高等数学部分易混淆概念及例题
高三数学易混淆知识点归纳

高三数学易混淆知识点归纳高三数学是学生们备战高考的重要阶段,而数学作为一门理科学科,难免存在一些易混淆的知识点。
下面就是对高三数学中常见的易混淆知识点进行归纳总结,以帮助同学们更好地理解和掌握这些概念。
1. 函数与方程函数与方程是高中数学中最重要的基础概念之一,但是很多学生容易混淆它们之间的关系。
函数是一种映射关系,将自变量的值映射到唯一的因变量的值;而方程则是一个等式,由自变量和常数构成。
需要注意的是,函数可以通过方程表示,但方程不一定表示函数。
2. 三角函数的定义与性质在学习三角函数时,学生们常常会混淆三角函数的定义与性质。
三角函数的定义通过单位圆上的坐标来确定,例如正弦函数就是y 轴上的坐标值;而三角函数的性质涉及到周期性、奇偶性等特点,需要理解和记忆。
3. 平面向量与复数平面向量与复数都是数学中常见的概念,但容易被高三学生混淆。
平面向量是有大小和方向的量,可用箭头表示;而复数是由实部和虚部构成的,通常表示为a+bi的形式。
需要记住,平面向量与复数虽然在某些运算上相似,但本质上是不同的概念。
4. 排列与组合排列与组合是高中数学中的常见概念,也是高考中常考的内容。
排列是选取若干元素进行有序排列,考虑元素的顺序;而组合则是选取若干元素进行无序排列,不考虑元素的顺序。
需要确切理解排列与组合的差别,以避免混淆和错误。
5. 极限与连续极限和连续是高三数学中的重要概念,涉及到函数的趋势和取值。
极限是函数在某一点无限逼近的值,可以通过左右极限或函数的性质进行求解;而连续则是指函数在某一点上具有无间断的性质。
注意极限与连续的定义和判定条件,避免混淆和误解。
综上所述,高三数学易混淆的知识点主要包括函数与方程、三角函数的定义与性质、平面向量与复数、排列与组合以及极限与连续。
同学们在备考高考时应该加强对这些知识点的理解和掌握,注意它们之间的区别和细微差别。
只有通过充分的练习和掌握,才能顺利应对高考数学的各种问题,取得优异的成绩。
数学中容易出错和混淆知识点

数学中容易出错和混淆知识点1.过直线外一点可以画(1)条已知直线的平行线或垂线。
2.过直线外可以画(无数)条已知直线的平行线或垂线。
3.什么叫平行线?(在同一平面内永不相交的两条直线叫平行线)4.在同一平面内两条直线不相交就平行。
(√)5.两条直线不相交就平行。
(×)6.(3或9)时所组成的角是直角,(6)时所组成的角是平角。
(12或24)时所组成的角是周角。
7.人们将圆平均分成(360)份,其中的(1)份所对的角的大小叫作(1度),记作(1°),通常用(1°)作为度量角的单位。
8.加法交换律:(a+b=b+a)加法结合律:(a+b)+c=a+(b+c)乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×b+b×c9.一图形经过旋转平移后(方向)可能变了,(大小)一定没变。
10.一个数经四舍五入到万位后得到的数是123万,这个数最大是(1234999)这个数最小是(1225000)。
11.230000000这个数改写成亿为单位的数是(2.3亿),四舍五入到亿位是(2亿)。
[注意:改写后的数与原数大小一样,四舍五入得到的数与原数大小不一样,只是个近似数]。
12.商不变的规律:在除法算式中,被除数和除数同时乘或除以相同的数(零除外)商不变。
13.温度和角的单位一样。
(×)14.+5℃表示(零上5℃),-2℃表示(零下2℃)15.0(既不是正数,也不是负数)。
16.在一除法算式中除数缩小3倍,要想商不变,被除数(缩小3倍)。
17.在一乘法算式中一个因数缩小4倍要想积不变,另一个因数(扩大4倍)。
