天文望远镜基础知识介绍

合集下载

天文望远镜的基本知识

天文望远镜的基本知识

天文望远镜的基本知识(一)要了解天文望远镜的基本知识天文望远镜有折射式、反射式和折反射式3种:1、折射式使用起来比较方便,视野较大,星像明亮,但是有色差,从而降低了分辨率。

优质折射镜的物镜是2片双分离消色差物镜或3片复消色差物镜。

不过,消色差或复消色差并不能完全消除色差,所谓消色差物镜只是对白光中7种色光的2种色光(红和兰光)消除色差,而复消色差物镜除了对2种色光消色差之外,还对第3种色光(黄光)消除了剩余色差。

2、反射镜的优点是没有色差,但是,反射镜的彗差和像散较大,使得视野边缘像质变差。

常用的反射镜有牛顿式和卡塞格林式2种。

前者光学系统简单、价格便宜,球面反射镜在后端,目镜在前端侧面;后者光学系统的主、付镜为非球面,主镜和目镜都在后面,成像质量较好,价格也较贵。

3、折反射镜兼顾了折射镜和反射镜的优点:视野大、像质好、镜筒短、携带方便。

与同等焦距和同等口径的折射望远镜相比,价格还不及三分之一。

折反射镜有施密特-卡塞格林式和马克苏托夫-卡塞格林式2种,后者又称马-卡镜。

马-卡镜有2片式和3片式2种。

譬如:BOSMA马卡150/l800和BOSMA马卡200/2400都是3片式,因像质比2片式更好,倍受国内外天文爱好者的欢迎。

(二)合理选择望远镜的焦距选择望远镜的焦距,与你想要观测的天体有关。

如果你想观测星云、寻找彗星,要选择短焦距镜;如果你想观测月亮和行星,要选择长焦距镜;如果你想观双星、聚星、变星和星团,最好选择中焦距镜。

中焦距镜可以两头兼顾,比较受欢迎,通常短焦是指焦距与口径之比小于或等于6,长焦是指焦距与口径之比大于15,介于两者之间称之为中焦距镜。

(使用增倍镜可以成倍延长望远镜的焦距。

)(三)放大倍数并非越大越好天文望远镜倍率=F/f,即望远镜物镜焦距除以目镜焦距。

根据天文学家长期观测的经验,观测深空天体最大放大倍数不得大于1.5倍物镜的口径(以毫米数表示),用口径100毫米物镜的望远镜,在大气条件为中等宁静度的情况下观测,不得大于125倍。

教您天文望远镜基础知识入门知识讲解

教您天文望远镜基础知识入门知识讲解

教您天文望远镜基础知识入门一、望远镜种类(一)折射式望远镜折射式望远镜的构造如下图:折射式望远镜由两个透镜组成:固定在镜筒前端的是物镜(其口径大小直接决定望远镜的性能);在镜筒尾端可以调换的是目镜。

上图为星特朗AstroMaster系列 90EQ优点:视野较大、星像明亮,使用和维护比较方便,反差及锐利度较同口径的反射镜佳,摄影及高倍行星观测,效果都相当不错。

