高数部分知识点总结

合集下载

高数部分知识点总结

高数部分知识点总结

高数部分知识点总结1 高数部分1.1 高数第一章《函数、极限、连续》求极限题最常用的解题方向:1.利用等价无穷小;2.利用洛必达法0,,0,0,1则,对于型和型的题目直接用洛必达法则,对于、、型0,0,的题目则是先转化为型或型,再使用洛比达法则;3.利用重要极0,1xx1x,1(1,x),e限,包括、、;4.夹逼定理。

(1,),exlimlimlimsinxxx,0,0x,,1.2 高数第二章《导数与微分》、第三章《不定积分》、第四章《定积分》第二章《导数与微分》与前面的第一章《函数、极限、连续》、后面的第三章《不定积分》、第四章《定积分》都是基础性知识,一方面有单独出题的情况,如历年真题的填空题第一题常常是求极限;更重要的是在其它题目中需要做大量的灵活运用,故非常有必要打牢基础。

对于第三章《不定积分》,陈文灯复习指南分类讨论的非常全面,范围远大于考试可能涉及的范围。

在此只提醒一点:不定积分f(x)dx,F(x),C中的积分常数C 容易被忽略,而考试时如果在答,案中少写这个C会失一分。

所以可以这样建立起二者之间的联系以加f(x)dx深印象:定积分的结果可以写为F(x)+1,1指的就是那一分,,f(x)dx,F(x),C把它折弯后就是中的那个C,漏掉了C也就漏掉了,这1分。

第四章《定积分及广义积分》可以看作是对第三章中解不定积分方法的应用,解题的关键除了运用各种积分方法以外还要注意定积分与不定积分的差异——出题人在定积分题目中首先可能在积分上下af(x)dx限上做文章:对于型定积分,若f(x)是奇函数则有,,aaaaf(x)dxf(x)dxf(x)dx=0;若f(x)为偶函数则有=2;对于,,,,a,a0,,2t,,xf(x)dx型积分,f(x)一般含三角函数,此时用的代换是常,02用方法。

