第4章图形的初步认识单元测试

合集下载

华师大版七年级上册《第4章+图形的初步认识》2013年单元测试卷

华师大版七年级上册《第4章+图形的初步认识》2013年单元测试卷

华师大版七年级上册《第4章 图形的初步认识》2013年单元测试卷一、选择题(每小题3分,共30分)2.(3分)正多面体的面数、棱数、顶点数之间存在着一个奇妙的关系,若用F ,E,V 分别表示正多面体的面数、. C D .CD .5.(3分)(2011•宁夏)将“创建文明城市”六个字分别写在一个正方体的六个面上,这个正方体的平面展开图如图所示,那么在这个正方体中,和“创“相对的字是( )6.(3分)(2009•辽宁)如图,已知直线AB 、CD 相交于点O ,OA 平分∠EOC ,∠EOC=110°,则∠BOD 的度数是( ).C D .8.(3分)下列平面图形不能够围成正方体的是( ).CD .10.(3分)在直线l 上顺次取A 、B 、C 三点,使得AB=5cm ,BC=3cm ,如果O 是线段AC 的中点,那么线段OB二、填空题(每小题3分,共24分) 11.(3分)如图,直线AB ,CD 相交于点0,OE 平分∠AOD ,若∠BOC=80°,则∠AOE= _________ °.12.(3分)直线上的点有 _________ 个,射线上的点有 _________ 个,线段上的点有 _________ 个. 13.(3分)两条直线相交有 _________个交点,三条直线相交最多有 _________ 个交点,最少有 _________ 个交点. 14.(3分)如图,OM 平分∠AOB ,ON 平分∠COD .若∠MON=50°,∠BOC=10°,则∠AOD= _________ 度.15.(3分)图中给出的分别有直线、射线、线段,能相交的图形是 _________ .16.(3分)下列表面展开图的立体图形的名称分别是: _________ 、 _________ 、 _________ 、 _________ .17.(3分)如图,C ,D 是线段AB 上两点,若CB=4cm ,DB=7cm ,且D 是AC 的中点,则AC= _________ .18.(3分)(2012•内江)由一些大小相同的小正方形组成的一个几何体的主视图和俯视图如图所示,那么组成该几何体所需的小正方形的个数最少为_________.三、解答题(共46分)19.(6分)(2006•临安市)马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示)20.(6分)如图是一个长方体的表面展开图,每个面上都标注了字母,请根据要求回答问题:(1)如果A面在长方体的底部,那么哪一个面会在上面?(2)如果F面在前面,B面在左面,那么哪一个面会在上面?(字母朝外)21.(6分)如图,已知线段AD=6cm,线段AC=BD=4cm,E、F分别是线段AB、CD的中点,求EF.22.(6分)如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.23.(7分)已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?24.(7分)如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若DE=9cm,求AB的长;(2)若CE=5cm,求DB的长.25.(8分)十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:)之间存在的关系式是_________.(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是_________.(3)某个玻璃鉓品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为x个,八边形的个数为y个,求x+y的值.华师大版七年级上册《第4章图形的初步认识》2013年单元测试卷参考答案与试题解析一、选择题(每小题3分,共30分)2.(3分)正多面体的面数、棱数、顶点数之间存在着一个奇妙的关系,若用F,E,V分别表示正多面体的面数、.C D,进而得到再利用等量代换可得∴==.CD .5.(3分)(2011•宁夏)将“创建文明城市”六个字分别写在一个正方体的六个面上,这个正方体的平面展开图如图所示,那么在这个正方体中,和“创“相对的字是( )6.(3分)(2009•辽宁)如图,已知直线AB 、CD 相交于点O ,OA 平分∠EOC ,∠EOC=110°,则∠BOD 的度数是()∠.C D..C D.10.(3分)在直线l上顺次取A、B、C三点,使得AB=5cm,BC=3cm,如果O是线段AC的中点,那么线段OB二、填空题(每小题3分,共24分)11.(3分)如图,直线AB,CD相交于点0,OE平分∠AOD,若∠BOC=80°,则∠AOE=40°.12.(3分)直线上的点有无数个,射线上的点有无数个,线段上的点有无数个.13.(3分)两条直线相交有1个交点,三条直线相交最多有3个交点,最少有1个交点.14.(3分)如图,OM平分∠AOB,ON平分∠COD.若∠MON=50°,∠BOC=10°,则∠AOD=90度.15.(3分)图中给出的分别有直线、射线、线段,能相交的图形是(1)(3).16.(3分)下列表面展开图的立体图形的名称分别是:圆柱、圆锥、四棱锥、三棱柱.17.(3分)如图,C,D是线段AB上两点,若CB=4cm,DB=7cm,且D是AC的中点,则AC=6cm.18.(3分)(2012•内江)由一些大小相同的小正方形组成的一个几何体的主视图和俯视图如图所示,那么组成该几何体所需的小正方形的个数最少为4.三、解答题(共46分)19.(6分)(2006•临安市)马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示)20.(6分)如图是一个长方体的表面展开图,每个面上都标注了字母,请根据要求回答问题:(1)如果A面在长方体的底部,那么哪一个面会在上面?(2)如果F面在前面,B面在左面,那么哪一个面会在上面?(字母朝外)21.(6分)如图,已知线段AD=6cm,线段AC=BD=4cm,E、F分别是线段AB、CD的中点,求EF.EF=BC+(EF=BC+(×22.(6分)如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.23.(7分)已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?是直角,不改变,可得∴∵∴24.(7分)如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若DE=9cm,求AB的长;(2)若CE=5cm,求DB的长.DC=AC=25.(8分)十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是V+F﹣E=2.(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是20.(3)某个玻璃鉓品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为x个,八边形的个数为y个,求x+y的值.。

