分式方程第三课时教案
人教版八年级上册数学教案:15.3分式方程(第3课时)

如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。
——高斯
做一做:1.某单位将沿街的一部分房屋出租.每间房屋的租金第二年比第一年多500元,所有房屋出租的租金第一年为9.6万元,第二年为10.2万元.(1)你能找出这一情境的等量关系吗?(2)根据这一情境,你能提出哪些问题?
2.某自来水公司水费计算办法如下:若每户每月用水不超过5 m3,则每立方米收费1.5元;若每户每月用水超过5 m3,则超出部分每立方米收取较高的定额费用.1月份,张家用水量
是李家用水量的,张家当月水费是17.5元,李家当月水费是27.5元.超出5 m3的部分每立方米收费多少元?。
可化为一元二次方程的分式方程(第3课时)八年级数学下册(沪教版)

是原方程的根
2:解方程
x2
x
3
+
3x x2
3
13 2
解:设
x2 3 x
y,则
x x2 3
1 y
原方程变为:y+ 3 = 13 y2
去分母得: 2y2 13y 6 0
解得:y1
6,
y2
1 2
当y=6时,x2 3 6 x
解得:x1 3 2 3, x2 3 2 3
当y= 1 时,x2 3 1
解得y1
2 3 , y2
1 2
当y1
2时, x 3 x2 1
2 3
去分母整理得2x2 3x 2 0
解得x 1 , 2
x2
当y2
1时, x 2 x2 1
1 2
去分母整理得x2 2x 1 0
解得x 1 2
经检验x 1 , x 2, 2
x 1 2是原方程的解
所以原方程的解是x1
象以上这种用一个字母(y)
来代替原方程中的一个较复杂
的代数式 (x2 + 2x),从而
使原方程简化,易于求解的方 法,叫换元法。
例题4:用换元法解方程
3x x2 1
x2 1 x
7 2
分析 观察方程左边的两个分式,可见
且
为数于是可通过“换元"把原方程化成较简单的分式方程.
两边都乘以2y得到
6y2 7y 2 0
44
代入原方程组各分式的分母都不为零,
所以原方程组的解为
x y
3 4 1 4
归纳
用换元法解分式方程的方法和步骤:
(1)设元、换元。 (2)解换元后的方程。 (3)把换元后方程的解还原成原未知数的
分式方程第三课时 教案doc

课题:8.5分式方程(第3课时)教学目标:会列出分式方程解决简单的实际问题,并能根据实际问题的意义检验所得的结果是否合理。
教学重点:如何结合实际分析问题,列出分式方程教学难点:分析过程,得到等量关系教学方法:探索法 教学过程:教学活动 集体讨论一、 复习巩固 1、解分式方程的一般步骤(1)去分母(2)去括号(3)移项,合并同类项(4)系数化为1(5)检验2、练习:解方程:(1)13-x =x 4;(2)1210-x +x215-=2. 二、例题讲解例4.为迎接市中学生田径运动会,计划由某校八年级(1)班的3个小组制作240面彩旗,后因一个小组另有任务,改由另外两个小组完成制作彩旗的任务。
这样,这两个小组的每个同学就要比原计划多做 4面。
如果这3个小组的人数相等,那么每个小组有多少名学生?分析:本题中的等量关系是什么?你会根据等量关系列出分式方程吗?例5、甲、乙两公司各为“见义勇为基金会”捐款30000元,已知乙公司比甲公司人均多捐款20元,且甲公司的人数比乙公司的人数多20%。
问甲、乙两公司各有多少人?例6、小明买软面笔记本共用去12元,小丽买硬面笔记本共用去21元,已知每本硬面笔记本比软面笔记本贵1。
2元,小明和小丽能买到相同本数的笔记本吗?总结用分式方程解实际问题的一般步骤:(1) 设未知数(2) 根据题意列方程(3) 解方程(4) 检验(5) 答学生练习:第68页1、2三、 思维拓展某市从今年1月1日起调整居民的用水价格,每立方米水费上涨31。