所以解这一部分题的思路应该是先看是否能从积分上下限中入手,对于对称区间上的积分要同时考虑到利用变量替换x=-u和利aaa奇函数,0偶函数,2偶函数用性质、。

高数大一必考知识点归纳

高数大一必考知识点归纳

高数大一必考知识点归纳高数是大一必考的一门重要课程,全面掌握其中的知识点对于大家的学习和未来的学习生涯都至关重要。

为了帮助大家更好地备考高数,本文将对大一必考的高数知识点进行归纳总结,希望能对大家的学习有所帮助。

1. 函数与极限1.1 函数的概念与性质:函数的定义、函数的图像、函数的奇偶性、函数的周期性等。

1.2 极限的概念与性质:函数极限的定义、左极限和右极限、极限的四则运算性质等。

1.3 无穷大与无穷小:无穷小的定义、无穷小的性质、无穷大的定义、无穷大的性质等。

2. 导数与微分2.1 导数的概念与计算方法:导数的定义、导数的基本公式、常见函数的导数、高阶导数等。

2.2 微分的概念与计算方法:微分的定义、微分的运算法则、微分中值定理等。

2.3 高阶导数与泰勒展开:高阶导数的概念、泰勒展开式的定义与应用等。

3. 不定积分与定积分3.1 不定积分的概念与计算方法:不定积分的定义、基本积分法、换元积分法等。

3.2 定积分的概念与计算方法:定积分的定义、定积分的性质、定积分的计算方法等。

3.3 微积分基本定理:微积分基本定理的概念、反导数与不定积分、定积分与面积计算等。

4. 微分方程4.1 微分方程的基本概念:微分方程的定义、微分方程的阶、常微分方程与偏微分方程等。

4.2 一阶微分方程:可分离变量的微分方程、一阶线性微分方程等。

4.3 高阶线性微分方程:二阶齐次线性微分方程、二阶非齐次线性微分方程等。

5. 多元函数与偏导数5.1 多元函数的概念与性质:多元函数的定义、多元函数的图像、多元函数的极限、多元函数的连续性等。

5.2 偏导数的概念与计算方法:偏导数的定义、偏导数的几何意义、偏导数的运算法则等。

5.3 高阶偏导数与全微分:高阶偏导数的概念、全微分的定义与计算方法等。

综上所述,以上列举的知识点是大一必考的高数知识点的主要内容。

大家在备考过程中可以根据这些知识点进行系统性的学习和复习,理解每个知识点的概念、性质和计算方法,并通过大量的练习题加深对知识点的理解和掌握。

(完整版)高数知识点总结

(完整版)高数知识点总结

高数重点知识总结1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(x a y =),三角函数(y=sinx),常数函数(y=c)2、分段函数不是初等函数。

3、无穷小:高阶+低阶=低阶 例如:1lim lim020==+→→x xxx x x x 4、两个重要极限:()e x ex xxxx xx x =⎪⎭⎫⎝⎛+=+=∞→→→11lim 1lim )2(1sin lim )1(10 经验公式:当∞→→→)(,0)(,0x g x f x x ,[])()(lim )(0)(1lim x g x f x g x x x x ex f →=+→例如:()33lim 10031lim -⎪⎭⎫ ⎝⎛-→==-→e ex x x xx x5、可导必定连续,连续未必可导。

例如:||x y =连续但不可导。

6、导数的定义:()0000')()(lim)(')()(limx f x x x f x f x f xx f x x f x x x =--=∆-∆+→→∆7、复合函数求导:[][])(')(')(x g x g f dxx g df •= 例如:xx x x x x x y x x y ++=++=+=24122211', 8、隐函数求导:(1)直接求导法;(2)方程两边同时微分,再求出dy/dx例如:yxdx dy ydy xdx y xy yy x y x -=⇒+-=⇒=+=+22,),2('0'22,),1(122左右两边同时微分法左右两边同时求导解:法 9、由参数方程所确定的函数求导:若⎩⎨⎧==)()(t h x t g y ,则)(')('//t h t g dt dx dt dy dx dy ==,其二阶导数:()[])(')('/)('/)/(/22t h dt t h t g d dt dx dt dx dy d dx dx dy d dx y d === 10、微分的近似计算:)(')()(000x f x x f x x f •∆=-∆+ 例如:计算 ︒31sin11、函数间断点的类型:(1)第一类:可去间断点和跳跃间断点;例如:xxy sin =(x=0是函数可去间断点),)sgn(x y =(x=0是函数的跳跃间断点)(2)第二类:振荡间断点和无穷间断点;例如:⎪⎭⎫ ⎝⎛=x x f 1sin )((x=0是函数的振荡间断点),xy 1=(x=0是函数的无穷间断点) 12、渐近线:水平渐近线:c x f y x ==∞→)(lim铅直渐近线:.)(lim 是铅直渐近线,则若,a x x f ax =∞=→斜渐近线:[]ax x f b xx f a b ax y x x -==+=∞→∞→)(lim ,)(lim,即求设斜渐近线为例如:求函数11223-+++=x x x x y 的渐近线13、驻点:令函数y=f(x),若f'(x0)=0,称x0是驻点。