高考数学最易混淆知识点归纳

高考数学最易混淆知识点归纳高考数学作为高中数学的重要组成部分,在高考中占据着很重要的位置。
一些题目可能会涉及到一些知识点的混淆,因此我们必须要对这些混淆的知识点进行整合和分类,以便于我们更好地理解和掌握。
下面,我们来分析一下高考数学中最易混淆的知识点。
一、函数的分段定义在高考数学中,我们经常涉及到函数的分段定义。
如果我们没有认真地学习和理解分段函数的定义,就很容易在相关的题目中出现混淆。
另外,有些题目需要用到二次函数、三角函数等相关的知识点,如果我们没有对这些函数进行系统化的学习,也很容易出现混淆。
二、导数的概念和应用在高考数学中,导数的概念和应用也是很重要的一个知识点。
例如,在求解变化率、极值等相关的问题时,需要用到导数的概念和应用,如果我们对这些相关的知识点没有进行归纳和整理,就很容易出错。
三、立体图形的计算在高考数学中,我们还需要涉及到立体图形的计算。
例如,在计算长方体、圆柱体、圆锥体以及球体的面积和体积等问题时,如果我们没有将这些相关的知识点进行分类、整理,就很容易出现混淆。
四、复合函数的概念在高考数学中,复合函数的概念也是很重要的一个知识点。
例如,在单项式的运算、幂函数、指数函数和对数函数的运算中都用到了复合函数的概念。
如果我们没有对这些相关知识点进行整理和分类,也很容易出现混淆。
五、统计学问题与数学知识的结合在高考数学中,我们还经常遇到同样涉及到一些统计学问题与数学知识的结合。
例如,我们需要对数据进行分析和统计,同时需要运用到平均值、标准差、方差、概率等知识点。
如果我们没有对这些知识点进行系统化的学习和整理,那么也很容易出现混淆。
综上所述,高考数学中最易混淆的知识点包括函数的分段定义、导数的概念和应用、立体图形的计算、复合函数的概念以及统计学问题与数学知识的结合。
如果我们没有对这些相关的知识点进行整理和分类,那么在做相关的题目时就很容易出现混淆。
因此,在备考高考数学时,我们需要认真复习和整理这些知识点,以便于我们更好地掌握和理解。
高等数学易错知识点

1 ) n−2 n
=
+∞
.
即无限多个无穷小量的积是一个发散的数列.
有限个无穷小量的积是无穷小量,这性质同样不能推广到无限多个无穷小量的乘积上
去.这是因为每个无穷小量只是在变化的某个时刻后才任意小,而在这时刻之前变量可以有
较大的值.如果在构造这无穷多个无穷小量时,让其进入任意小的时刻构成一个趋于无穷大
例 : f (x) = x −[x], g(x) = cos x. f (x)以1为周期,g(x)以2π为周期,而f (x) +
g(x) = x −[x] + cos x 却不是周期函数。
3. 有界函数与无界函数之积未必无界。
例 1:f (x) = 0, g(x) = x ,在区间 (−∞, +∞) 内 f (x) 有界,g(x) 无界,而 f (x)g(x) = 0 却在区间 (−∞, +∞) 内有界。 例 2: f (x) = e−x , g(x) = x ,在区间 (0, +∞) 内 f (x) < 1, 而 g(x) 是无界的, f (x)g(x) = xe−x ,因为 lim xe−x = 0 ,从而易见 f (x)g(x) 在区间 (0, +∞) 内是有界的。
因为对任给 ε > 0, 存在δ = ε , 对 a = 0 的δ 邻域内的任何一点 x,
若 x 为无理数,则 ϕ(x) − 0 = 0 − 0 = 0 < ε ; 若 x 为有理数 p , 其中 p,q 为互质整数,且 q>0, q
则 ϕ(x) − 0 = 1 ≤ p = x − 0 < δ = ε , 所以 limϕ(x) = 0 .
