带隙基准设计实例

合集下载

无运放带隙基准电路设计

无运放带隙基准电路设计

无运放带隙基准电路设计
运放带隙基准电路(opamp bandgap reference circuit)是一种基于运放的电路,用于提供稳定的参考电压。

它的设计基于运放的放大特性和电压反馈机制,通过差分放大和反馈调整,产生一个相对稳定的参考电压。

下面是一种常见的运放带隙基准电路的设计:
1. 选择一个适当的运放芯片,具有低噪声、高增益和低温漂移等特性。

2. 将运放芯片的非反相输入端与反相输入端相连,形成一个差分输入。

3. 将一个稳定的参考电压Vref1与非反相输入端相连。

4. 将运放芯片的反相输入端与一个电阻R1相连,然后将R1与一个稳流二极管D1的阴极相连。

5. 通过调整R1的值,使得二极管D1的电流可以产生一个正向电压降,并且与稳定的参考电压Vref1相等。

6. 将运放芯片的输出端与R1与D1的连接处相连,形成一个反馈回路。

7. 调整运放芯片的反馈电阻R2的值,使得输出电压与稳定的参考电压Vref2相等。

通过以上设计,运放正向反馈的放大特性和电压反馈机制可以保证输出电压与参考电压的稳定性。

同时,稳定的参考电压Vref1的产生通过差分放大和反馈调整的方式可以减少温度、电源等参数的影响。

需要注意的是,具体的设计参数需要根据具体的应用要求来确定,比如参考电压的稳定性要求、输出电压的范围等。

同时,在实际设计过程中,还需要考虑电源稳定性、电路布局和滤波等因素,以确保设计的稳定性和可靠性。

最新(拉扎维)第十一章带隙基准(模拟cmos集成电路设计)

最新(拉扎维)第十一章带隙基准(模拟cmos集成电路设计)
Bandgap Ref Ch. 11 # 10
华大微电子:模拟集成电路原理
与温度无关的偏置
正温度系数电压
V B E V B1E V B2E V Tln n IS 1 0 IV Tln IIS 0 2 V Tln VBE k lnn T q
Bandgap Ref Ch. 11 # 11
华大微电子:模拟集成电路原理
本讲内容
华大微电子:模拟集成电路原理
• 概述 • 与电源无关的偏置 • 与温度无关的基准 • PTAT电流的产生 • 恒定Gm偏置 • 实例分析
Bandgap Ref Ch. 11 # 19
华大微电子:模拟集成电路原理
PTAT电流的产生
Bandgap Ref Ch. 11 # 20
华大微电子:模拟集成电路原理
(拉扎维)第十一章带隙基准 (模拟cmos集成电路设计)
本讲内容
华大微电子:模拟集成电路原理
• 概述 • 与电源无关的偏置 • 与温度无关的基准 • PTAT电流的产生 • 恒定Gm偏置 • 实例分析
Bandgap Ref Ch. 11 # 2
本讲内容
华大微电子:模拟集成电路原理
• 概述 • 与电源无关的偏置 • 与温度无关的基准 • PTAT电流的产生 • 恒定Gm偏置 • 实例分析
Bandgap Ref Ch. 11 # 13
华大微电子:模拟集成电路原理
与温度无关的偏置
Bandgap Ref Ch. 11 # 14
华大微电子:模拟集成电路原理
与温度无关的偏置
VoutVB2 E1R R3 2VTlnnVOS
Bandgap Ref Ch. 11 # 15
华大微电子:模拟集成电路原理