小丽家去年12月份的水费是15元,而今年7月份的水费则是30元,已知小丽家今年7月份的用水量比去年12月份的用水量多53m ,求该市今年居民用水的价格。
四、小结 五、板书设计 六、教后记。
分式方程教学设计

分式方程教学设计第1篇:分式方程教学设计分式方程(1)一、教学目标1.使学生理解分式方程的意义.2.使学生掌握可化为一元一次方程的分式方程的一般解法.3.了解解分式方程解的检验方法.4.在学生掌握了分式方程的一般解法和分式方程验根方法的基础上,使学生进一步掌握可化为一元一次方程的分式方程的解法,使学生熟练掌握解分式方程的技巧.5.通过学习分式方程的解法,使学生理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想.二、教学重点和难点1.教学重点:(1)可化为一元一次方程的分式方程的解法.(2)分式方程转化为整式方程的方法及其中的转化思想.2.教学难点:检验分式方程解的原因3.疑点及分析和解决办法:解分式方程的基本思想是将分式方程转化为整式方程(转化思想),基本方法是去分母(方程左右两边同乘最简公分母),而正是这一步有可能使方程产生增根.让学生在学习中讨论从而理解、掌握.三、教学方法启发式设问和同学讨论相结合,使同学在讨论中解决问题,掌握分式方程解法.四、教学过程(一)复习及引入新课1.提问:什么叫方程?什么叫方程的解?答:含有未知数的等式叫做方程.使方程两边相等的未知数的值,叫做方程的解.这个方程和我们以前所见过的方程不同,它的主要特点是:分母中含有未知数,这种方程就是我们今天要讨论的分式方程.(二)新课板书课题:板书:分式方程的定义.分母里含有未知数的方程叫分式方程.以前学过的方程都是整式方程.练习:判断下列各式哪个是分式方程.在学生回答的基础上指出(1)、(2)是整式方程,(3)是分式,(4)是分式方程.先由同学讨论如何解这个方程.在同学讨论的基础上分析:由于我们比较熟悉整式方程的解法,所以要把分式方程转化为整式方程,其关键是去掉含有未知数的分母.解:两边同乘以最简公分母2(x+5)得2(x+1)=5+x 2x+2=5+x x=3.如果我们想检验一下这种方法,就需要检验一下所求出的数是不是方程的解.检验:把x=3代入原方程左边=右边∴x=3是原方程的解.例2.一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用的时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?分析:设江水的流速为v千米/时,则轮船顺流航行的速度为(20+v)千米/时,逆流航行的速度为(20-v)千米/时,顺流航行100千米所用的时间为时。
华师大版数学八年级下册16.3《可化为一元一次方程的分式方程》(第3课时)教学设计

华师大版数学八年级下册16.3《可化为一元一次方程的分式方程》(第3课时)教学设计一. 教材分析《可化为一元一次方程的分式方程》是华师大版数学八年级下册第16.3节的内容。
本节课的主要内容是让学生掌握分式方程的解法,通过将分式方程转化为整式方程,让学生理解分式方程的解法实质,提高学生解决实际问题的能力。
二. 学情分析学生在八年级上册已经学习了分式的概念、性质和运算,对分式有了一定的认识。
但是,对于分式方程的解法,学生可能还比较陌生。
因此,在教学过程中,教师需要引导学生将分式方程转化为整式方程,让学生通过已有的知识解决新的问题。
三. 教学目标1.知识与技能目标:让学生掌握分式方程的解法,并能运用到实际问题中。
2.过程与方法目标:通过自主学习、合作交流,培养学生解决问题的能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,提高学生学习数学的积极性。