= n −1 + 1 =1 . nn
高中易错的数学概念

高中易错的数学概念
以下是一些高中易错的数学概念:
1. 指数与对数的运算法则:很多学生容易混淆指数和对数的运算法则,例如,误认为log(a-b)等于log(a) - log(b)。
正确的法则是log(a-b)等于log(a) + log(1-b/a),因为log(a-b) = log[(a-b)/1] = log(a/b) - log(1) = log(a/b) = log(a) - log(1-b/a)。
2. 二次方程解的形式:在解二次方程时,学生有时会忘记区分平方根的正负值。
例如,在解方程x^2 = 9时,正确的解应该是x = ±3,但有些学生只写出x = 3。
3. 因式分解:因式分解是高中数学中的一个重要概念,但很多学生在因式分解时容易出错。
常见的错误包括忽略最大公因数、错误地使用分配律、错误地分解差平方和等。
4. 幂指函数的性质:幂指函数的性质是高中数学中的一个重要概念,但很多学生容易搞混。
例如,他们可能不记得幂指函数的导数是幂次乘以常数因子,或者混淆指数函数和对数函数的图像。
5. 三角函数的关系式:学生常常会弄混三角函数之间的关系式,例如sin^2(x) + cos^2(x) = 1,tan(x) = sin(x)/cos(x)。
这些关系式是三角函数的基本性质,但
学生可能会忘记或混淆它们。
6. 统计概率:统计概率是易错的数学概念之一。
学生可能容易误解统计概率的概念,例如,将独立事件的概率相乘,而不是相加,或者将条件概率的关键概念忽略掉。
以上只是一些常见的易错概念,具体还要根据学生的情况和具体的学习内容进行分析。
高中数学函数中最易混淆的11对概念

式.
(II )若函数 j(x)对一切实数X都有 j(x+8)=-f(-2 -x),且 x 主 3 日才有 j(x)=x2一 7x+4.求 j(x) 解析式.
。g(,α) >[f( 功] 皿
六、 单调区间与区间单调
例6.
(I)若函数j(x)
=
2
x
- (3α-1x) +α2
在区间[1何, 刀)上单调递增,
求实数α的取值范围.
(II)若函数j(x)
=
2
x
- (3α-1)x+α2
单调递增区间是[1+, oo ),
求实数α的取值范围.
分析:(I)j(x)
=
2
x
- (3α-1)x+α2
分析:(I)若函数 j(x)对一切实数X都有 j(x+8) = j(-2 -x) ,则有y = j(x)的图象关于直线 x=3 成轴对称:
又 x 主 3 日才有j(x)=x2 -7x+4; 所以 x<3 时,有- x+6> 3 , j(x)= j(6-x)=(6-x) 2 -7(6-x) +4=x2 -5x- 2.
[ x 2 -7x+ 4(x三巧,
l j(x) 解析式为 j(x)=才 x"钊' -Sx- 2(x < 3).
(II )函数 j(x)对一切实数X都有 f(x+8)=-f(-2 -x),那么 f(x)的图象关于点(3, 0)成中心对称:又 x 主 3 时
容易混淆的概念-数学一11页

高等数学部分易混淆概念第一章:函数与极限一、数列极限大小的判断 例1:判断命题是否正确.若()n n x y n N <>,且序列,n n x y 的极限存在,lim ,lim ,n n n n x A y B A B →∞→∞==<则解答:不正确.在题设下只能保证A B ≤,不能保证A B <.例如:11,1n n x y n n ==+,,n n x y n <∀,而lim lim 0n n n n x y →∞→∞==. 例2.选择题设n n n x z y ≤≤,且lim()0,lim n n n n n y x z →∞→∞-=则( )A .存在且等于零 B. 存在但不一定等于零 C .不一定存在 D. 一定不存在 答:选项C 正确分析:若lim lim 0n n n n x y a →∞→∞==≠,由夹逼定理可得lim 0n n z a →∞=≠,故不选A 与D.取11(1),(1),(1)n n n n n n x y z n n=--=-+=-,则n n n x z y ≤≤,且lim()0n n n y x →∞-=,但lim n n z →∞不存在,所以B 选项不正确,因此选C .例3.设,n n x a y ≤≤且lim()0,{}{}n n n n n y x x y →∞-=则与( )A .都收敛于a B. 都收敛,但不一定收敛于a C .可能收敛,也可能发散 D. 都发散 答:选项A 正确.分析:由于,n n x a y ≤≤,得0n n n a x y x ≤-≤-,又由lim()0n n n y x →∞-=及夹逼定理得lim()0n n a x →∞-=因此,lim n n x a →∞=,再利用lim()0n n n y x →∞-=得lim n n y a →∞=.