高数大一最全知识点

高数大一最全知识点

高数大一最全知识点高等数学作为大一学生的必修课程,是一门基础而又重要的学科。

掌握好高数知识点,不仅对后续的学习有着重要的影响,也对提高数理思维和解决实际问题具有重要的帮助。

下面将为大家整理总结大一高数中最全的知识点。

第一章:函数与极限1. 函数的概念和性质函数定义、定义域和值域、函数的图像和性质等。

2. 极限的概念和性质数列极限、函数极限、几何意义以及重要的极限性质。

3. 连续与间断连续函数的概念、连续函数的性质、间断点和间断函数等。

第二章:导数与微分1. 导数的概念和计算导数的定义、导数的计算方法、各种函数导数的计算公式等。

2. 高阶导数与导数的应用高阶导数的定义、高阶导数的计算、导数在几何和物理问题中的应用等。

3. 微分学基本定理微分中值定理、极值与最值、凹凸性等重要的微分学定理。

第三章:积分与不定积分1. 定积分和不定积分的概念和性质定积分的定义、定积分的计算、不定积分的定义和基本积分表等。

2. 定积分的应用定积分的几何应用、定积分的物理应用、定积分的概率统计应用等。

3. 反常积分反常积分的概念和性质、反常积分判敛方法、特殊函数的反常积分等。

第四章:常微分方程1. 常微分方程的基本概念常微分方程的定义、初值问题、解的存在唯一性定理等。

2. 一阶常微分方程解法可分离变量方程、齐次方程、一阶线性方程、伯努利方程等解法。

3. 高阶线性微分方程高阶线性齐次和非齐次微分方程的解法、常系数线性微分方程等。

第五章:多元函数与偏导数1. 多元函数的概念和性质多元函数的定义、定义域、值域、图像等基本概念。

2. 偏导数与全微分偏导数的定义和计算、全微分的定义以及全微分近似等。

3. 隐函数与参数方程隐函数的存在定理、隐函数的求导、参数方程的定义和性质等。

第六章:多元函数的积分学1. 二重积分的概念和性质二重积分的定义、二重积分的计算、二重积分的性质等。

2. 三重积分和曲线、曲面积分三重积分的定义、三重积分的计算、曲线积分、曲面积分的概念与计算等。

大一高数上所有知识点总结

大一高数上所有知识点总结

大一高数上所有知识点总结一、函数与极限1. 函数的概念与性质1.1 函数的定义1.2 函数的性质2. 极限的概念与性质2.1 极限的定义2.2 极限存在的充分条件2.3 极限的性质及四则运算法则3. 无穷小量与无穷大量3.1 无穷小量的概念与性质3.2 无穷大量的概念与性质4. 极限的计算4.1 用夹逼准则求极限4.2 用无穷小量比较求极限4.3 用洛必达法则求极限4.4 用泰勒公式求极限二、导数与微分1. 导数的概念与求导法则1.1 导数的概念1.2 导数的计算与求导法则1.3 隐函数的导数1.4 高阶导数2. 函数的微分与高阶导数2.1 函数的微分2.3 高阶导数的概念与计算3. 函数的增减性与凹凸性3.1 函数的单调性3.2 函数的最值与最值存在条件3.3 函数的凹凸性及拐点三、函数的应用1. 泰勒公式在误差估计中的应用2. 函数的极值及其应用3. 函数的图形与曲线的切线方程4. 收敛性与闭区间紧性的概念及应用四、不定积分1. 不定积分的概念与性质1.1 不定积分的定义1.2 不定积分的性质1.3 不定积分的基本公式2. 不定积分的计算2.1 一些特殊函数的不定积分2.2 有理函数的不定积分2.3 有理三角函数的不定积分2.4 特殊的不定积分解法五、定积分1. 定积分的概念与性质1.1 定积分的定义1.2 定积分的性质2. 定积分的几何应用2.1 定积分与曲线下面积2.2 定积分与旋转体的体积计算2.3 定积分与空间几何体的体积计算六、微分方程1. 微分方程的概念与基本性质1.1 微分方程的定义1.2 微分方程的基本性质2. 常微分方程的解法2.1 一阶微分方程的解法2.2 二阶微分方程的解法2.3 高阶微分方程的解法3. 微分方程在物理问题中的应用3.1 弹簧振动问题3.2 电路的动态特性问题3.3 理想气体的状态方程问题七、多元函数微积分1. 多元函数的概念与性质1.1 多元函数的定义1.2 多元函数的导数与偏导数1.3 多元函数的微分2. 多元函数的极值与条件极值2.1 多元函数的极值点2.2 多元函数的条件极值点3. 二重积分与三重积分3.1 二重积分的概念与性质3.2 二重积分的计算3.3 三重积分的概念与性质3.4 三重积分的计算4. 重积分在几何与物理中的应用4.1 重积分与平面图形的面积计算4.2 重积分与曲面旋转体的体积计算4.3 重积分与空间物体的质量与重心计算八、无穷级数1. 数项级数的概念与性质1.1 数项级数的概念1.2 数项级数收敛的充分条件1.3 数项级数的审敛法2. 幂级数2.1 幂级数的概念与性质2.2 幂级数的收敛域2.3 幂级数在收敛域上的一致收敛性3. 函数项级数3.1 函数项级数的概念与性质3.2 函数项级数收敛的判别法3.3 函数项级数的一致收敛性以上是大一高数的知识点总结,总结了函数与极限、导数与微分、函数的应用、不定积分、定积分、微分方程、多元函数微积分、无穷级数等内容。