《带隙基准电压源》课件

《带隙基准电压源》课件

带隙基准电压源 的发展趋势与展 望
技术创新方向探讨
提高精度和稳定 性:通过改进电 路设计和材料选 择,提高基准电 压源的精度和稳 定性。
降低功耗:通过 优化电路设计和 采用低功耗器件, 降低基准电压源 的功耗。
集成化:将基准 电压源与其他电 路模块集成,提 高系统的集成度 和可靠性。
智能化:通过引 入智能控制算法, 提高基准电压源 的自适应能力和 抗干扰能力。
测试设备:包括电压源、电 流源、示波器、万用表等
测试步骤:按照测试标准进行, 包括设置参数、测量数据、分 析结果等
评估标准及流程详解
评估标准: 精度、稳 定性、温 度特性、 电源抑制 比等
评估流程: 测试准备、 测试实施、 数据分析、 结果评估 等
测试准备: 选择合适 的测试设 备、设置 测试条件 等
感谢您的观看
汇报人:PPT
案例一:用于ADC/DAC转换器的基准电压源设计
应用背景:ADC/DAC转换器需要稳定的基准电压源 设计要求:高精度、低噪声、低功耗 带隙基准电压源的优势:温度稳定性好、精度高、功耗低 设计方法:选择合适的带隙基准电压源芯片,进行电路设计和调试 应用效果:提高了ADC/DAC转换器的性能和稳定性
案例二:用于PLL锁相环的基准电压源设计
设计过程中需要注意电压源的稳定性和精度 优化建议:采用高精度的电阻和电容,提高电压源的稳定性 注意电源噪声对电压源的影响,采用滤波器进行抑制 优化建议:采用低噪声的电源,提高电压源的精度 注意温度对电压源的影响,采用温度补偿技术进行校正 优化建议:采用高精度的温度传感器,提高温度补偿的精度
带隙基准电压源 的应用案例分析
功耗:带隙基准电压源的功耗较低, 适合在低功耗系统中使用

一种CMOS带隙基准的软启动电路设计

一种CMOS带隙基准的软启动电路设计

( 系统加 电后 , 1 ) 只要 E N是低 电平 , 电路产生偏置 电
v C c

V C C
lI与 V C aB 、 C
CI与 V C oo ) C
图 4S A T中 的偏 置 电流 T R


工作 , 当 在某一个值 时 , 电流 达 到峰值 ( 的具 体 两者
电路上 电后 ,T R S A T为基准源 的补偿 电容提供 充电 电流 , 启动带隙基准 电路 , 并在启动后 , 关断充 电电流 。 它
2 仿真验证
对 电路 进行 了性 能 指标 的仿 真 验 证 。模 型 基 于
3 2

种 C O 带隙基准的软启动电路设计 MS
电子 质量 ( 1第0 期) 22 6 0
T ¨^蹲 E

参考文献 :



嚣 ’ ,

图 8V C 3O T MP 2 ℃ , d / TS F , 动 特性 曲线 图 C = .V,E = 5 Mo e T ,S,F启 - - =
[ R N O - R .ur te i et w vl g,w 1 I C N MO A G AC r n fc n, o ae o ] e i l o t l
d o - u euaosD] h h ss t naGeri nt rp o t g ltr[ . D T ei A l t: ogaI s — r P , a i
t t fT c n lg ,9 67 7 . u eo e h oo y 1 9 :6— 9
[] AY PR, YE HU TPJ ayi a dD s n 2GR ME R R G, RS . l s n e i An s g o n lg nertdCrut[ .o r dt nNe ok: f ao tgae i i M] ut E io . w Y r A I c s F h i

cadence-带隙基准电压的设计

cadence-带隙基准电压的设计

c ade n c e-带隙基准电压的设计(共8页)-本页仅作为预览文档封面,使用时请删除本页-带隙基准电压的设计王旭 113163一、设计指标VDD=3V~6V Vref = PPM<20ppm/℃二、电路原理图三、原理分析1、核心思想:利用PTAT 电压和双极性晶体管发射结电压的不同的温度特性,获取一个与温度及电源电压无关的基准电压。

2、详细机理分析 带隙电压基准的基本原理:0=∂∂+∂∂⋅-+T V T V βα0V V T ++∂⎛⎫> ⎪∂⎝⎭0V V T --∂⎛⎫< ⎪∂⎝⎭αβ∑REF V V αβ+-=⋅+⋅基准电压表达式 : 双极型晶体管,其集电极电流(IC )与基极-发射极电压(VBE )关系为:其中, 利用此公式推导得出VBE 电压的温度系数为其中, 是硅的带隙能量。

当 时这个温度系数本身就与温度有关。

正温度系数的产生机理:如果两个同样的晶体管(IS1= IS2= IS ,IS 为双极型晶体管饱和电流)偏置的集电极电流分别为nI0和I0,并忽略它们的基极电流,那么它们基极-发射极电压差值为因此,VBE 的差值就表现出正温度系数这个温度系数与温度本身、集电极电流都无关。