四. 教学重难点1.重点:分式方程的解法。
2.难点:如何将分式方程转化为整式方程,以及如何运用分式方程解决实际问题。
五. 教学方法1.自主学习:让学生在课堂上自主探究分式方程的解法。
2.合作交流:引导学生分组讨论,分享解题心得。
3.实例讲解:通过具体例子,让学生理解分式方程的解法在实际问题中的应用。
六. 教学准备1.课件:制作课件,展示分式方程的解法。
2.练习题:准备一些分式方程的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用实例引入分式方程的概念,让学生回顾分式的性质和运算。
2.呈现(10分钟)展示分式方程的解法,引导学生将分式方程转化为整式方程。
3.操练(10分钟)让学生独立解决一些简单的分式方程,巩固所学知识。
4.巩固(10分钟)讲解一些典型的分式方程案例,让学生进一步理解分式方程的解法。
5.拓展(10分钟)引导学生运用分式方程解决实际问题,提高学生的应用能力。
6.小结(5分钟)总结本节课所学内容,让学生明确分式方程的解法及其在实际问题中的应用。
《分式方程》第三课时参考教案

3.4.3 分式方程(三)●教学目标(一)教学知识点1.用分式方程的数学模型反映现实情境中的实际问题.2.用分式方程来解决现实情境中的问题.(二)能力训练要求1.经历运用分式方程解决实际问题的过程,发展抽象概括、分析问题和解决问题的能力.2.认识运用方程解决实际问题的关键是审清题意,寻找等量关系,建立数学模型.(三)情感与价值观要求1.经历建立分式方程模型解决实际问题的过程,体会数学模型的应用价值,从而提高学习数学的兴趣.2.培养学生的创新精神,从中获得成功的体验.●教学重点1.审明题意,寻找等量关系,将实际问题转化成分式方程的数学模型.2.根据实际意义检验解的合理性.●教学难点寻求实际问题中的等量关系,寻求不同的解决问题的方法.●教具准备实物投影仪投影片三张第一张:做一做,(记作§3.4.3 A)第二张:例3,(记作§3.4.3 B)第三张:随堂练习,(记作§3.4.3 C)●教学过程Ⅰ.提出问题,引入新课[师]前两节课,我们认识了分式方程这样的数学模型,并且学会了解分式方程.接下来,我们就用分式方程解决生活中实际问题.Ⅱ.讲授新课出示投影片(§3.4.3 A )[生]第二年每间房屋的租金=第一年每间房屋的租金+500元. (1) [生]还有一个等量关系:第一年租出的房屋间数=第二年租出的房屋的间数.[师]根据“做一做”的情境,你能提出哪些问题呢?在我们的数学学习中,提出问题比解决问题更重要.同学们尽管提出符合情境的问题.[生]问题可以是:每年各有多少间房屋出租?[生]问题也可以是:这两年每年房屋的租金各是多少?[师]下面我们就来先解决第一个问题:每年各有多少间房屋出租?[师生共析]解:设每年各有x 间房屋出租,那么第一年每间房屋的租金为x 96000元,第二年每间房屋的租金为x102000元,根据题意,得 x 102000=x96000+500 解这个方程,得x=12经检验x=12是原方程的解,也符合题意.所以每年各有12间房屋出租.[师]我们接着再来解决第二个问题:这两年每间房屋的租金各是多少? [生]根据第一问的答案可计算,得:第一年每间房屋的租金为1296000=8000(元), 第二年每间房屋的租金为12102000=8500(元).[师]如果没有第一问,该如何解答第二问?[生]解:设第一年每间房屋的租金为x 元,第二年每间房屋的租金为(x+500)元.第一年租出的房间为x 96000间,第二年租出的房间为500102000+x 间,根据题意,得x 96000= 500102000+x 解,得x=8000x+500=8500(元)经检验:x=8000是原分式方程的解,也符合题意.