所以选项A .二、无界与无穷大无界:设函数()f x 的定义域为D ,如果存在正数M ,使得()f x Mx X D ≤∀∈⊂则称函数()f x 在X 上有界,如果这样的M 不存在,就成函数()f x 在X 上无界;也就是说如果对于任何正数M ,总存在1x X ∈,使1()f x M >,那么函数()f x 在X 上无界.无穷大:设函数()f x 在0x 的某一去心邻域内有定义(或x 大于某一正数时有定义).如果对于任意给定的正数M (不论它多么大),总存在正数δ(或正数X ),只要x 适合不等式00x x δ<-<(或x X >),对应的函数值()f x 总满足不等式()f x M >则称函数()f x 为当0x x →(或x →∞)时的无穷大. 例4:下列叙述正确的是: ②① 如果()f x 在0x 某邻域内无界,则0lim ()x xf x →=∞②如果0lim ()x xf x →=∞,则()f x 在0x 某邻域内无界解析:举反例说明.设11()sin f x x x=,令11,,22n n x y n n πππ==+,当n →+∞时,0,0n n x y →→,而lim ()lim (2)2n n n f x n ππ→+∞→+∞=+=+∞lim ()0n n f y →+∞=故()f x 在0x =邻域无界,但0x →时()f x 不是无穷大量,则①不正确.由定义,无穷大必无界,故②正确.结论:无穷大必无界,而无界未必无穷大. 三、函数极限不存在≠极限是无穷大当0x x →(或x →∞)时的无穷大的函数()f x ,按函数极限定义来说,极限是不存在的,但是为了便于叙述函数的性态,我们也说“函数的极限是无穷大”.但极限不存在并不代表其极限是无穷大.例5:函数10()0010x x f x x x x -<⎧⎪==⎨⎪+>⎩,当0x →时()f x 的极限不存在.四、如果0lim ()0x xf x →=不能退出01lim()x x f x →=∞ 例6:()0x x f x x ⎧=⎨⎩为有理数为无理数,则0lim ()0x x f x →=,但由于1()f x 在0x =的任一邻域的无理点均没有定义,故无法讨论1()f x 在0x =的极限. 结论:如果0lim ()0x xf x →=,且()f x 在0x 的某一去心邻域内满足()0f x ≠,则01lim()x xf x →=∞.反之,()f x 为无穷大,则1()f x 为无穷小。
《高等数学》常见易混淆概念梳理

《高等数学》常见易混淆概念梳理摘要概念教学是培养数学核心素养的重要手段,也是高等数学课堂教学的重要一环,只有准确把握概念的内涵与外延,才能够正确理解概念以及应用概念。
《高等数学》作为工科、理科学生必修的基础课程,对于高等数学的学习不仅是对高等数学知识的学习,同时也是对能力与素质的培养,也可以说,高等数学是解锁其他学科的一把钥匙。
高等数学的学习是从对概念的学习开始的,因此,准确把握概念,理清概念之间的区别与联系尤为重要。
本文将讨论三组常见易混淆概念,分析易混淆概念产生原因以及该如何解决。
关键词:高等数学、易混概念一、函数的导数与微分根据同济大学出版的第七版《高等数学》中给出的定义,导数的定义:设函数在点的某个邻域内有定义,当自变量x在处取得增量(点仍在该邻域内)时,相应地,因变量取得增量;如果与之比当时的极限存在,那么称函数在点处可导,并称这个极限为函数在点处的导数,记为,即.也就是说导数是自变量的增量趋于零时,函数增量与自变量的增量比的极限,而微分的定义为:设函数在某区间内有定义,及在这区间内,如果函数的增量可表示为,其中A是不依赖于的常数,那么称函数在点是可微的,而叫做函数在点相应于自变量增量的微分,记作dy,即.由此可见,微分的实质是函数值增量的近似值。
很多学生在学习过导数与微分的概念过后,常常会产生,“学习了导数为什么还要学习微分?函数的微分与导数有什么区别?”等等诸如此类的问题,还有部分学生存在对微分概念理解不透彻,对函数的微分与导数的区别与联系理解模糊的问题。