利用上面的正,负温度系数的电压,可以设计一个零温度系数的基准电压,有以下关系:因为因此令, 只要满足上式 ,便可得到零温度系数的VREF 。

故有:REF VV Vαβ+-=⋅+⋅exp()C S BE T I I V V =T V kT q=(4)BE T g BEV m V E q V TT -+-∂=∂ 1.12g E eV =1.5m ≈-750BE V mV≈300T K =1.5BE V T mV C ∂∂≈-︒12BE BE BE V V V ∆=-0012ln ln ln T T T s s nI I V V V n I I =-=ln 0BE V kn T q ∂∆=>∂(ln )REF BE T V V V n αβ=⨯+⨯1.5/BE V T mV C ∂∂≈-︒0.087/T V T mV C ∂∂≈︒1α=(ln )(0.087/) 1.5/n mV C mV C β⨯︒=︒(ln )17.2n β⨯≈nV R R V V T BE REF ln 123+=结合以上基本原理,现返回到最初选择的拓扑图,分别采用电流镜接法,M3、M4使得I1与I2电流相等,而M1与M2的电流镜接法又使得X 与Y 点的电位相等。

带隙基准设计

带隙基准设计

带隙基准参数设计基准源核心电路参数设计首先,考虑两个三极管发射极面积之比N的选取。

由上述公式可知:N值越大,则R2/R3的比例就越小,从而可以减小电阻的版图面积。

但是N值越大,也会导致三极管的静态电流增大。

折中选取N=8,这样版图可以采用中心对称布局,有利于减少匹配误差。

假设选取的工艺下的三极管的电流大于1uA时,V BE的输出曲线较为平滑。

从节省功耗的角度,假定流过三极管集电极的电流为1uA。

由上述公式可知,当N=8、IR3=1uA、T=300K时,计算得:考虑到R1和R2的数值数倍于R3,则电阻值太大,消耗版图面积太大。

因此,作为折中,选取R3为10K,电流值为5uA左右。

确定了以上参数后,考虑一阶补偿时R2的取值。

对上述公式在T0处求导可得:令上式为零,即进行一阶补偿,可得:化简得:代入参数,V G0=1.205V,查图可知V EB1在5uA的偏执电流下约为716mV,300K温度下V T0=26mV,r=3.2,a=1(三极管的偏置电流为PTA T),N=8,计算得:为了产生600mV的输出电压,需要调整R4的值。

由上式可以推出:在T=300K条件下代入各值,求得R4=48.5K。

考虑到各个电阻阻值偏大,故将各电阻设为高阻多晶型。

然而,高阻多晶虽然有很高的方阻,但是工艺稳定性不太好,故后期的Trimming 工序是必不可少的。

最后,确定电流镜的尺寸。

采用适当偏小的宽长比,可以提高电流镜的过驱动电压,进而可以减小电流镜阈值电压失配所带来的影响。

另外,沟道长度调制效应也是一个重要影响因素,考虑到低压应用不能使用Cascode结构,可以增大器件的栅长来减小沟道长度调制效应的影响。

但是过大的沟道长度会导致版图的面积的增加,需要在性能和版图面积之间做出折中。

经过计算与迭代仿真,选取M1、M2和M3的宽长比为10um/1um。

注意电流镜的版图设计中需采用中心对称布局以减小误差。

综上,通过理论分析,确定带隙核心电路的器件参数为:运算放大器设计运放的性能对带隙的性能有着直接的影响。

常见的带隙基准电压产生电路

常见的带隙基准电压产生电路咱们今天来聊聊一个挺有意思的话题——常见的带隙基准电压产生电路。

大家可能听了这名字就有点蒙圈:“带隙?基准电压?这不是啥高大上的科技吗?”别担心,咱们简单聊聊,保准让你一听就明白。

这个电路就像咱们日常生活中的“电池”,它的作用呢,就是给电路提供一个稳定的电压来源。

简单说,就是它不管外界的环境变化多大,电压保持不变,给电路提供了一个可靠的参照值。

可能有些朋友会想:“这不是电压稳定器吗?”嗯,差不多,但它更精确一些。

这个“带隙基准”这名字怎么听着有点高深呢?其实就是指它在晶体管的带隙区间里找到了一个稳定的电压点。

你想啊,电压这东西,可不像你我生活中的情绪,时高时低的,要稳定它可不是那么容易的事。

你想,要在复杂的环境中找到一个不会随便“掉链子”的电压参考点,那可真得动点脑筋。

说到这里,很多人都会问,带隙基准电压产生电路到底是怎么工作的呢?好吧,咱们就来深挖一下!简单来说,这个电路通常包含几个关键部分——像是两个晶体管,差分放大器,还有一些电阻和运算放大器。