所以这两年每间房屋的租金分别为8000元,8500元.[师]我们利用分式方程解决了实际问题.现在我们再来看一个例题,我们可以从中感受到节约用水是每个公民应该关心的事情.出示投影片(§3.4.3 B )[生]审清题意,找出题中的等量关系.[师]很好.某自来水公司水费计算办法可用表格表示出来(如下表)[生]此题主要的等量关系是:1月份张家用水量是李家用水量的32. [师]怎样表示出张家1月份的用水量和李家1月份的用水量呢?[生]根据自来水公司水费计算的办法,用水量可以用水费除以单价得出,但计算时要将水费分成两部分:5 m 3的水费与超出5 m 3部分的水费.[师]下面我们就来用等量关系列出方程.[师生共析]设超出5 m 3部分的水,每立方米收费设为x 元,则1月份, 张家超出 5 m 3的部分水费为(17.5-1.5×5)元,超出 5 m 3的用水量为x 55.15.17⨯-m 3,总用水量为5+x55.15.17⨯-; 李家超出 5 m 3部分的水费为(27.5-1.5×5)元,超出 5 m 3的用水量为x 55.15.27⨯-m 3,总用水量为(5+x55.15.27⨯-) m 3 根据等量关系,得x 55.15.17⨯-+5=(x 55.15.27⨯-+5)×32 解这个方程,得x=2.经检验x=2是所列方程的根.所以超出5 m 3部分的水,每立方米收费2元.Ⅲ.随堂练习出示投影片(§3.4.3 C )[生]题中的等量关系有两个:15元钱买的软皮本的本数=15元钱买的硬皮本的本数+1本.硬皮本的价格=软皮本的价格×(1+21) [师]我们找到了等量关系,接下来请同学们在练习本上完成第1题. [生]解:设软皮本的价格为x 元,则硬皮本的价格为(1+21)x 元,那么15元钱可买软皮本x 15本,硬皮本x )21(15+本.根据题意,得, x 15= x )211(15++1解,得x=5经检验x=5是原方程的根,也符合题意,所以(1+21)x=23×5=7.5(元) 故这种软皮本和硬皮本的价格各为5元、7.5元.Ⅳ.课时小结列方程解决实际情境中的具体问题,是数学实用性最直接的体现,而解决这一问题是如何将实际问题建立方程这样的数学模型,关键则在于审清题意,找出题中的等量关系,找到它就为列方程指明了方向.Ⅴ.课后作业习题3.8图3-4Ⅵ.活动与探究如图,小明家、王老师家、学校在同一条路上.小明家到王老师家路程为 3 km ,王老师家到学校的路程为0.5 km,由于小明父母战斗在抗“非典”第一线,为了使他能按时到校,王老师每天骑自行车接小明上学.已知王老师骑自行车的速度是步行速度的3倍,每天比平时步行上班多用了20分钟,问王老师的步行速度及骑自行车的速度各是多少?(2003年吉林省中考题)[过程]分析题目中的等量关系:王老师骑车速度=王老师步行速度×3;王老师从家出发骑车接小明所用的时间=平时步行上学所用时间+20分钟. [结果]设王老师步行速度为x km/h ,则骑自行车的速度为3x km/h. 依题意,得x 35.032+⨯=x 5.0+6020 解得x=5经检验x=5是原方程的根,这时3x=15答:王老师步行速度为5 km/h,骑自行车的速度为15 km/ h.●板书设计。
八年级数学教案:分式方程(全3课时)

一.自学检测 1、什么叫做分式方程?解分式方程的步骤有哪几步?
个案补充
2、判断下面解方程的过程是否正确,若不正确,请加以改正。
解方程:x-2 1 =3-xx+ -11
解:两边同乘以(x-1),得
2=3-x+1, ①
x=3+1-2, ②
所以 x=2。
③
二.探究交流 探索点一:可以采用不同方式,探寻各个实际问题中的相等关系 1、甲、乙两人加工同一种服装,乙每天比甲多加工 1 件,已知乙加工 24 件服装所用时间与甲加工 20 件服装所用时间相同。甲每天加工多少件服 装?