七上 图形认识初步 单元测试题

七上 图形认识初步 单元测试题

第四章《图形认识初步》单元复习题班级________ 姓名__________ 成绩__________一、选择题(每题3分,共30分)1.下列图形中,不是正方体展开图的是()A. B. C. D.2.如图,从A地到B地有多条道路,一般地,人们会走中间的直路,而不会走其他的曲折的路,这是因为()A.两点之间线段最短B.两直线相交只有一个交点C.两点确定一条直线D.垂线段最短A.1个 B.2个 C.3个 D.4个3.一条铁路上有5个站,则共需要制 ( ) 种火车票。

A.4 B.5 C.8 D.104.赵师傅透过放大5倍的放大镜从正上方看30°的角,则通过放大镜他看到的角等于()A.30° B.90° C.150° D.180°5.甲从O点出发,沿北偏西30°走了50米到达A点,乙也从O点出发,沿南偏东35°方向走了80米到达B点,则∠AOB为()A.65° B.115° C.175° D.185°6.一个角的补角是120°,则这个角的余角()A.60°B.30°C.70°D.50°7.M、N两点的距离是20,有一点P,如果PM+PN=30,那么下列结论正确的是()A.P点必在线段MN上 B.P点必在直线MN上C.P点必在直线MN外 D.P点可能在直线MN外,也可能在直线MN上8.下列说法中,正确的有()①过两点有且只有一条直线②连结两点的线段叫做两点的距离③两点之间,线段最短④若AB=BC,则点B是线段AC的中点9.如图,能用∠1,∠ACB,∠C三种方法表示同一个角的是 ( )10.如图,点O在直线AB上,∠COB=∠DOE=90°,那么图中相等的角的对数和互余两角的对数分别为()A.3;3 B.4;4 C.5;4 D.7;5图3图2图1二、填空题(每题3分,共27分)11.22.5= ________度________分;1224'= ________.12.北京时间2点30分,钟面上的时针和分针的夹角为 度 13.如果一个角是050,那么这个角的余角是______°,补角是______°14.计算:5°24′13″×3+8°12′50″=15.要在墙上固定一根木条,至少要 个钉子,根据的原理是 16.过C B A 、、三点中两点作直线,小明说有三条,小林说有一条,小颖说不是一条就是三条,你认为_______的说法是对的。