别看这些名字很“技术”,其实它们的任务就是通过一些小小的巧妙设计,调节电压,直到找到那个最稳定的点。

其实这就像你去一间热锅上的蚂蚁的厨房,找寻那最适合的火候,不高不低,正好那样。

好啦,咱们不说太深的,简单来说,这种电路的工作原理就是通过两个不同的晶体管(它们的“温度系数”不同)来“对比”出一个非常稳定的电压。

换句话说,它就像是一个“比谁的电压更稳定”的比赛,结果它通过对比赢得了这个比赛,然后把这个稳定电压作为参照输出。

这就是带隙基准电压的奥秘所在。

不过,别以为它简单哦!为了保证稳定性,电路中的每一个细节都不能出错。

你想啊,这个带隙基准电压产生电路的精度要求高,环境变化大,任何一个小小的干扰,都可能让它“失去方向”。

就像我们开车上路,忽然遇到个大坑,轮胎压坏了,整车都会受影响。

所以呢,设计师们可得把每个环节都考虑得非常周到,一点不马虎。

带隙基准电路设计

带隙基准电路设计
嘿,朋友们!今天咱来聊聊带隙基准电路设计。

这玩意儿啊,就像是电路世界里的定海神针!
你想想看,在那复杂纷繁的电路海洋中,要是没有一个可靠的基准,那不就像船在大海上没了指南针,瞎转悠嘛!带隙基准电路就是那个能给其他电路指明方向、提供稳定参照的宝贝。

它就好比是一场比赛中的裁判,公正公平地给出标准,让其他电路元件能按部就班地工作。

要是没有它,那电路里还不得乱套呀!各种信号乱跑,功能都没法正常实现了。

设计带隙基准电路可不容易哦!得像个细心的工匠,一点一点地雕琢。

从选择合适的元件开始,这就跟挑食材做饭一样,得挑新鲜的、好的食材,才能做出美味的菜肴。

元件选不好,那后面可就难办咯!
然后呢,还得精心设计电路的布局,这可不是随便摆摆就行的。

就好像搭积木,得考虑怎么搭才最稳固、最合理。

每个元件的位置都有讲究,牵一发而动全身呐!
在调试的过程中,那可得有耐心。

有时候就像解谜一样,一点点地找问题,解决问题。

要是没耐心,那肯定不行呀!难道遇到点困难就打退堂鼓啦?那可不行!
而且啊,这带隙基准电路还得适应各种环境呢!就像人一样,得能经得住各种考验。

热了不行,冷了也不行,得始终保持稳定可靠。

你说它容易吗?
咱再想想,要是没有带隙基准电路,那些电子设备还能这么好用吗?手机说不定一会儿信号好,一会儿信号差;电脑可能会时不时地出故障。

哎呀,那可太糟糕了!
所以说呀,带隙基准电路设计真的太重要啦!咱可得重视起来,好好研究,把它设计得稳稳当当的。

让我们的电子世界因为它而更加精彩,更加可靠!这就是我对带隙基准电路设计的看法,你们觉得呢?。

带隙电压基准的设计_毕业设计

Keywords:MOS device; bandgap voltage reference; extraction; output voltage temperature coefficient;
0
基准电压源(Reference Voltage)是指在模拟电路或混合信号电路中用作电压基准的具有相对较高精度和稳定度的参考电压源。它的温度稳定性以及抗噪性能影响着整个电路系统的精度和性能。模拟电路使用基准源,或者是为了得到与电源无关的偏置,或是为了得到与温度无关的偏置,其性能好坏直接影响电路的性能稳定,可见基准源是子电路不可或缺的一部分,因此也可以说性能优良的基准源是一切电子系统设计最基本和最关键的要求之一。
1.1
1
N型MOS(NMOS)器件制作在p型衬底上(衬底也称作bulk或者body),两个重掺杂n区形成源端和漏端,重掺杂的(导电的)多晶硅区(通常简称poly)作为栅,一层二氧化硅使栅与衬底隔离。器件的有效作用就发生在栅氧下的衬底区。注意,这种结构中的源和漏是对称的。
源漏方向的栅的尺寸叫栅长L,与之垂直方向的栅的尺寸叫做栅宽W。由于在制造过程中,源/漏结的横向扩散,源漏之间实际的距离略小于L。定义 ,式中 称为有效沟道长度, 是沟道总长度,而 是横向扩散的长度。 与氧化层厚度 对MOS电路的性能起着非常重要的作用。因此,MOS技术发展中的主要推动力就是不是器件的其他器件参数退化而一代一代的减少这两个尺寸。从简单的角度来看,PMOS器件可通过将所有掺杂类型取反来实现,在实际中,NMOS和PMOS器件必须在同一晶片上,也就是说做在相同的衬底上。NMOS和PMOS晶体管的区别在于每个PFETs可以出于各自独立的n阱中,而所有NFETs则共享同一衬底。
(1.2)
其中 为过驱动电压,称W/L为宽长比,以上两等式是CMOS模拟电路设计的基础,它描述了 与工艺常数 ,器件的尺寸W和L以及栅和漏相对于源的电位之间的关系。