高数重要知识点汇总

高数重要知识点汇总

高数重要知识点汇总第一章 函数与极限一. 函数的概念1 两个无穷小的比较设0)(lim ,0)(lim ==x g x f 且l x g x f =)()(lim (1)l = 0,称f (x )是比g (x )高阶的无穷小,记以f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。

(2)l ≠ 0,称f (x )与g (x )是同阶无穷小。

(3)l = 1,称f (x )与g (x )是等价无穷小,记以f (x ) ~ g (x )2 常见的等价无穷小当x →0时sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x1− cos x ~ 2/2^x , x e −1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α二 求极限的方法1.两个准则准则1高数重要知识点汇总准则2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x ) 放缩求极限若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim2.两个重要公式公式11sin lim 0=→xx x 公式2e x x x =+→/10)1(lim 3.高数重要知识点汇总4.★用泰勒公式当x 0→时,有以下公式,可当做等价无穷小更深层次)()!12()1(...!5!3sin )(!...!3!2112125332++++-+++-=++++++=n n n n nxx o n x x x x x x o n x x x x e )(!2)1(...!4!21cos 2242n n n x o n x x x x +-+++-= )()1(...32)1ln(132n n n x o nx x x x x +-++-=++ )(!))1()...(1( (2)1(1)1(2n n x o x n n x x x +---++-++=+ααααααα)(12)1(...53arctan 1212153+++++-+-+-=n n n x o n x x x x x 5.洛必达法则定理1 设函数)(x f 、)(x F 满足下列条件:(1)0)(lim 0=→x f x x ,0)(lim 0=→x F x x ; (2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;(3))()(lim 0x F x f x x ''→存在(或为无穷大),则 这个定理说明:当)()(lim 0x F x f x x ''→存在时,)()(lim 0x F x f x x →也存在且等于)()(lim 0x F x f x x ''→;当)()(lim 0x F x f x x ''→为无穷大时,)()(lim 0x F x f x x →也是无穷大. 这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(H L 'ospital )法则.)()(lim )()(lim 00x F x f x F x f x x x x ''=→→例1计算极限0e 1lim x x x→-. 解 该极限属于“00”型不定式,于是由洛必达法则,得 0e 1lim x x x→-0e lim 11xx →==. 例2计算极限0sin lim sin x ax bx→. 解 该极限属于“00”型不定式,于是由洛必达法则,得 00sin cos lim lim sin cos x x ax a ax a bx b bx b→→==. 注 若(),()f x g x ''仍满足定理的条件,则可以继续应用洛必达法则,即()()()lim lim lim ()()()x a x a x a f x f x f x g x g x g x →→→'''==='''二、∞∞型未定式 定理2 设函数)(x f 、)(x F 满足下列条件:(1)∞=→)(lim 0x f x x ,∞=→)(lim 0x F x x ; (2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ; (3))()(lim 0x F x f x x ''→存在(或为无穷大),则 注:上述关于0x x →时未定式∞∞型的洛必达法则,对于∞→x 时未定式∞∞型同样适用.例3计算极限lim (0)n x x x n e→+∞>. 解 所求问题是∞∞型未定式,连续n 次施行洛必达法则,有 lim e n x x x →+∞1lim e n x x nx -→+∞=2(1)lim e n xx n n x -→+∞-= !lim 0e x x n →+∞===. 使用洛必达法则时必须注意以下几点:(1)洛必达法则只能适用于“00”和“∞∞”型的未定式,其它的未定式须先化简变形成“00”或“∞∞”型才能运用该法则; (2)只要条件具备,可以连续应用洛必达法则;(3)洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不能断定原极限不存在.7.利用导数定义求极限)()(lim )()(lim 00x F x f x F x f x x x x ''=→→基本公式)()()(lim 0'000x f xx f x x f x =∆-∆+→∆(如果存在) 8.利用定积分定义求极限基本格式⎰∑==∞→101)()(1lim dx x f n k f n n k n (如果存在) 三.函数的间断点的分类函数的间断点分为两类:(1)第一类间断点设0x 是函数y = f (x )的间断点。