缺点:有色像差(色差)问题,会降低分辨率。

(二)反射式望远镜反射式望远镜的构造如下图:上图为牛顿式反射式望远镜。

上图为星特朗AstroMaster系列130EQ优点:无色差、强光力和大视场,非常适合深空天体的目视观测。

缺点:彗差和像散较大,视野边缘像质变差,操作不太容易, 维护相对复杂。

(三)折反射式望远镜折反射式望远镜的构造如下图:上图为星特朗Omni XLT 127综合了折射镜和反射镜的优点:视野大、像质好、镜筒短、携带方便。

有施密特-卡塞格林式和马克苏托夫-卡塞格林2种。

三种类型望远镜优缺点对比:(1)折射式:通常小型(口径80毫米以下)折射望远镜具有便携优势,结构简单可靠性高,可以在旅行时随身携带。

在拍摄要求不高的情况完全可以满足摄影需求,而且与相机连接简单可以作为长焦镜头使用。

(2)反射式:大口径反射虽然不便携,但比其他类型望远镜有很多优势。

首先,造价低廉,很多爱好者可以自己磨制。

其次,大口径成像效果更好,利于高倍观测,而且焦比较小,适合观测和拍摄深空天体。

(3)折反式:折反同时具备折射式望远镜的便携和反射式望远镜的成像优势,但价格较贵。

三种望远镜优缺点对比:折射式优点:结构简单,便携,成像锐度好,缺点:镜筒封闭维护保养容易有色差、球差,口径大的价格相对较贵光学结构:物镜——目镜结构反射式优点:口径大,成像亮度高,无色差,价格相对便宜缺点:不便携,有球差,镜筒开放维护保养相对困难光学结构:反射镜——副镜——目镜结构折反式优点:便携,成像质量较好,镜筒封闭维护保养容易,缺点:口径相对较大结构复杂,在同口径其他类型望远镜中价格最贵光学结构:改正镜——反射镜——副镜——目镜结构二、常见的天文望远镜光学名词口径:指望远镜物镜的有效直径,口径大小直接决定望远镜性能。

天文望远镜基础知识

天文望远镜基础知识

天文望远镜基础知识天文望远镜的光学系统根据物镜的结构不同,天文望远镜大致可以分为三大类:以透镜作为物镜的,称为折射望远镜;用反射镜作为物镜的,称为反射望远镜;既包含透镜,又有反射镜的,称为折反射望远镜。

往往有的天文爱好者买了一块透镜,以为这就解决了望远镜的物镜问题。

其实,一块透镜成像会产生象差,现在,正规的折射天文望远镜的物镜大都由2~4块透镜组成。

相比之下,折射天文望远镜用途较广,使用方便,比较适合做天文普及工作。

反射望远镜的光路可分为牛顿系统和卡塞格林系统等。

一般说来,对天文普及工作,特别是对观测经验不足的爱好者来说,牛顿式反射望远镜使用起来不太方便,其物镜又需经常镀膜,维护起来也麻烦。

折反射望远镜是由透镜和反射镜组成。

天体的光线要受到折射和反射。

这类望远镜具有光力强,视场大和能消除几种主要像差的优点。

这类望远镜又分施密特系统、马克苏托夫系统和施密特卡塞格林系统等。

根据我们多年实践的经验,中国科学院南京天文仪器厂生产的120折射天文望远镜对于天文普及工作和广大天文爱好者来说,是一种既方便又实用的仪器。

望远镜的光学性能在天文观测的对象中,有的天体有视面,有的没有可分辨的视面;有的天体光极强,有的又特微弱;有的是自己发光,有的是反射光。

观测者应根据观测目的,选用不同的望远镜,或采用不同的方法进行观测;一般说来,普及性的天文观测多属于综合性的,要考虑“一镜多用”。

选择天文望远镜时,一定要充分了解它的基本光学性能。

口径--指物镜的有效直径,常用D来表示;相对口径--指物镜的有效口径和它的焦距之比,也称为焦比,常用A表示;即A=D/F。

一般说来,折射望远镜的相对口径都比较小,通常在1/15~1/20,而反射望远镜的相对口径都比较大,通常在1/3.5~1/5。

观测有一定视面的天体时,其视面的线大小和F成正比,其面积与F2成正比。

象的光度与收集到的光量成正比,即与D2成正比,和象的面积成反比,即与F2成反比。

教您天文望远镜基础知识入门

教您天文望远镜基础知识入门

教您天文望远镜基础知识入门目录一、天文望远镜概述 (2)1.1 望远镜的定义与分类 (3)1.2 望远镜的工作原理 (4)1.3 天文望远镜的发展历程 (5)二、望远镜的基本构造 (6)2.1 主要部件介绍 (7)2.2 望远镜的类型 (9)三、天文望远镜的选择与使用 (10)3.1 如何根据需求选择望远镜 (11)3.2 望远镜的使用与保养 (12)3.3 常见问题及解决方法 (14)四、观测技巧与实践 (14)4.1 观测前的准备 (16)4.2 实际观测案例分享 (17)4.3 提升观测效果的技巧 (19)五、天文望远镜的辅助工具 (20)5.1 星图与星表 (21)5.2 天气预报与观测计划 (22)5.3 其他辅助设备 (23)六、天文望远镜的科学研究价值 (24)6.1 对恒星与行星的研究 (25)6.2 对星系与宇宙学的研究 (27)6.3 天文望远镜在教育中的应用 (29)七、望远镜技术的未来展望 (30)7.1 新型望远镜技术介绍 (32)7.2 天文望远镜在太空探索中的作用 (34)7.3 科技发展对望远镜的影响 (35)一、天文望远镜概述天文望远镜是一种用于观察和观测天体的特殊仪器,其历史源远流长,追溯到古埃及和古希腊时期。