一种带隙基准电路电压源设计

一种带隙基准电路电压源设计摘要:针对传统带隙基准源仅采用一阶温度补偿技术导致温度系数较差的问题就需要采用高阶曲率补偿电路。

曲率补偿的方法是通过在基准源输出电压上叠加一个温度的指数函数,从而实现高阶补偿的目的。

电路基于tsmc0.18um工艺,Candence行仿真。

测试结果表明,温度由-40℃变化到125℃时,使用高阶温度补偿后带隙基准电压的温度漂移系数为6.60ppm/℃电源抑制比62.81dB。

关键词:带隙基准电路、曲率补偿引言基准源是模拟电路或者数模混合信号集成电路的重要组成部分,基准源的建立要求是与电源、工艺和温度无关的电压源或者电流源,基准源在整个电路或者系统中通过对基准电压比来处理输入信号,此时基准的性能会直接影响电路或者系统的性能。

所以基准源应该具有的抗干扰能力,此时就要降低基准源的温度系数,同时保证有较大的抑制比。

一般的带隙基准电路只采用一阶温度补偿的策略来实现基准源的设计,但是要降低温度系数,就要采用高阶温度补偿策略。

把一阶线性电流引人三极管的集电极,利用三级管基极-发射极电压的叠加得到产生一个具有高阶温度系数补偿电流,然后将高阶温度系数补偿电流产生的电压与一阶温度补偿电流产生的电压叠加实现多阶温度补偿,此外可以调整电阻的阻值来控制正带隙电压的温度特性,利用电路中的运放与负反馈来提高电路的电源电压抑制比。

1.电路设计已知带隙基准是由正温度系数电压(PTAT)与负温度系数电压(CTAT)按照一定比例组合产生与温度无关的基准电压(Vref)。

传统基准源设计由pnp三极管Q1与Q2的VBE之差产生了PTAT电压,再通过R1将PTAT电压转化为电流输出,然后利用运放出入端V+、V-相同输出电压为0V,运放将R1产生的PTAT电流通过Q5、Q6的电流镜拷贝输出,R2作为负载和Q3一起将PTAT电流转化为电压输出,电路所有的三极管都为二极管连接方式。

1-1传统带隙基准源1.1研究方案带隙基准电压源的基本原理就是用具有正温度系数的PTAT电压与具有负温度系数的VBE 电压相叠加,从而形成低温度系数的输出电压。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

带隙基准设计实例-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
带隙基准电路的设计
基准电压源是集成电路中一个重要的单元模块。

目前,基准电压源被广泛应用在高精度比较器、A/ D 和D/ A 转换器、动态随机存取存储器等集成电路中。

它产生的基准电压精度、温度稳定性和抗噪声干扰能力直接影响到芯片,甚至整个控制系统的性能。

因此,设计一个高性能的基准电压源具有十分重要的意义。

自1971 年Robert Widla 提出带隙基准电压源技术以后,由于带隙基准电压源电路具有相对其他类型基准电压源的低温度系数、低电源电压,以及可以与标准CMOS 工艺兼容的特点,所以在模拟集成电路中很快得到广泛研究和应用。

带隙基准是一种几乎不依赖于温度和电源的基准技术,本设计主要在传统电路的基础上设计一种零温度系数基准电路。

一 设计指标:
1、 温度系数:ref F V
TC V T ∆=∆ 2、 电压系数:ref F dd
V VC V V ∆=∆ 二 带隙基准电路结构:
三 性能指标分析
如果将两个具有相反温度系数(TCs )的量以适合的权重相加,那么结果就会显示出零温度系数。

在零温度系数下,会产生一个对温度变化保持恒定的量V REF 。

V REF = a 1V BE + a 2V T ㏑(n)
其中, V REF 为基准电压, V BE 为双极型三极管的基极-发射极正偏电压, V T 为热电压。

对于a 1和a 2的选择,因为室温下/ 1.5m /BE T V V K ∂∂≈-,然而/0.087m /T V T V K ∂∂≈+,所以我们可以选择令a 1=1,选择a 2lnn 使得2(ln )(0.087/) 1.5/n mV K mV K α=,也就是2ln 17.2n α≈,表明零温度系数的基准为:
17.2 1.25REF BE T V V V V ≈+≈
对于带隙基准电路的分析,主要是在Cadence 环境下进行瞬态分析、dc 扫描分析。