《第4章几何图形初步》单元测试含答案解析

《第4章几何图形初步》单元测试含答案解析

《第4章几何图形初步》一、选择题1.下列立体图形中,侧面展开图是扇形的是()A.B.C.D.2.下列图形中,∠1和∠2互为余角的是()A.B.C.D.3.如图,点A位于点O的()方向上.A.南偏东35°B.北偏西65°C.南偏东65°D.南偏西65°4.如图所示,一个斜插吸管的盒装饮料从正面看的图形是()A.B.C.D.5.下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是()A.用两个钉子就可以把木条固定在墙上B.把弯曲的公路改直,就能缩短路程C.利用圆规可以比较两条线段的大小关系D.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线6.如图是一块手表,早上8时的时针、分针的位置如图所示,那么分针与时针所成的角的度数是()A.60° B.80° C.120°D.150°7.将一张长方形纸片按如图所示的方式折叠,BC,BD为折痕,则∠CBD的度数为()A.60° B.75° C.90° D.95°8.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,则在该正方体中,和“崇”相对的面上写的汉字是()A.低B.碳C.生D.活二、填空题9.已知∠A与∠B互余,若∠A=70°,则∠B的度数为度.10.一个角的补角等于它的余角的6倍,则这个角的度数为.11.13°30'=°;(2)0.5°='= ″.12.已知平面内有A、B、C、D四点,过其中的两点画一条直线,一共可以画条直线.三、解答题(共52分)13.计算:(1)40°26′+30°30′30″÷6;(2)13°53′×3﹣32°5′31″.14.在一张城市地图上,如图,有学校、医院、图书馆三地,图书馆被墨水污染,具体位置看不清,但知道图书馆在学校的东北方向,在医院的南偏东60°方向,你能确定图书馆的位置吗?15.已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD的长度.16.如图,已知∠AOC=60°,∠BOD=90°,∠AOB是∠DOC的3倍,求∠AOB的度数.17.把一副三角板的直角顶点O重叠在一起.(1)如图(1),当OB平分∠COD时,则∠AOD和∠BOC的和是多少度?(2)如图(2),当OB不平分∠COD时,则∠AOD和∠BOC的和是多少度?《第4章几何图形初步》参考答案与试题解析一、选择题1.下列立体图形中,侧面展开图是扇形的是()A.B.C.D.【考点】几何体的展开图.【分析】圆锥的侧面展开图是扇形.【解答】解:根据圆锥的特征可知,侧面展开图是扇形的是圆锥.故选:B.【点评】解题时勿忘记圆锥的特征及圆锥展开图的情形.2.下列图形中,∠1和∠2互为余角的是()A.B.C.D.【考点】余角和补角.【分析】根据余角、补角的定义计算.【解答】解:根据余角的定义,两角之和为90°,这两个角互余.D中∠1和∠2之和为90°,互为余角.故选D.【点评】根据余角的定义来判断,记住两角之和为90°,与两角位置无关.3.如图,点A位于点O的()方向上.A.南偏东35°B.北偏西65°C.南偏东65°D.南偏西65°【考点】方向角.【专题】应用题.【分析】根据方位角的概念,结合上北下南左西右东的规定进行判断.【解答】解:点A位于点O的北偏西65°的方向上.故选B.【点评】结合图形,正确认识方位角是解决此类问题的关键.4.如图所示,一个斜插吸管的盒装饮料从正面看的图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可.【解答】解:从正面可看到一个矩形右上角有一条线段,故选A.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.5.下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是()A.用两个钉子就可以把木条固定在墙上B.把弯曲的公路改直,就能缩短路程C.利用圆规可以比较两条线段的大小关系D.