高精度和低噪声的性能。
混合实现方式
模拟与数字相结合
将模拟和数字技术相结合,以实现高性能的带隙基准电压源。例如,可以使用 模拟电路来实现温度补偿和稳定性,同时使用数字电路来实现高精度和低噪声 的性能。

bandgap带隙基准源电路

bandgap带隙基准源电路

bandgap带隙基准源电路Bandgap带隙基准源电路是一种用于产生带隙基准电压的电路,它在模拟电路设计和集成电路设计中具有重要的作用。

带隙基准电压是一种与温度和电源电压无关的直流电压,它可以用于电路的偏置、ADC的基准、温度传感器等。

带隙基准源电路的设计原理是基于硅材料的带隙能量,它的带隙能量为1.12eV,对应于温度为273.15K。

带隙基准源电路的核心思想是将带隙能量转化为直流电压,并通过一定的放大和调节电路,得到温度和电源电压无关的基准电压。

带隙基准源电路的基本结构包括三个部分:偏置电路、带隙电压产生电路和放大电路。

其中,偏置电路用于产生一个与电源电压无关的直流电流,带隙电压产生电路用于将带隙能量转化为直流电压,并且放大电路用于调节带隙基准电压的大小和精度。

偏置电路通常采用一个PNP晶体管和一个电阻组成,PNP晶体管的基极-发射极电压作为偏置电压。

这个偏置电压具有负的温度系数,即随着温度的升高,它的值会减小。

为了使整个电路的温度系数为零,需要将这个偏置电压与一个具有正温度系数的电压进行补偿。

带隙电压产生电路通常采用两个晶体管和电阻组成,其中一个晶体管的基极-发射极电压作为带隙电压,另一个晶体管的基极-发射极电压具有正的温度系数。

通过调节两个晶体管的发射极电流比值,可以得到一个与温度无关的带隙电压。

放大电路用于调节带隙基准电压的大小和精度。

通常采用一个高精度、低噪声的放大器,将带隙基准电压进行放大和调节。

放大器的增益和带宽需要满足一定的要求,以确保带隙基准电压的精度和稳定性。

在实际应用中,带隙基准源电路还需要考虑一些其他的因素,如电源噪声、温度范围、功耗等。

为了实现高精度的带隙基准电压,需要采用一些优化设计方法,如低噪声电源、温度补偿技术、自偏置电路等。

在实际应用中,带隙基准源电路有着广泛的应用。

它可以用于各种类型的模拟电路和数字电路中,如运算放大器、比较器、ADC、DAC、PLL等。

它可以提供高精度的基准电压,帮助这些电路实现高精度、低噪声、稳定的性能。

带隙基准电压源(Bandgap)设计范例

带隙基准电压源(Bandgap)设计范例

五. 输出输入信号线时序图
VIN 、ENB、 BIAS_EN 、BIAS2_EN 为输入信号,VREF 、 BIAS 、BIAS2 为 输出信号。
图 1.3
BANDGAP 模块输入输出时序关系图
六. 等效架构图原理分析
BANDGAP 模块是一个带隙基准结构。 带隙基准的工作原理是根据硅材料的 带隙电压与电压和温度无关的特性,利用△VBE 的正温度系数与双极型晶体管 VBE 的负温度系数相互抵消,实现低温漂、高精度的基准电压。双极型晶体管提 供发射极偏压 VBE;由两个晶体管之间的△VBE 产生 VT ,通过电阻网络将 VT 放 大 a 倍;最后将两个电压相加,即 VREF=VBE+aVT ,适当选择放大倍数 a ,使两 个电压的温度漂移相互抵消, 从而可以得到在某一温度下为零温度系数的电压基 准。下面详细推导这个原理。 一般二极管上电流和电压的关系为:
Q12 和 Q19 的电流相等;R19、R20、R21 和二极管连接的 Q11 组成分压网络, 将 Q12、Q19 产生的 ? VBE 放大(R19+R20+R21)/R21 倍后与 VBE11 相加,产 生基准电压 VREF ;放大管 QX7 、Q18 和负载管 Q10 组成符合放大电路,将 IC19 和 IC12 的差值放大,反馈到分压网路中的 R21,从而调整 Q12、Q19 的工作点, 保证 IC19 等于 IC12 ;电容 C2 和 R23 用来进行频率补偿。 电流偏置 IBias2 产生电路(图 2(c)) :由 P39、Q3、R8 组成。Q3 的基极连 接 VREF ,其射极电位即 R8 的一端电位 VEQ3=VREF -VBEQ3,与电源电压无关, 从而流过电阻 R8 的电流与电源无关,即 IBias2 与电源无关。 1.使能原理: ENB 高电平时,使能关断有效。当 ENB 为高电平时,使能管 N15、N18、 N17 工作,则 N19 的漏极电压、P8 的漏极电压、VREF 被拉到低电平,电路关 断。 BIAS_EN 低电平时,使能关断有效。当 BIAS2_EN 低电平时,使能管 P13 工作,P7、P1 的栅极即 Bias 为高电平,电流偏置为 0,同时,基准电压 VREF 为零电平。 BIAS2_EN 低电平时,使能关断有效。当 BIAS_EN 低电平时,使能管 P34 工作,Bias2 为高电平,电流偏置 IBias2 为 0。 2.启动原理 P14、R15、N19、N16 组成启动电路。启动过程:ENB 为低电平,当未启 动时,P7、P8 两支路的电流为 0,此时 P8 的漏极电压为 0 电位,N19 不通,N19 的漏极为高电位,此时 N16 管导通,形成从电源到地的通路 R12、P7、N16,使 P7 有电流流过,从而打破 0 电流的状态;之后 P8 漏极电位上升, N19 导通, N16 截止,启动过程结束。