现代天文望远镜的设计和用途多种多样,但它们的共同目标是提供更清晰和放大的天体图像,以便科学家和爱好者可以更好地了解宇宙。

折射望远镜:这类望远镜利用透镜来聚焦光线。

镜子在折射望远镜中并不直接用于成像,而是用于引导光线进入望远镜并反射回透镜中。

这种望远镜在观测弥散和星云时非常有效。

反射望远镜:反射望远镜主要使用表面非常平整的金属或玻璃制成的镜子来反射进入望远镜的光线。

大型反射望远镜通常放置在海拔较高或干燥地区,以减小大气扰动,提高观测质量。

折反射望远镜:这种望远镜结合了折射和反射望远镜的特点,通常使用一个透镜在前端聚集光线,然后用一个大型镜子在望远镜的后端将光线反射到目镜中,这样可以在保持清晰度的同时提供更大的视场。

天文望远镜知识

天文望远镜知识

天文望远镜知识天文望远镜是一种用来观测天体的仪器。

它的发明和使用对于人类认识宇宙的进步起到了重要作用。

在这篇文章中,我们将介绍天文望远镜的起源、种类、使用方法以及它对天文研究的重要意义。

天文望远镜的起源可以追溯到古代。

早在公元前5世纪,希腊学者伽利略就发明了用来观察月亮和行星的望远镜。

随着科技的进步,现代望远镜在形态和功能上有了极大的变化。

目前常见的天文望远镜有光学望远镜、射电望远镜、红外望远镜等。

光学望远镜是最常见的一类望远镜。

它使用透镜或反射面来聚集光线,使天体的细节变得清晰可见。

望远镜的口径越大,分辨率就越高,能够观测到更远的天体。

在透镜望远镜中,人们通常使用的是折射望远镜,它利用透镜的光折射性质来聚焦光线。

而反射望远镜则是利用反射面反射光线,并通过次级镜或器件进行聚焦。

射电望远镜则利用射电波来观测天体。

射电波的频率低于可见光,因此能够穿过大气层,使天文观测免受大气的影响。

科学家通过收集和分析射电波的数据,来研究宇宙中的星系、恒星和其他天体。

射电望远镜也可以用于搜索宇宙中的无线电信号,例如宇宙微波背景辐射,这是宇宙大爆炸留下的辐射。

红外望远镜则用于观测天体放射出的红外辐射。

红外光波长长于可见光,因此红外望远镜可以帮助科学家发现可见光无法看到的天体或现象。

例如,它可以探测到新生恒星的形成过程,研究黑洞、星际尘埃和星系等。

天文望远镜对天文学研究起到了重要的推动作用。

它们帮助科学家观测和探索宇宙的奥秘,例如了解星系的形成和演化过程,发现新的行星和恒星,研究黑洞和暗物质等。

通过观测不同波长的辐射,科学家还可以了解宇宙的年龄、构造和起源等问题。

为了获得准确而有意义的观测结果,使用天文望远镜时需要一些技巧和注意事项。

首先,选择合适的观测地点非常重要,要远离人口密集区和光污染区域。

其次,望远镜的使用需要一定的专业知识和技能,例如准确对准和调焦望远镜,以及正确选择观测参数。

最后,观测的时间和天气也会对观测结果产生影响,通常来说,晴朗无云的夜晚是最好的观测时机。

教您天文望远镜基础知识入门

教您天文望远镜基础知识入门

教您天文望远镜基础知识入门一、望远镜种类(一)折射式望远镜折射式望远镜的构造如下图:折射式望远镜由两个透镜组成:固定在镜筒前端的是物镜(其口径大小直接决定望远镜的性能);在镜筒尾端可以调换的是目镜。

上图为星特朗AstroMaster系列 90EQ优点:视野较大、星像明亮,使用和维护比较方便,反差及锐利度较同口径的反射镜佳,摄影及高倍行星观测,效果都相当不错。