高数基础知识总结:掌握高数的核心要点

高数基础知识总结:掌握高数的核心要点

高数基础知识总结:掌握高数的核心要点
一、引言
高等数学(高数)是数学的一个重要分支,它涉及到更加抽象和深入的数学概念。

对于许多学生来说,高数是他们学术生涯中的一个挑战。

然而,只要掌握了高数的核心要点,学习高数也可以变得相对容易。

本文将总结高数的核心要点,帮助读者更好地理解和掌握这一学科。

二、高数的核心概念
1. 极限:极限是高数的基石,它描述了函数在某个点或无穷远处的行为。

理解极限的概念对于理解高数的其他概念至关重要。

2. 导数:导数是函数的局部变化率,它描述了函数值随自变量变化的速率。

导数的计算和应用在高数中非常广泛。

3. 积分:积分是微分的逆运算,它用来计算曲线与x轴之间的面积。

积分在高数中也有着重要的应用。

4. 微分方程:微分方程描述了函数随时间变化的规律,是解决实际问题的重要工具。

5. 多元函数:多元函数涉及到多个变量的函数,其导数和积分等概念也更加复杂。

三、如何掌握高数的核心要点
1. 理解概念:对于每个高数概念,都要深入理解其定义和性质,以及其在解决实际问题中的应用。

2. 练习计算:高数的概念比较抽象,需要通过大量的练习来熟悉和掌握。

3. 建立知识体系:高数的知识点是相互联系的,需要建立起知识体系,以便更好地理解和记忆。

4. 学习方法:好的学习方法可以提高学习效率,例如采用归纳总结、类比学习等学习方法。

四、结论
高数虽然是一门比较难的学科,但是只要掌握了其核心要点,就可以轻松地理解和应用高数的知识。

希望本文对读者掌握高数的核心要点有所帮助。

(完整版)高等数学基础知识点归纳

(完整版)高等数学基础知识点归纳

第一讲函数,极限,连续性1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。

集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。

比如“身材较高的人”不能构成集合,因为它的元素不是确定的。

⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。

记作N⑵、所有正整数组成的集合叫做正整数集,记作N+。

⑶、全体整数组成的集合叫做整数集,记作Z。

⑷、全体有理数组成的集合叫做有理数集,记作Q。

⑸、全体实数组成的集合叫做实数集,记作R。

集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A 中的任意一个元素都是集合B 的元素,我们就说A、B 有包含关系,称集合A 为集合B 的子集,记作A ⊂B。