课外作业:
布置作业
板书设计
教后札记
-6-
课时 NO: 教学课题
教学目标
主备人: 审核人
用案时间:
§10.5 分式方程(3)
年 月 日 星期
1.能将实际问题中的等量关系用分式方程表示,列出分式方程解决简单的实际问题,并能
根据实际问题的意义检验所得的结果是否合理. 2.发展学生分析问题、解决问题的能力,渗透数学的转化思想,培养学生的应用意识.
。
4、因为解分式方程可能产生增根,所.以.
。
-4-
你能用比较简洁的方法,检验解分式方程产生的增根吗? 5、想一想解分式方程一般需要经过哪几个步骤?
探索点二:分式方程的解法会检验根的合理性
例 解下列方程:(1)30 = 20 ; x x+1
x-2 x+2 16 (2)x+2 -x-2 =x2-4 .
课时 NO: 教学课题
主备人: 审核人
用案时间:
年 月 日 星期
§10.5 分式方程(1)
1、经历“实际问题-分式方程方程模型”的过程,经历分式方程的概念,能将实际问题中
5.4 分式方程 第3课时 教案

一、情境导入1.引导学生回顾列方程解应用题的一般步骤.学生积极思考,并交流、讨论总结出: 第一步,审清题意;第二步,根据题意设未知数;第三步,列式子并找出等量关系,建立方程; 第四步,列方程,并解出答案;第五步,检查方程的解是否符合题意; 最后作答.2.提问:分式方程的应用题应该怎么解呢? 二、合作探究探究点:列分式方程解决实际问题 【类型一】 工程问题抗洪抢险时,需要在一定时间内筑起拦洪大坝,甲队单独做正好按期完成,而乙队由于人少,单独做则超期3个小时才能完成.现甲、乙两队合作2个小时后,甲队又有新任务,余下的由乙队单独做,刚好按期完成.求甲、乙两队单独完成全部工程各需多少小时?解析:设甲队单独完成需要x 小时,则乙队需要(x +3)小时,根据等量关系“甲工效×2+乙工效×甲队单独完成需要时间=1”列方程.解:设甲队单独完成需要x 小时,则乙队需要(x +3)小时.由题意得2x +xx +3=1.解得x =6.经检验x=6是方程的解.∴x +3=9.答:甲单独完成全部工程需6小时,乙单独完成全部工程需9小时.方法总结:解决工程问题的思路方法:各部分工作量之和等于1,常从工作量和工作时间上考虑相等关系.【类型二】 行程问题从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.解析:(1)根据高铁的行驶路程是400千米和普通列车的行驶路程是高铁的行驶路程的1.3倍,两数相乘即可;(2)设普通列车的平均速度是x 千米/时,根据高铁所需时间比乘坐普通列车所需时间缩短3小时,列出分式方程,然后求解即可.解:(1)根据题意得400×1.3=520(千米). 答:普通列车的行驶路程是520千米;(2)设普通列车的平均速度是x 千米/时,则高铁的平均速度是2.5x 千米/时,根据题意得520x -4002.5x =3,解得x =120,经检验x =120是原方程的解,则高铁的平均速度是120×2.5=300(千米/时).答:高铁的平均速度是300千米/时.方法总结:解决问题的关键是分析题意,找到关键描述语和合适的等量关系是解决问题的关键.此题涉及的公式是:路程=速度×时间.【类型三】 图表信息类问题某学校为鼓励学生积极参加体育锻炼,派王老师和李老师去购买一些篮球和排球.回校后,王老师和李老师编写了一道题:同学们,请求出篮球和排球的单价各是多少元?解析:设排球的单价为x 元,则篮球的单价为(x +60)元,根据“总价÷单价=数量”的关系建立方程.解:设排球的单价为x 元,则篮球的单价为(x +60)元,根据题意,列方程得2000x =3200x +60.解得x =100.经检验,x =100是原方程的根,当x =100时,x +60=160.答:排球的单价为100元,篮球的单价为160元.