产生以上问题主要有三方面原因:第一、目前,国内大部分教材对于函数的导数与微分的内容安排一般都是首先介绍导数的概念以及导数的相关知识,再介绍求导法则以及求高阶导数、隐函数和参数方程求导数等问题,最后再介绍函数的微分,由于经过前期的学习,学生对于导数及其相关计算熟悉程度较高,在学习到微分的概念时,容易发现函数可导与可微之间的充分必要关系,且在计算微分的过程中,微分的计算又可以借助导数的计算来进行,因此导致学生过多地关注导数的相关知识,忽视了对微分概念的学习,久而久之,导致学生对函数微分的概念理解模糊;第二、函数在一点处可导与函数在一点处可微是充分必要关系,,若只强调导数与微分的计算则会加重对两个概念的混淆,所以,教师若未对函数的微分与导数的区别与联系进行强调,只是强调两者的计算,也会导致对微分的概念理解模糊的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学部分易混淆概念 第一章:函数与极限一、数列极限大小的判断 例1:判断命题是否正确. 若()nn x y n N <>,且序列,n n x y 的极限存在,lim ,lim ,n n n n x A y B A B →∞→∞==<则解答:不正确.在题设下只能保证A B ≤,不能保证A B <.例如:11,1n n x y n n ==+,,n n x y n <∀,而lim lim 0n n n n x y →∞→∞==. 例2.选择题 设nn n x z y ≤≤,且lim()0,lim n n n n n y x z →∞→∞-=则( )A .存在且等于零 B. 存在但不一定等于零 C .不一定存在 D. 一定不存在 答:选项C 正确 分析:若lim lim 0nn n n x y a →∞→∞==≠,由夹逼定理可得lim 0n n z a →∞=≠,故不选A 与D.取11(1),(1),(1)n n n nn n x y z n n =--=-+=-,则n n n x z y ≤≤,且lim()0n n n y x →∞-=,但lim n n z →∞ 不存在,所以B 选项不正确,因此选C . 例3.设,nn x a y ≤≤且lim()0,{}{}n n n n n y x x y →∞-=则与( )A .都收敛于a B. 都收敛,但不一定收敛于a C .可能收敛,也可能发散 D. 都发散 答:选项A 正确. 分析:由于,nn x a y ≤≤,得0n n n a x y x ≤-≤-,又由lim()0n n n y x →∞-=及夹逼定理得lim()0n n a x →∞-=因此,lim nn x a →∞=,再利用lim()0n n n y x →∞-=得lim n n y a →∞=.所以选项A .二、无界与无穷大无界:设函数()f x 的定义域为D ,如果存在正数M ,使得()f x Mx X D ≤∀∈⊂则称函数()f x 在X 上有界,如果这样的M 不存在,就成函数()f x 在X 上无界;也就是说如果对于任何正数M ,总存在1x X ∈,使1()f x M >,那么函数()f x 在X 上无界.无穷大:设函数()f x 在0x 的某一去心邻域内有定义(或x 大于某一正数时有定义).如果对于任意给定的正数M (不论它多么大),总存在正数δ(或正数X ),只要x 适合不等式00x x δ<-<(或x X >),对应的函数值()f x 总满足不等式 ()f x M >则称函数()f x 为当0x x →(或x →∞)时的无穷大. 例4:下列叙述正确的是: ② ① 如果()f x 在0x 某邻域内无界,则0lim ()x x f x →=∞② 如果0lim ()x x f x →=∞,则()f x 在0x 某邻域内无界解析:举反例说明.设11()sin f x x x =,令11,,22n n x y n n πππ==+,当n →+∞时,0,0n n x y →→,而lim ()lim (2)2n n n f x n ππ→+∞→+∞=+=+∞ lim ()0n n f y →+∞=故()f x 在0x =邻域无界,但0x →时()f x 不是无穷大量,则①不正确.由定义,无穷大必无界,故②正确.结论:无穷大必无界,而无界未必无穷大. 三、函数极限不存在≠极限是无穷大当0x x →(或x →∞)时的无穷大的函数()f x ,按函数极限定义来说,极限是不存在的,但是为了便于叙述函数的性态,我们也说“函数的极限是无穷大”.但极限不存在并不代表其极限是无穷大.例5:函数10()0010x x f x x x x -<⎧⎪==⎨⎪+>⎩四、如果0lim ()0x x f x →=不能退出limx x →例6:()0x x f x x ⎧=⎨⎩为有理数为无理数,则故无法讨论1()f x 在0x =的极限.结论:如果0lim ()0x x f x →=,且f∞.反之,()f x 为无穷大,则1()f x 为无穷小。
例7.求极限1lim ,lim xxx x ee →∞→解:lim ,lim 0x x xx e e →+∞→-∞=+∞=,因而x →∞时x e 极限不存在。
1100lim 0,lim x x x x e e →-→===+∞,因而0x →时1xe 极限不存在。