⑵、相等:如何集合A 是集合B 的子集,且集合B 是集合A 的子集,此时集合A 中的元素与集合B 中的元素完全一样,因此集合A 与集合B 相等,记作A=B。

⑶、真子集:如何集合A 是集合B 的子集,但存在一个元素属于B 但不属于A,我们称集合A 是集合B 的真子集,记作A 。

⑷、空集:我们把不含任何元素的集合叫做空集。

记作,并规定,空集是任何集合的子集。

⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。

②、对于集合A、B、C,如果A 是B 的子集,B 是C 的子集,则A 是C 的子集。

③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。

集合的基本运算⑴、并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合称为A 与B 的并集。

记作A∪B。

(在求并集时,它们的公共元素在并集中只能出现一次。

)即A∪B={x|x∈A,或x∈B}。

⑵、交集:一般地,由所有属于集合A 且属于集合B 的元素组成的集合称为A 与B 的交集。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 高数部分1.1 高数第一章《函数、极限、连续》求极限题最常用的解题方向:1.利用等价无穷小;2.利用洛必达法则,对于00型和∞∞型的题目直接用洛必达法则,对于∞0、0∞、∞1型的题目则是先转化为00型或∞∞型,再使用洛比达法则;3.利用重要极限,包括1sin lim 0=→x x x 、e x x x =+→10)1(lim 、e x x x =+∞→)1(1lim ;4.夹逼定理。

1.2 高数第二章《导数与微分》、第三章《不定积分》、第四章《定积分》第二章《导数与微分》与前面的第一章《函数、极限、连续》、后面的第三章《不定积分》、第四章《定积分》都是基础性知识,一方面有单独出题的情况,如历年真题的填空题第一题常常是求极限;更重要的是在其它题目中需要做大量的灵活运用,故非常有必要打牢基础。

对于第三章《不定积分》,陈文灯复习指南分类讨论的非常全面,范围远大于考试可能涉及的范围。

在此只提醒一点:不定积分⎰+=C x F dx x f )()(中的积分常数C 容易被忽略,而考试时如果在答案中少写这个C 会失一分。

所以可以这样建立起二者之间的联系以加深印象:定积分⎰dx x f )(的结果可以写为F(x)+1,1指的就是那一分,把它折弯后就是⎰+=C x F dx x f )()(中的那个C,漏掉了C 也就漏掉了这1分。

第四章《定积分及广义积分》可以看作是对第三章中解不定积分方法的应用,解题的关键除了运用各种积分方法以外还要注意定积分与不定积分的差异——出题人在定积分题目中首先可能在积分上下限上做文章:对于⎰-aa dx x f )(型定积分,若f(x)是奇函数则有⎰-a a dx x f )(=0;若f(x)为偶函数则有⎰-a a dx x f )(=2⎰a dx x f 0)(;对于⎰20)(πdx x f 型积分,f(x)一般含三角函数,此时用x t -=2π的代换是常用方法。

所以解这一部分题的思路应该是先看是否能从积分上下限中入手,对于对称区间上的积分要同时考虑到利用变量替换x=-u 和利用性质0=⎰-a a 奇函数 、⎰⎰=-aa a 02偶函数偶函数。

在处理完积分上下限的问题后就使用第三章不定积分的套路化方法求解。

这种思路对于证明定积分等式的题目也同样有效。

1.3 高数第五章《中值定理的证明技巧》由本章《中值定理的证明技巧》讨论一下证明题的应对方法。

用以下这组逻辑公式来作模型:假如有逻辑推导公式A⇒E、(A B)⇒C、(C D E)⇒F,由这样一组逻辑关系可以构造出若干难易程度不等的证明题,其中一个可以是这样的:条件给出A、B、D,求证F成立。

为了证明F成立可以从条件、结论两个方向入手,我们把从条件入手证明称之为正方向,把从结论入手证明称之为反方向。

正方向入手时可能遇到的问题有以下几类:1.已知的逻辑推导公式太多,难以从中找出有用的一个。

如对于证明F成立必备逻辑公式中的A⇒E就可能有A⇒H、A⇒(I K)、(A B) ⇒M等等公式同时存在,有的逻辑公式看起来最有可能用到,如(A B) ⇒M,因为其中涉及了题目所给的3个条件中的2个,但这恰恰走不通; 2.对于解题必须的关键逻辑推导关系不清楚,在该用到的时候想不起来或者弄错。