缺点:有色像差(色差)问题,会降低分辨率。

(二)反射式望远镜反射式望远镜的构造如下图:上图为牛顿式反射式望远镜。

上图为星特朗AstroMaster系列130EQ优点:无色差、强光力和大视场,非常适合深空天体的目视观测。

缺点:彗差和像散较大,视野边缘像质变差,操作不太容易, 维护相对复杂。

(三)折反射式望远镜折反射式望远镜的构造如下图:上图为星特朗Omni XLT 127综合了折射镜和反射镜的优点:视野大、像质好、镜筒短、携带方便。

有施密特-卡塞格林式和马克苏托夫-卡塞格林2种。

三种类型望远镜优缺点对比:(1)折射式:通常小型(口径80毫米以下)折射望远镜具有便携优势,结构简单可靠性高,可以在旅行时随身携带。

在拍摄要求不高的情况完全可以满足摄影需求,而且与相机连接简单可以作为长焦镜头使用。

(2)反射式:大口径反射虽然不便携,但比其他类型望远镜有很多优势。

首先,造价低廉,很多爱好者可以自己磨制。

其次,大口径成像效果更好,利于高倍观测,而且焦比较小,适合观测和拍摄深空天体。

(3)折反式:折反同时具备折射式望远镜的便携和反射式望远镜的成像优势,但价格较贵。

三种望远镜优缺点对比:折射式优点:结构简单,便携,成像锐度好,缺点:镜筒封闭维护保养容易有色差、球差,口径大的价格相对较贵光学结构:物镜——目镜结构反射式优点:口径大,成像亮度高,无色差,价格相对便宜缺点:不便携,有球差,镜筒开放维护保养相对困难光学结构:反射镜——副镜——目镜结构折反式优点:便携,成像质量较好,镜筒封闭维护保养容易,缺点:口径相对较大结构复杂,在同口径其他类型望远镜中价格最贵光学结构:改正镜——反射镜——副镜——目镜结构二、常见的天文望远镜光学名词口径:指望远镜物镜的有效直径,口径大小直接决定望远镜性能。

天文望远镜的构造与原理

天文望远镜的构造与原理

天文望远镜的构造与原理天文望远镜是一种专门用于观测天体的光学仪器,广泛应用于天文学、地球物理学以及遥感科学等领域。

一、天文望远镜的基本构成天文望远镜一般由光学系统和机械系统两部分构成,其中光学系统由望远镜主镜(或物镜)、目镜、支架和调焦装置等组成,而机械系统主要包括支架、电子等控制系统以及机械部件等。