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线【考点】线段的性质:两点之间线段最短.【分析】根据直线的性质,线段的性质,以及线段的大小比较对各选项分析判断即可得解.【解答】解:A、用两个钉子就可以把木条固定在墙上是利用了“两点确定一条直线”,故本选项错误;B、把弯曲的公路改直,就能缩短路程是利用了“两点之间,线段最短”,故本选项正确;C、利用圆规可以比较两条线段的大小关系,是线段的大小比较,故本选项错误;D、植树时,只要定出两棵树的位置,就能确定同一行树所在的直线是利用了“两点确定一条直线”,故本选项错误.故选B.【点评】本题考查了线段的性质,直线的性质,是基础题,熟记各性质是解题的关键.6.如图是一块手表,早上8时的时针、分针的位置如图所示,那么分针与时针所成的角的度数是()A.60° B.80° C.120°D.150°【考点】钟面角.【专题】计算题.【分析】早上8时,时针指向8,分针指向12.钟表12个数字,每相邻两个数字之间的夹角为30°.分针与时针之间有四个格,可求解.【解答】解:根据图形,8点整分针与时针的夹角正好是(12﹣8)×30°=120度.故选C.【点评】本题考查钟表时针与分针的夹角.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动()°,并且利用起点时间时针和分针的位置关系建立角的图形.7.将一张长方形纸片按如图所示的方式折叠,BC,BD为折痕,则∠CBD的度数为()A.60° B.75° C.90° D.95°【考点】翻折变换(折叠问题).【分析】根据图形,利用折叠的性质,折叠前后形成的图形全等.【解答】解:∠ABC+∠DBE+∠DBC=180°,且∠ABC+∠DBE=∠DBC;故∠CBD=90°.故选C.【点评】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.8.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,则在该正方体中,和“崇”相对的面上写的汉字是()A.低B.碳C.生D.活【考点】专题:正方体相对两个面上的文字.【分析】根据正方形展开图相对的面应相隔一个面作答.【解答】解:和“崇”相隔一个面的面为“低”,故选A.【点评】解决本题的关键是理解正方体侧面展开图相对的面之间应相隔一个面.二、填空题9.已知∠A与∠B互余,若∠A=70°,则∠B的度数为20 度.【考点】余角和补角.【专题】计算题.【分析】根据余角定义直接解答.【解答】解:∠B=90°﹣70°=20°.【点评】本题比较容易,考查互余角的数量关系.根据余角的定义可得∠B=90°﹣70°=20度.10.一个角的补角等于它的余角的6倍,则这个角的度数为72°.【考点】余角和补角.【分析】利用题中的关系“一个角的补角等于这个角的余角的6倍”作为相等关系列方程求解即可.【解答】解:设这个角为x,则它的补角为(180°﹣x)余角为(90°﹣x),由题意得:180°﹣x=6(90°﹣x),180°﹣x=540°﹣6x,6x﹣x=540°﹣180°,5x=360°,x=72°.答:这个角的度数为72°.故答案为:72°.【点评】主要考查了利用余角和补角的定义和一元一次方程的应用.解此题的关键是能准确的从题中找出各个量之间的数量关系,找出等量关系列方程,从而计算出结果.互为余角的两角的和为90°,互为补角的两角之和为180度.11.13°30'=13.5 °;(2)0.5°=30 '= 1800 ″.【考点】度分秒的换算.【分析】(1)根据度分秒的换算,将30′换算成0.5°即可得出结论;(2)根据度分秒的换算,将0.5°换算成30′,再将30′换算成1800″即可得出结论.【解答】解:(1)13°30'=13°+()°=13.5°;(2)0.5°=(0.5×60)′=30′=(30×60)″=1800″.故答案为:(1)13.5;(2)30;1800.【点评】本题考查了度分秒的换算,熟练的掌握度分秒的进率是解题的关键.12.已知平面内有A、B、C、D四点,过其中的两点画一条直线,一共可以画1条或4条或6条条直线.【考点】直线、射线、线段.【专题】规律型.