六、使用等价无穷小求极限时要注意:(1)乘除运算中可以使用等价无穷小因子替换,加减运算中由于用等价无穷小替换是有条件的,故统一不用。
这时,一般可以用泰勒公式来求极限。
(2)注意等价无穷小的条件,即在哪一点可以用等价无穷小因子替换 例8:求极限0x →2写成1)1)+,再用等价无穷小替换就会导致错误。
分析二:用泰勒公式22222211()122(1())22!11()122(1())222!1()4x x x x x x x x οοο-=+++-+-++-=-+ 原式2221()144x x x ο-+==-。
例9:求极限sin limx xxπ→解:本题切忌将sin x 用x 等价代换,导致结果为1。
sin sin lim0x x x πππ→==七、函数连续性的判断(1)设()f x 在0x x =间断,()g x2(),(),()g x f x f x ⋅在0x x =可能连续。
例10.设0()1x f x x ≠⎧=⎨=⎩,()g x ()()()sin 0x g x f x x ⋅=⋅=在0x =连续。
若设10()1x f x x ≥⎧=⎨-<⎩,()f x (2)“()f x 在0x 点连续”是“(f 分析:由“若0lim ()x x f x a →=,则x x →0()()f x f x =”,因此,()f x 在0x 点连续,则()f x 在0x 点连续。
再由例(3)()x ϕ在0xx =连续,()f u 在00()u u x ϕ==连续,则(())f x ϕ在0x x =连续。
其余结论均不一定成立。
第二章 导数与微分一、函数可导性与连续性的关系可导必连续,连续不一定可导。
例11.()f x x =在0x =连读,在0x =处不可导。
二、()f x 与()f x 可导性的关系(1)设0()0f x ≠,()f x 在0x x =连续,则()f x 在0x x =可导是()f x 在0x x =可导的充要条件。
(2)设0()0f x =,则0()0f x '=是()f x 在0x x =可导的充要条件。
三、一元函数可导函数与不可导函数乘积可导性的讨论设()()()F x g x x ϕ=,()x ϕ在x a =连续,但不可导,又()g a '存在,则()0g a =是()F x 在x a =可导的充要条件。
分析:若()0g a =,由定义()()()()()()()()()limlim lim ()()()x a x a x a F x F a g x x g a a g x g a F a x g a a x a x a x aϕϕϕϕ→→→---''====--- 反之,若()F a '存在,则必有()0g a =。
用反证法,假设()0g a ≠,则由商的求导法则知()()()F x x g x ϕ=在x a =可导,与假设矛盾。
利用上述结论,我们可以判断函数中带有绝对值函数的可导性。
四、在某点存在左右导数时原函数的性质(1)设()f x 在0x x =处存在左、右导数,若相等则()f x 在0x x =处可导;若不等,则()f x 在0x x =连续。
(2)如果()f x 在(,)a b 内连续,0(,)x a b ∈,且设00lim ()lim (),x x x x f x f x m →+→-''==则()f x 在0x x =处必可导且0()f x m '=。
若没有如果()f x 在(,)a b 内连续的条件,即设00lim ()lim ()x x x x f x f x a →+→-''==,则得不到任何结论。
例11.20()0x x f x xx +>⎧=⎨≤⎩,显然设00lim ()lim ()1x x f x f x →+→-''==,但0l i m ()2x f x →+=,0lim ()0x f x →-=,因此极限0lim ()x f x →不存在,从而()f x 在0x =处不连续不可导。
一、若lim (),(0,x f x A A →+∞'=≠可以取若lim ()0x f x A →+∞'=≠,不妨设A > ()()()(f x f X f x ξ'=+()()(2Af x f X ⇒≥+同理,当0A <时,lim ()x f x →+∞=-∞若lim (),0,x f x X x →+∞'=+∞⇒∃>≥()()()()(,(,))f x f X f x X x X X x ξξ'=+->∈()()()()lim ()x f x f X x X x X f x →+∞⇒≥+->⇒=+∞同理可证lim ()x f x →+∞'=-∞时,必有lim ()x f x →+∞=-∞第八章 多元函数微分法及其应用8.1多元函数的基本概念 1. 