1.望远镜主镜(或物镜)望远镜主镜(或物镜)是望远镜的核心部件,一般由一块高质量玻璃制成。

它的主要作用是将天体发出的光线聚集到一个点上,形成清晰的像。

2.目镜目镜是望远镜的辅助光学装置,用于观察望远镜主镜形成的像。

一般来说,目镜的倍率比较小,一般在10-100倍之间。

3.支架望远镜的支架是望远镜的重要组成部分,其主要作用是支撑望远镜主镜和目镜,并使之能够动态地跟随天体的运动。

4.调焦装置调焦装置是望远镜的一个重要组成部分,主要用来调整望远镜的焦距,以便得到清晰的图像。

二、天文望远镜的原理天文望远镜的原理主要是利用光线在不同介质中的传播速度不同,使得从天体发出的光线被望远镜主镜(或物镜)反射或屈折,最终形成清晰的像。

1.反射望远镜原理反射望远镜主要利用反射原理,即将天体发出的光线反射到一个聚焦点上,形成清晰的像。

在反射望远镜中,望远镜主镜一般为一个拱面形状,在此拱面上反射的光线将汇聚于一个点,即对焦点。

要得到清晰的图像,目镜也需要调焦。

2.折射望远镜原理折射望远镜主要是利用屈折原理,将从天体发出的光线经过物镜的折射后,聚焦到一个点上,形成清晰的像。

在折射望远镜中,物镜一般为一个双凸面镜,在该镜面上折射过去的光线将汇聚于一个点,即对焦点。

三、天文望远镜的应用天文望远镜的应用非常广泛,可以应用于天文学研究、遥感科学以及地球物理学等领域。

在天文学研究中,天文望远镜主要用来观测各种天体,例如恒星、行星、星系、星云等。

通过观测这些天体的光谱、亮度、形状等信息,可以得出诸如天体运动、性质等信息,对于研究宇宙发展历史等宏观现象具有重要意义。

新手入门天文望远镜使用小常识

新手入门天文望远镜使用小常识

新手入门天文望远镜使用小常识一、如何调试寻星镜1、白天,先将主镜筒对准远处的一个目标(约500米远),如烟囱、空调室外机等。

装上低倍率目镜(如20MM目镜)寻找目标。

将镜筒大致对准目标后,调节焦距系统直到目标清晰,并使之处于主镜中心点,然后将脚架全部锁紧。

2、小心调整寻星镜上的三个螺丝,将主镜看到的目标调到寻星镜的十字架中心。

3、更换高倍率目镜(如10MM 目镜),重复上述的步骤。

调试时,主镜里的目标始终控制在寻星镜的十字架中心。

*寻星镜调准后,千万不要动它。

观测月亮,尽量选择在“弯月”,这时能更清晰的看到环形山、月海等。

二、赤道仪的简介和调整(一)赤道仪简介赤道仪有三个轴:1、地平轴。

垂直于地平面,下端与三脚架台连接,上端与极轴连接,有地平高度刻度盘。

绕地平轴旋转可调整望远镜的地平方位角。

2、极轴(赤经轴)。

一端与地平轴相连,上下扳动极轴可调整地平高度角。

另一端与赤纬轴成90o 角连接,装有时角度盘,用于望远镜指向的时角(赤经)调整。

3、赤纬轴。

与极轴成90o 相连,上端与主镜筒成90o 相连,以保证镜筒与极轴平行。

下端连接平衡锤,装有赤纬度盘,用于望远镜指向的赤纬度调整。

(二)赤道仪的调整极轴调整。

使望远镜极轴和地球自转轴平行,指向北天极。

1、主镜与赤道仪、三角架连接好,把将有“N”标志的一条腿摆在正北方。

调整三角架高度,使三角架台水平。

2、松开极轴(赤经轴)螺钉,把主镜旋转到左边或右边。

松开平衡锤螺钉,移动平衡锤,使望远镜与锤平衡。

把望远镜旋回上方,制紧螺钉。

3、松开地平螺钉,转动赤道仪,使极轴(望远镜)指向北方(指南针定向),制紧螺钉。

4、松开极轴与地平轴连接螺钉,上下扳动极轴,使指针对准观测地点的地理纬度,制紧螺钉。

5、松开赤纬轴螺钉,转动望远镜使其与极轴平行(亦即与当地经线圈平行),制紧螺钉。

6、从望远镜(或调好光轴的寻星镜)中观看北极星是否在视场中央,如有偏差,则需对极轴的地平方位角,地平高度角作精细调整,直至北极星在视场中央不再移动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天文望远镜基础知识介绍
天文望远镜的历史可以追溯到17世纪初,当时伽利略·伽利莱使用
了一种被称为折射望远镜的设备来观测天体。

这种望远镜使用了透镜将光
线聚焦在焦点上,使物体能够更清晰地被观察到。

自那时以来,望远镜的
设计和技术有了很大的发展,从折射望远镜到反射望远镜再到现代的高级
天文望远镜。

望远镜的主要目标是收集、聚焦和放大天体的光线。

其核心部件是光
学镜头,它可以将天体发出的光线聚集到一个焦点上。

根据镜头的类型,
望远镜可以分为折射望远镜和反射望远镜。

折射望远镜使用透镜来聚焦光线,其中最常见的设计是非常简单的折
射望远镜。

这种望远镜包括一个目镜和一个物镜,光线经过物镜聚焦在焦
点上,然后由目镜放大和观察。

折射望远镜的优点是对各种波长的光线都
有较好的聚焦能力,但缺点是透镜可能变形或者产生色差。

反射望远镜使用反射镜来聚焦光线,其中最常见的设计是纽维恩望远镜。

这种望远镜包括一个反射镜和一个目镜,光线经过反射镜反射后聚焦
在焦点上,然后由目镜放大和观察。

反射望远镜的优点是能够消除透镜的
变形和色差问题,但缺点是对特定波长的光线聚焦能力较差。

现代的高级天文望远镜具有更复杂的设计和更先进的技术,以观测更
遥远、更微弱的天体。

例如,哈勃太空望远镜是一架在地球外轨道上运行
的望远镜,它能够避开地球大气层的干扰,拍摄出更清晰、更详细的图像。

另外,一些大型天文望远镜,如甘斯望远镜和欧洲极大望远镜,使用了多
个镜片或镜面组成的阵列,以增加观测的灵敏度和分辨率。

除了光学望远镜,还有其他一些类型的望远镜,如射电望远镜、X射
线望远镜和伽马射线望远镜,用于观测不同波长范围的天体辐射。

射电望
远镜通过接收和分析射电波来观测天体,X射线望远镜通过接收和分析X
射线来观测天体,伽马射线望远镜则用于观测伽马射线暴等高能天体现象。

通过使用天文望远镜,我们能够观察到远离地球的星系、恒星、行星、星云等天体,从而深入研究宇宙的起源、演化和结构。

天文望远镜是现代
天文学的重要工具,它为我们揭示了宇宙的奥秘,推动了科学的进步。

相关文档
最新文档