【分析】分四点在同一直线上,当三点在同一直线上,另一点不在这条直线上,当没有三点共线时三种情况讨论即可.【解答】解:分三种情况:①四点在同一直线上时,只可画1条;②当三点在同一直线上,另一点不在这条直线上,可画4条;③当没有三点共线时,可画6条;故答案为:1条或4条或6条.【点评】本题考查了直线、射线、线段,在没有明确平面上四点是否在同一直线上时,需要运用分类讨论思想,解答时要分各种情况解答,要考虑到可能出现的所有情形,不要遗漏,否则讨论的结果就不全面.三、解答题(共52分)13.计算:(1)40°26′+30°30′30″÷6;(2)13°53′×3﹣32°5′31″.【考点】度分秒的换算.【专题】计算题.【分析】(1)先进行度、分、秒的除法计算,再算加法.(2)先进行度、分、秒的乘法计算,再算减法.【解答】解:(1)40°26′+30°30′30″÷6=40°26′+5°5′5″=45°31′5″;(2)13°53′×3﹣32°5′31″=41°39′﹣32°5′31″=9°33′29″.【点评】此类题是进行度、分、秒的四则混合运算,是角度计算中的一个难点,注意以60为进制即可.14.在一张城市地图上,如图,有学校、医院、图书馆三地,图书馆被墨水污染,具体位置看不清,但知道图书馆在学校的东北方向,在医院的南偏东60°方向,你能确定图书馆的位置吗?【考点】方向角.【分析】分别建立找到图书馆在学校的东北方向,在医院的南偏东60°方向,两直线的交点即是图书馆的位置.【解答】解:在医院A处,以正南方向为始边,逆时针转60°角,得角的终边射线AO,在学校B处,以正北方向为始边,顺时针旋转45°角,得角的终边射线BO,则AO与BO的交点为点O,则点O就是图书馆的位置.【点评】此题考查了方向角的知识,注意东北方向指的是东偏北45°这个知识点,难度一般.15.已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD的长度.【考点】比较线段的长短.【专题】计算题.【分析】根据已知可求得AB的长,从而可求得AC的长,已知AD的长则不难求得CD的长.【解答】解:∵AD=7,BD=5∴AB=AD+BD=12∵C是AB的中点∴AC=AB=6∴CD=AD﹣AC=7﹣6=1.【点评】此题主要考查学生对比较线段的长短的掌握情况,比较简单.16.如图,已知∠AOC=60°,∠BOD=90°,∠AOB是∠DOC的3倍,求∠AOB的度数.【考点】角的计算.【专题】计算题.【分析】设∠COD=x,则∠AOD可表示为60°﹣x,于是∠AOB=90°+60°﹣x=150°﹣x,再根据∠AOB 是∠DOC的3倍得到150°﹣x=3x,解得x=37.5°,然后计算3x即可.【解答】解:设∠COD=x,∵∠AOC=60°,∠BOD=90°,∴∠AOD=60°﹣x,∴∠AOB=90°+60°﹣x=150°﹣x,∵∠AOB是∠DOC的3倍,∴150°﹣x=3x,解得x=37.5°,∴∠AOB=3×37.5°=112.5°.【点评】本题考查了角的计算:会利用角的倍、分、差进行角度计算.17.把一副三角板的直角顶点O重叠在一起.(1)如图(1),当OB平分∠COD时,则∠AOD和∠BOC的和是多少度?(2)如图(2),当OB不平分∠COD时,则∠AOD和∠BOC的和是多少度?【考点】角平分线的定义.【分析】已知一副三角板的直角顶点O重叠在一起,就是已知图形中的两个三角形各角的度数,这样重叠时存在的角的关系是:∠AOD=∠AOB+∠COD﹣∠COB.【解答】解:(1)∵OB平分∠COD,∴∠COB=∠BOD=45°,∴∠COA=90°﹣45°=45°,∴∠AOD+∠BOC=∠AOC+∠COD+∠BOC=45°+90°+45°=180°,∴∠AOD和∠BOC的和是180°.(2)∵∠AOC+∠BOC=90°,∠BOD+∠BOC=90°,∴∠AOD+∠BOC=∠AOC+∠BOC+∠BOD+∠BOC∴∠AOD+∠BOC=(∠AOC+∠BOC)+(∠BOD+∠BOC)=90°+90°=180°.∴∠AOD和∠BOC的和是180°.【点评】根据角平分线定义得出所求角与已知角的关系转化求解.注意一副三角板的直角顶点O重叠在一起时角的关系.。