0ε∀ ,12,0δδ∃ ,使得当01x x δ- ,02y y δ- 且0,0(,)()x y x y ≠时,有(,)f x y A ε- ,那么00lim (,)x x y y f x y A →→=成立了吗?成立,与原来的极限差异只是描述动点(,)p x y 与定点000(,)p x y 的接近程度的方法不一样,这里采用的是点的矩形邻域, ,而不是常用的圆邻域,事实上这两种定义是等价的.2. 若上题条件中0,0(,)()x y x y ≠的条件略去,函数(,)f x y 就在0,0()x y 连续吗?为什么?如果0,0(,)()x y x y ≠条件没有,说明0,0()f x y 有定义,并且00(,)x y 包含在该点的任何邻域内,由此对0ε∀ ,都有(,)f x y A ε- ,从而0,0()A f x y =,因此我们得到00lim (,)x x y y f x y A →→=0,0()f x y =,即函数在0,0()x y 点连续.3. 多元函数的极限计算可以用洛必塔法则吗?为什么? 不可以,因为洛必塔法则的理论基础是柯西中值定理.8.2 偏导数 1. 已知2(,)y f x y e x y +=,求(,)f x y令x y u +=,y e v =那么解出x ,y 得ln ln y vx u v=⎧⎨=-⎩,所以22(,)(,).(,)(ln ).ln f u v x u v y u v u v v ==- 或者2(,)(ln ).ln f u v u v y =-8.3全微分极其应用1.写出多元函数连续,偏导存在,可微之间的关系 偏导数x f ', y f '偏导数x f ', y f '2. 判断二元函数对于函数(,f x y (0,0)lim x x f ∆→'=00(0,0)limy x x f ∆→∆→'=又005226(,)(0,0)(0,0)(0,0)limlim()()x x x x y y y y f x y f f x f yx yx y →→→→''∆∆--∆-∆∆∆=⎡⎤∆+∆⎣⎦令yk x ∆=∆,则上式为2135550022663()limlim 0(1)(1)x x k x k x k xk ∆→∆→∆=∆=+∆+因而(,)f x y 在原点处可微.8.4多元复合函数的求导法则 1. 设()xy zf x y=+,f 可微,求dz .22222()()()()()()()()()()()xy xy xy x y d xy xyd x y dz f d f x y x y x y x y xy y xy yf dx f dyx y x y x y x y +-+''==++++''=+++++8.5隐函数的求导1. 设(,)x x y z =,(,)y y x z =,(,)z z x y =都是由方程(,,)0F x y z =所确定的具有连续偏导数的函数,证明..1x y zy z x∂∂∂=-∂∂∂. 对于方程(,,)0F x y z =,如果他满足隐函数条件.例如,具有连续偏导数且0x F '≠,则由方程(,,)0F x y z =可以确定函数(,)x x y z =,即x 是y ,z 的函数,而y ,z 是自变量,此时具有偏导数y x F xy F '∂=-∂',z x F x z F '∂=-∂' 同理, z y F yz F '∂=-∂',所以.x y y z ∂∂∂∂8.6多元函数的极值及其求法 1.设(,)f x y 在点000(,)p x y ,命题是否正确?不正确,2.例如,二元函数(,)Zf x y =3=由二元函数极值判别法:2630zx x x∂=-=∂,解得 1x 60zy y∂==∂, 解得 0y = 故得驻点1(0,0)M =,2(2,0)M =2266z A x x ∂==-∂,20z B x y ∂==∂∂, 226z C y∂==∂236(1)AC B x -=-由于 2(0,0)0AC B - ,2(2,0)0AC B - ,以及(0,0)0A ,所以1(0,0)M =,是函数的惟一极小值点,但是(4,0)16(0,0)f f =- ,故(0,0)f 不是(,)f x y 在D上的最小值.第十一章 无穷级数11.1常数项级数的概念和性质1. 若通项0na →,则级数212121111()2n n n n n n nn a n∞=∞=∞==≤+∑收敛,这种说法是否正确?否2. 若级数1nn a∞=∑加括号后所成的新级数发散,则原级数必定发散,而加括号后所的级数收敛,则无法判定原级数的敛散性,这种说法是否正确?正确11.2常数项级数的审敛法 1. 若级数1nn u∞=∑收敛,则级数21nn u∞=∑一定收敛。