带隙基准电路的基本原理电路核心以及误差源和抑制比的分析

带隙基准电路的基本原理电路核心以及误差源和抑制比的分析

带隙基准电路的基本原理电路核心以及误差源和抑制
比的分析
 近年来,由于集成电路的飞速发展,基准电压源在模拟集成电路、数模混合电路以及系统集成芯片(SOC)中都有着非常广泛的应用,对高新模拟电子技术的应用和发展也起着至关重要的作用,其精度和稳定性会直接影响整个系统的性能。

因此,设计一个好的基准源具有十分现实的意义。

1 带隙基准电路的基本原理
 带隙基准电压源的目的是产生一个对温度变化保持恒定的量,由于双极型晶体管的基极电压VBE,其温度系数在室温(300 K)时大约为-2.2 mV/K,而2个具有不同电流密度的双极型晶体管的基极-发射极电压差VT,在室温时的温度系数为+0.086 mV/K,由于VT与VBE的电压温度系数相反,将其乘以合适的系数后,再与前者进行加权,从而在一定范围内抵消VBE的温度漂移特性,得到近似零温度漂移的输出电压VREF,这是带隙电压源的基本设计思想。

 1.1 带隙基准电压源核心电路
 本文提出的电路核心结构如图1所示,在电路中双极晶体管构成了电路的。

带隙基准电压源BandGap的调节与理论分析

带隙基准电压源BandGap的调节与理论分析

Cascode电路结构
为保证NM20与NM21处的电压保持跟随,采用 Cascode结构使得Vo1与Vo2稳定在近似相等的电压, 那么有:
VBE1 RI VBE 2 RI VBE1 VBE 2 VT ln n VO2 VBE 2 VT ln n
产生一个和绝对温度成正比的PTAT电流。 这里的Cascode结构主要是近似为一个电路源使得 流过Q4,Q5这两条电路的电流相等使得Vo1与Vo2 VO 2稳定在近似相等的电压,所以在调试cascode电路 时要使输出电阻尽可能的大。
BandGap电路仿真结果分析
从BandGap电路的仿真结果分析得出,电路在3.3V时
候工作的比较稳定,输出的基准电压为1.235V到 1.265V之间,温漂系数低于20ppm(但是ss情况下为 26),当电源电压为3.0V或者3.6V时,在其他的不 同工艺角(tt,ff,ss,sf,fs)下,输出的基准电压 波动范围较大,且温漂系数大于20ppm(3.6V,ss情 况下为13ppm以及3v时,ff情况下为15ppm)。3V各 个工艺角下的基准电压输出范围为1.235V到1.255V 之间,3.6V各个工艺角下的基准电压输出范围为 1.265V到1.275V之间。
mV 。 K
VBE 的温度系数与温度有关。
正温度系数电压
若两个双极晶体管工作在不相等的电流密度下,那
么基极-发射极电压的差值就与绝对温度成正比。 nI0 I0 VBE VBE1 VBE 2 VT ln VT ln VT ln n I S1 IS2
VBE k ln Βιβλιοθήκη T q与温度关系变化的确定。
带隙电压基准的基本原理:将两个拥有相反温度系
数的电压以合适的权重相加,最终获得具有零温度 系数的基准电压。