1、瞬态分析
电源电压Vdd=5v 时,Vref ≈,下图为瞬态分析图。

2.电压系数的计算:
下图为基准电压Vref 随电源电压Vdd 变化dc 分析扫描。

扫描电压范围为:3到6v ,基准电压Vref 为,保持基本不变。

由图可得啊A 、B 两点的电压差△V=;
Vref 值取A 、B 两点的电压平均值,Vref=(+)/2=;
又△Vdd=6-3=3v 则:ref 0.006
1.2383
F V VC V Vdd ∆==∆⨯≈1615ppm/v 3、 温度系数的计算:
下图为基准电压Vref 温度temperature 变化的dc 分析扫描。

温度变化范围:-20到130℃变化时,基准电压Vref 的在到之间变化,变化幅度为,基本保持不变。

其中△T=150℃, 则ref
0.0061.238150
F V TC V T ∆==∆⨯≈℃.
四 Candence 仿真全过程
1、Candence 的启用:
(1)进如Candence 用户界面后,点击鼠标左键,选择Tools ->Terminal ;
(2)在鼠标闪亮出输入命令icfb&,点击enter 键,Candence 已启动,弹出下面对话框;
(3)在上面话框中,选择File ->New ->library ,在Name 中输入你所要建库的名字,如在本例中输入“lwl ”,点击ok
(4)选择File->New->Cellview,library选择lwl;cell name输入单元的名字,如:ref;view name为schematic;Tool选择composer-schematic;点击ok,关闭对话框,此时启动virtuoso。

2 在Virtuoso下画电路图
(1)Virtuoso选择红色标注的选项,弹出Add Instance对话框,library中选择analogLib库,cell中选择你所需要的nmos、pmos或电阻等元件。

如选择nmos4,点击view中的symbol,直接把鼠标拖回Virtuoso中,点击一下鼠标左键,nmos 关选中。

相同的方法选择其他管子,连接电路图。

点击check and save,进行电路检查。

3、瞬态分析
(1)在Virtuoso中选择Tools->Analog Environment,弹出以下对话框
(2)选择setup->model librarys,弹出以下对话框
(3)点击browse,双击../(Go up one directory),双击Model/,双击、单击,点击ok,在上面对话框中,section(opt.)下写入tt,点击Add-> ok。

(4)点击setup,stimulation,弹出下面对话框,选择Global Sources,DC Voltage=5v,点击enable->change->ok。

(5)在Cadence对话框中,Analyses->choose..->选中tran,stop time中写入20u,点击ok。

(6)在Cadence对话框中,Output->To be plotted->select on schematic.
选中输出端口Vref。

(7)在cadence对话框中,选择simulation->netlist and run.
进行瞬态分析,以下为瞬态分析电路图。

4 DC分析:Vref随电源电压Vdd变化。

(1)在cadence中,setup->stimulation->global sources,dc voltage中输入Vdd,点击enable->change->ok。

(2)在cadence中,点击variables->Edit..弹出下面对话框,输入name=Vdd, Value=0,点击Add->ok。

(3) 在cadence中,选择Analyses->choose,在弹出对话框中选择dc->Design Variables, name中填入Vdd,start=3,stop=6, sweep type选择linear->step size ->->点击ok。

(4)在cadence对话框中,选择simulation->netlist and run.
(5)在cadence对话框中,选择simulation->netlist and run.
5 DC分析:Vref随温度temperature变化
(1)在cadence对话框中, setup->stimulation->global sources,dc voltage中输入5,点击enable->change->ok.
(2)在cadence中,点击variables->Edit..弹出下面对话框,输入
name=temperature,Value=0,点击Add->ok.
(3)在cadence中,选择Analyses->choose,在弹出对话框中选择dc
->Temperature->start-stop,start=-20,stop=130, sweep type选择linear->step size->10->点击ok。

(4)在cadence对话框中,选择simulation->netlist and run.
管子参数
Mp1(nvp)1/5Mn1(nvn)3/5 Mp2(nvp)1/5Mn2(nvn)3/5 Mp3(nvp)1/5Mn3(nvn)3/5 Mp4(nvp)1/5Mn4(nvn)3/5 Mp5(nvp)1/5Q1(pnp10)1
The directory: /Home/asic01/org_design/lwl/ref2。

相关文档
最新文档