如对于模型中的(A B) ⇒C,如果不知道或弄错则一定无法得出结论。

从反方向入手证明时也会遇到同样的问题。

通过对这个模型的分析可以看出,对可用知识点掌握的不牢固、不熟练和无法有效地从众多解题思路中找出答案是我们解决不了证明题的两大原因。

针对以上分析,解证明题时其一要灵活,在一条思路走不通时必须迅速转换思路,而不应该再从头开始反复地想自己的这条思路是不是哪里出了问题;另外更重要的一点是如何从题目中尽可能多地获取信息。

当我们解证明题遇到困难时,最常见的情况是拿到题莫名其妙,感觉条件与欲证结论简直是风马牛不相及的东西,长时间无法入手;好不容易找到一个大致方向,在做若干步以后却再也无法与结论拉近距离了。

从出题人的角度来看,这是因为没能够有效地从条件中获取信息。

“尽可能多地从条件中获取信息”是最明显的一条解题思路,同时出题老师也正是这样安排的,但从题目的“欲证结论”中获取信息有时也非常有效。

如在上面提到的模型中,如果做题时一开始就想到了公式(C D E) ⇒F再倒推想到 (A B) ⇒C、 A⇒E就可以证明了。

如果把主要靠分析条件入手的证明题叫做“条件启发型”的证明题,那么主要靠“倒推结论”入手的“结论启发型”证明题在中值定理证明问题中有很典型的表现。

其中的规律性很明显,甚至可以以表格的形式表示出来。

下表列出了中值定理证明问题的几种类型:条件欲证结论可用定理A 关于闭区间上的连续函数,常常是只有连续性已知存在一个ε满足某个式子介值定理(结论部分为:存在一个ε使得kf=)(ε)零值定理(结论部分为:存在一个ε使得0)(=εf)B 条件包括函数在闭区间上连续、在存在一个ε满足)()(=εnf费尔马定理(结论部分为:0)(0='xf)洛尔定理(结论部分为:存在一个ε使得0)(='εf)开区间上可导C 条件包括函数在闭区间上连续、在开区间上可导 存在一个ε满足k f n =)()(ε拉格朗日中值定理(结论部分为:存在一个ε使得a b a f b f f --=')()()(ε) 柯西中值定理(结论部分为:存在一个ε使得)()()()()()(a g b g a f b f g f --=''εε)另外还常利用构造辅助函数法,转化为可用费尔马或洛尔定理的形式来证明从上表中可以发现,有关中值定理证明的证明题条件一般比较薄弱,如表格中B 、C 的条件是一样的,同时A 也只多了一条“可导性”而已;所以在面对这一部分的题目时,如果把与证结论与可能用到的几个定理的的结论作一比较,会比从题目条件上挖掘信息更容易找到入手处。

故对于本部分的定理如介值、最值、零值、洛尔和拉格朗日中值定理的掌握重点应该放在熟记定理的结论部分上;如果能够做到想到介值定理时就能同时想起结论“存在一个ε使得k f=)(ε”、看到题目欲证结论中出现类似“存在一个ε使得k f =)(ε”的形式时也能立刻想到介值定理;想到洛尔定理时就能想到式子0)(='εf ;而见到式子)()()()()()(a g b g a f b f g f --=''εε也如同见到拉格朗日中值定理一样,那么在处理本部分的题目时就会轻松的多,时常还会收到“豁然开朗”的效果。

所以说,“牢记定理的结论部分”对作证明题的好处在中值定理的证明问题上体现的最为明显。

综上所述,针对包括中值定理证明在内的证明题的大策略应该是“尽一切可能挖掘题目的信息,不仅仅要从条件上充分考虑,也要重视题目欲证结论的提示作用,正推和倒推相结合;同时保持清醒理智,降低出错的可能”。

希望这些想法对你能有一点启发。

不过仅仅弄明白这些离实战要求还差得很远,因为在实战中证明题难就难在答案中用到的变形转换技巧、性质甚至定理我们当时想不到;很多结论、性质和定理自己感觉确实是弄懂了、也差不多记住了,但是在做题时那种没有提示、或者提示很少的条件下还是无法做到灵活运用;这也就是自身感觉与实战要求之间的差别。