带隙基准电压源(Bandgap)设计范例

带隙基准电压源(Bandgap)设计范例
NO.1 Bandgap 模块 一. 原理图
图 1.1
Bandgap 模块线路图
二. 等效架构图
(a)
(b)
(c) 图 1.2 Bandgap 模块等效原理图
三. 电路功能描述
正常工作时,Bandgap 模块为系统提供稳定、高精度的 1.28v 的基准电压, 并为其它电路模块提供稳定的偏置电流。
四. 输出、输入信号线功能描述
I = I S (e qVB E / kT − 1)
(1.1) 当 VBE >> kT / q 时, I ≈ I S e q.VBE / k .T
VBE = VT . ln( I ) IS
(1.2) 其中 VT = kT 为热电压,k 是 Boltzmann 常数,q 是电荷量。 q
图 1.2(b) 是参考电压产生的实际等效架构电路, R19 、R20 、R21 、Q11 和 Q12、Q19 构成带隙电压产生器的主题部分,由 Qx10 、Qx8 、 Q19、 Qx7 、 Q10 以及 Q18 组成了放大器及补偿电路,保证了参考电压输出的稳定。 由运算放大器的性质,得:
Q12 和 Q19 的电流相等;R19、R20、R21 和二极管连接的 Q11 组成分压网络, 将 Q12、Q19 产生的 ? VBE 放大(R19+R20+R21)/R21 倍后与 VBE11 相加,产 生基准电压 VREF ;放大管 QX7 、Q18 和负载管 Q10 组成符合放大电路,将 IC19 和 IC12 的差值放大,反馈到分压网路中的 R21,从而调整 Q12、Q19 的工作点, 保证 IC19 等于 IC12 ;电容 C2 和 R23 用来进行频率补偿。 电流偏置 IBias2 产生电路(图 2(c)) :由 P39、Q3、R8 组成。Q3 的基极连 接 VREF ,其射极电位即 R8 的一端电位 VEQ3=VREF -VBEQ3,与电源电压无关, 从而流过电阻 R8 的电流与电源无关,即 IBias2 与电源无关。 1.使能原理: ENB 高电平时,使能关断有效。当 ENB 为高电平时,使能管 N15、N18、 N17 工作,则 N19 的漏极电压、P8 的漏极电压、VREF 被拉到低电平,电路关 断。 BIAS_EN 低电平时,使能关断有效。当 BIAS2_EN 低电平时,使能管 P13 工作,P7、P1 的栅极即 Bias 为高电平,电流偏置为 0,同时,基准电压 VREF 为零电平。 BIAS2_EN 低电平时,使能关断有效。当 BIAS_EN 低电平时,使能管 P34 工作,Bias2 为高电平,电流偏置 IBias2 为 0。 2.启动原理 P14、R15、N19、N16 组成启动电路。启动过程:ENB 为低电平,当未启 动时,P7、P8 两支路的电流为 0,此时 P8 的漏极电压为 0 电位,N19 不通,N19 的漏极为高电位,此时 N16 管导通,形成从电源到地的通路 R12、P7、N16,使 P7 有电流流过,从而打破 0 电流的状态;之后 P8 漏极电位上升, N19 导通, N16 截止,启动过程结束。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

bandgap带隙基准源电路
带隙基准源电路是一种用于产生稳定的电压参考的电路。

在集成电路设计中,带隙基准源电路常用于提供稳定的参考电压,用于比较、校准和补偿其他电路的输出。

带隙基准源电路基于带隙参考电压。

带隙参考电压是一种与温度无关并且高度稳定的电压值。

这种电压通过利用半导体材料的物理特性来实现。

带隙基准源电路通常使用两个电流源和一个比较器来创建一个电压比较器,并通过反馈来调整电流源,以便产生恒定的参考电压。

带隙基准源电路的主要优点是其输出电压与温度无关,并且具有较高的精度和稳定性。

这使得它非常适合于需要高精度参考电压的应用,如模拟电路、传感器和ADC(模数转换器)等。

带隙基准源电路的设计可以根据具体的应用需求进行调整。

例如,可以通过改变电流源的大小来调整输出电压的大小,或者通过添加校准电路来提高输出电压的准确性。

总的来说,带隙基准源电路是一种重要的电路设计,它提供了稳定、精确和与温度无关的参考电压,可用于许多应用中。

相关文档
最新文档