七年级数学上学期第四单元几何图形初步测试卷5套带答案

七年级数学上学期第四单元几何图形初步测试卷5套带答案

第4章 单元测试题(时间100分钟 满分100分)一、选择题:(每小题3分,共30分)1.如图1所示的棱柱有( )A.4个面B.6个面C.12条棱D.15条棱C(2)A DB2.如图2,从正面看可看到△的是( )3.如图3,图中有( )A.3条直线B.3条射线C.3条线段 D.以上都不对4.下列语句正确的是( )A.如果PA=PB,那么P是线段AB的中点;B.作∠AOB的平分线CDC.连接A、B两点得直线AB;D.反向延长射线OP(O为端点)5.如图4,比较∠α、∠β、∠γ 的大小得( )A. ∠γ>∠β>∠α;B. ∠α=∠β;C. ∠γ>∠α>∠β;D. ∠β>∠α>∠γ.6.5点整时,时钟上时针与分钟之间的夹角是( )A.210°B.30°C.150°D.60°7.两个角,它们的比是6:4,其差为36°,则这两个角的关系是( )A.互余B.互补C.既不互余也不互补D.不确定8.∠α=40.4°,∠β=40°4′,则∠α与∠β的关系是( )A. ∠α=∠β;B. ∠α>∠β;C. ∠α<∠β;D. 以上都不对9.如果∠α=3∠β, ∠α=2∠θ,则必有( )2310.如图5所示,已知∠AOB=64°,OA1平分∠AOB,OA2平分∠AOA1,OA3平分∠AOA2,OA4平分∠AOA3,则∠AOA4的大小为( )A.8°B.4°C.2°D.1°二、填空题:(每小题3分,共30分)11.已知线段AB=8cm,延长AB 至C,使AC=2AB,D 是AB 中点,则线段CD=______.12.如图,从城市A 到城市B 有三种不同的交通工作:汽车、火车、飞机,除去速度因素,坐飞机的时间最短是因为___________.13.57.32°=_______°_______′_______″;27°14′24″=_____°.14.已知∠a=36°42′15″,那么∠a 的余角等于________.15.∠1+∠2=180°,∠2+∠3=180°,根据________,得∠1=∠3.16.表示O 点南偏东15°方向和北偏东25°方向的两条射线组成的角等于____17.如图,∠AOC=90°,∠AOB=∠COD,则∠BOD=______°.航线铁路公路(6)A B18.102°43′32″+77°16′28″=________;98°12′25″÷5=_____.19.已知线段AB=acm,点A 1平分AB,A 2平分AA 1,A 3平分AA 2,……,____________cm.20.在平面上有任意四点,过其中任意两点画直线,能画_______条直线.三、解答题:(21、24、25、26每题6分,22、23题每题8分)21.根据下列语句画图:(1)画∠AOB=120°;(2)画∠AOB 的角平分线OC;(3)反向延长OC 得射线OD;(4)分别在射线OA、OB、OD 上画线段OE=OF=OG=2cm;(5)连接EF、EG、FG;(6)你能发现EF、EG、FG 有什么关系?∠EFG、∠EGF、∠GEF 有什么关系?22.已知线段AB=10cm,直线AB 上有一点C ,且BC=4cm,M 是线段AC 的中点,求AM 的长.23.如图,直线AB、CD 交于O 点,且∠BOC=80°,OE 平分∠BOC,OF 为OE 的反向延长线.(1)求∠2和∠3的度数.(2)OF平分∠AOD吗?为什么?24.一个角的补角与它的余角的度数之比是3:1,求这个角的度数.25.测量员沿着一块地的周围测绘.从A向东走600米到B,再从B向东南(∠ABC= 135°)走500米到C,再从C向西南(∠BCD=90°)走800米到D.用1厘米代表100米画图, 求DA的长(精确到10米)和DA的方向(精确到1°).北D CA B26.利用线段、角、三角形、圆等图形为你的学校设计一个校标,并简述你的设计思路.参考答案一、选择题1.D2.C3.C4.D5.C6.C7.B8.B9.C 10.B二、填空题11.12cm 12.两点之间,线段最短 13.57、19、12;27.2414. 53°17′45″ 15.同角的补角相等16.140° 17.90 18.180°;19°38′29″. 19. 20.1或4或6三、解答题21.(6)EF=EG=FG,∠EFG=∠EGF=∠FEG=60°22.AM=7cm或3cm23.(1)∠2=100°,∠3=40°;(2)∠AOF=40°,OF平分∠AOD24.设这个角为x0,( 180-x):(90-x)=3:1,x=45.第4章 单元测试题2检测时间:45分钟,满分:100分班级 学号 姓名 得分一、填空题:(每空2分,共46分)1.正方体有______条棱,_____个顶点, 个面.2.圆柱的侧面展开图是一个 ,圆锥的侧面展开图是一个 ,棱柱的侧面展开图是一个 。

初中数学同步 7年级上册 第四章《几何图形初步》单元测试卷(教师版含解析)

初中数学同步 7年级上册 第四章《几何图形初步》单元测试卷(教师版含解析)