这就像在记英语单词时,看到英语能想到汉语与看到汉语能想到英语的掌握程度是不同的一样,对于考研数学大纲中“理解”和“掌握”这两个词的认识其实是在做题的过程中才慢慢清晰的。

我们需要做的就是靠足量、高效的练习来透彻掌握定理性质及熟练运用各种变形转换技巧,从而达到大纲的相应要求,提高实战条件下解题的胜算。

依我看,最大的技巧就是不依赖技巧,做题的问题必须要靠做题来解决。

1.4 高数第六章《常微分方程》本章常微分方程部分的结构简单,陈文灯复习指南对一阶微分方程、可降阶的高阶方程、高阶方程都列出了方程类型与解法对应的表格。

历年真题中对于一阶微分方程和可降阶方程至少是以小题出现的,也经常以大题的形式出现,一般是通过函数在某点处的切线、法线、积分方程等问题来引出;从历年考察情况和大纲要求来看,高阶部分不太可能考大题,而且考察到的类型一般都不是很复杂。

对于本章的题目,第一步应该是辨明类型,实践证明这是必须放在第一位的;分清类型以后按照对应的求解方法按部就班求解即可。

这是因为其实并非所有的微分方程都是可解的,在大学高等数学中只讨论了有限的可解类型,所以出题的灵活度有限,很难将不同的知识点紧密结合或是灵活转换。

这样的知识点特点就决定了我们可以采取相对机械的“辨明类型——〉套用对应方法求解”的套路 ,而且各种类型的求解方法正好也都是格式化的,便于以这样的方式使用。

先讨论一下一阶方程部分。

这一部分结构清晰,对于各种方程的通式必须牢记,还要能够对易混淆的题目做出准确判断。

各种类型都有自己对应的格式化解题方法,这些方法死记硬背并不容易,但有规律可循——这些方法最后的目的都是统一的,就是把以各种形式出现的方程都化为f(x)dx=f(y)dy 这样的形式,再积分得到答案。

对于可分离变量型方程0)()()()(2211=+dy y g x f dx y g x f ,就是变形为dx x f x f )()(21=-dy y g y g )()(12,再积分求解;对于齐次方程)(x y f y ='则做变量替换x yu =,则y '化为dxdu x u +,原方程就可化为关于x u 和的可分离变量方程,变形积分即可解;对于一阶线性方程)()(x q y x p y =+'第一步先求0)(=+'y x p y 的通解,然后将变形得到的dxx p y dy )(-=积分,第二步将通解中的C 变为C(x)代入原方程)()(x q y x p y =+'解出C(x)后代入即可得解;对于贝努利方程)()(x q y x p y =+'n y ,先做变量代换n y z -=1代入可得到关于z 、x 的一阶线性方程,求解以后将z 还原即可;全微分方程M(x,y)dx+N(x,y)dy 比较特殊,因为其有条件x N y M∂∂∂∂=,而且解题时直接套用通解公式⎰+xx dx y x M 0),(0⎰=y y C dy y x N 0),(.所以,对于一阶方程的解法有规律可循,不用死记硬背步骤和最后结果公式。

对于求解可降阶的高阶方程也有类似的规律。

对于)()(x f y n =型方程,就是先把)1(-n y当作未知函数Z ,则Z y n '=)( 原方程就化为 dx x f dz )(= 的一阶方程形式,积分即得;再对)2(-n y 、)3(-n y 依次做上述处理即可求解;),(y x f y '='' 叫不显含 y 的二阶方程,解法是通过变量替换p y ='、p y '='' (p 为x 的函数)将原方程化为一阶方程;),(y y f y '=''叫不显含x 的二阶方程,变量替换也是令p y ='(但此中的p 为y 的函数),则p p p y dy dp dx dy dy dp '==='',也可化为一阶形式。

相关文档
最新文档