方法总结:解答此类问题要结合图表提供的信息,找出相等关系列方程. 【类型四】 销售盈亏问题佳佳果品店在批发市场购买某种水果销售,第一次用1200元购进若干千克,并以每千克8元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了10%,用1452元所购买的数量比第一次多20千克,以每千克9元售出100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果.(1)求第一次水果的进价是每千克多少元?(2)该果品店在这两次销售中,总体上是盈利还是亏损?盈利或亏损了多少元?解析:(1)根据第二次购买水果数多20千克,可列出方程,解出即可得出答案;(2)先计算两次购买水果的数量,赚钱情况:销售的水果量×(实际售价-当次进价),两次合计,就可以求得是盈利还是亏损了.解:(1)设第一次购买的单价为x 元,则第二次的单价为1.1x 元,根据题意得14521.1x -1200x =20,解得x =6.经检验,x =6是原方程的解.(2)第一次购买水果1200÷6=200(千克).第二次购买水果200+20=220(千克).第一次赚钱为200×(8-6)=400(元),第二次赚钱为100×(9-6.6)+120×(9×0.5-6.6)=-12(元).所以两次共赚钱400-12=388(元).答:第一次水果的进价为每千克6元;该老板两次卖水果总体上是赚钱了,共赚了388元.方法总结:本题具有一定的综合性,应该把问题分解成购买水果和卖水果两部分分别考虑,掌握这次活动的流程.三、板书设计列分式方程解应用题的一般步骤是: 第一步,审清题意;第二步,根据题意设未知数;第三步,根据题目中的数量关系列出式子,并找准等量关系,列出方程; 第四步,解方程,并验根,还要看方程的解是否符合题意;最后作答. 1.小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式方程第三课时教案
〔第3课时〕
教学目标:会列出分式方程解决简单的实际咨询题,并能依照实际咨询题的意义
检验所得的结果是否合理。
教学重点:如何结合实际分析咨询题,列出分式方程
教学难点:分析过程,得到等量关系
教学方法:探究法 教学过程:
教学活动 集体讨论
一、 复习巩固 1、解分式方程的一样步骤
〔1〕去分母
〔2〕去括号
〔3〕移项,合并同类项
〔4〕系数化为1
〔5〕检验
2、练习:
解方程:
〔1〕13-x =x 4;〔2〕1210-x +x
215-=2. 二、例题讲解
例4.为迎接市中学生田径运动会,打算由某校八年级
〔1〕班的3个小组制作240面彩旗,后因一个小组另有任
务,改由另外两个小组完成制作彩旗的任务。
如此,这两个
小组的每个同学就要比原打算多做 4面。
假如这3个小组的
人数相等,那么每个小组有多少名学生?
分析:此题中的等量关系是什么?
你会依照等量关系列出分式方程吗?
例5、甲、乙两公司各为〝见义勇为基金会〞捐款30000
元,乙公司比甲公司人均多捐款20元,且甲公司的人数比
乙公司的人数多20%。
咨询甲、乙两公司各有多少人?
例6、小明买软面笔记本共用去12元,小丽买硬面笔记
本共用去21元,每本硬面笔记本比软面笔记本贵1。
2元,
小明和小丽能买到相同本数的笔记本吗?
总结用分式方程解实际咨询题的一样步骤:
(1) 设未知数
(2) 依照题意列方程
(3) 解方程
(4) 检验
(5) 答
学生练习:第68页1、2
三、 思维拓展
某市从今年1月1日起调整居民的用水价格,每立方米
水费上涨3
1。
小丽家去年12月份的水费是15元,而今年7月份的水费那么是30元,小丽家今年7月份的用水量比去年12月份的用水量多53m ,求该市今年居民用水的价格。
四、
小结 五、
板书设计 六、
教后记。