第4章几何图形初步单元测试一.选择题(共10小题,满分30分,每小题3分)1.如图,建筑工人砌墙时,经常用细绳在墙的两端之间拉一条参照线,使砌的每一层转在一条直线上,这样做蕴含的数学原理是()A.过一点有无数条直线B.两点确定一条直线C.两点之间线段最短D.线段是直线的一部分【解析】解:建筑工人砌墙时,经常用细绳在墙的两端之间拉一条参照线,使砌的每一层转在一条直线上,这种做法用几何知识解释应是:两点确定一条直线.故选:B.【点睛】此题主要考查了考查了直线的性质,要想确定一条直线,至少要知道两点.2.图中的长方体是由三个部分拼接而成的,每一部分都是由四个同样大小的小正方体组成的,那么其中第一部分所对应的几何体可能是()A.B.C.D.【解析】解:由长方体和第一部分所对应的几何体可知,第一部分所对应的几何体上面有二个正方体,下面有二个正方体,并且与选项B相符.故选:B.【点睛】本题考查了认识立体图形,找到长方体中,第一部分所对应的几何体的形状是解题的关键.3.有下列生活,生产现象:①用两个钉子就可以把木条固定在墙上;②把弯曲的公路改直,就能缩短路程;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线;④从A地到B地架设电线,总是尽可能沿着线段AB架设.其中能用“两点之间,线段最短”来解释的现象有()A.①②B.①③C.②④D.③④【解析】解:①用两个钉子就可以把木条固定在墙上是利用了“两点确定一条直线”,故错误;②把弯曲的公路改直,就能缩短路程是利用了“两点之间线段最短”,故正确;③植树时,只要定出两棵树的位置,就能确定同一行树所在的直线是利用了“两点确定一条直线”,故错误;④从A地到B地架设电线,总是尽可能沿着线段AB架设,就能缩短路程是利用了“两点之间线段最短”,故正确.故选:C.【点睛】本题考查了线段的性质以及直线的性质,熟记性质公理是解题的关键,是基础题.4.如图,把左边的图形绕着给定的直线旋转一周后形成的几何体是()A.B.C.D.【解析】解:左边的图形绕着给定的直线旋转一周后形成的几何体是空心圆柱,故选:D.【点睛】此题主要考查了点、线、面、体,关键是同学们要注意观察,培养自己的空间想象能力.5.已知点A、B、C在一条直线上,AB=5,BC=3,则AC的长为()A.8 B.2 C.8或2 D.无法确定【解析】解:本题有两种情形:①当点C在线段AB上时,如图1,∵AC=AB﹣BC,又∵AB=5cm,BC=3cm,∴AC=5﹣3=2cm;②当点C在线段AB的延长线上时,如图2,∵AC=AB+BC,又∵AB=5cm,BC=3cm,∴AC=5+3=8cm.综上可得:AC=2cm或8cm.故选:C.【点睛】本题考查的是两点间的距离,在画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.6.如图,点A,B,C,D,E,F在同一条直线上,则图中线段和射线的条数分别为()A.10,10 B.12,15 C.15,12 D.15,15【解析】解:图中线段有15条:线段AB、线段AC、线段AD、线段AE、线段AF、线段BC、线段BD、线段BE、线段BF、线段CD、线段CE、线段CF、线段DE,线段DF、线EF;以每个点为端点的射线有2条,共6个点,故射线有12条;故选:C.【点睛】此题主要考查了数线段和射线,关键是不要漏数和重复,先确定一个端点,然后数线段.7.如图,OE平分∠AOC,OF平分∠BOC,且∠BOC=60°,若∠AOC+∠EOF=156°,则∠EOF的度数是()A.88°B.30°C.32°D.48°【解析】解:∵OF平分∠BOC,∠BOC=60°,∴∠COF=30°,∴∠EOF=∠COE﹣∠COF=∠COE﹣30°,∵OE平分∠AOC,∴∠AOC=2∠COE,又∵∠AOC+∠EOF=156°,∴2∠COE+∠COE﹣30°=156°,解得∠COE=62°,∴∠EOF=62°﹣30°=32°.故选:C.【点睛】本题考查了角的计算以及角平分线的定义,解题的关键是根据角平分线的定义以及角的和差关系进行计算.8.如图,∠AOB与∠AOC互余,∠AOD与∠AOC互补,OC平分∠BOD,则∠AOB的度数是()A.20°B.22.5°C.25°D.30°【解析】解:∵∠AOB与∠AOC互余,∠AOD与∠AOC互补,∴∠AOB=90°﹣∠AOC,∠AOD=180°﹣∠AOC,∴∠BOD=∠AOD﹣∠AOB=90°,∵OC平分∠BOD,∴∠BOC=45°,∴∠AOC=45°+∠AOB,∴∠AOB=90°﹣∠AOC=90°﹣(45°+∠AOB),∴∠AOB=22.5°,故选:B.【点睛】本题考查了余角和补角,角平分线的定义,利用了互余的定义,角平分线的定义,角的和差.9.如图,海平面上,有一个灯塔分别位于海岛A的南偏西30°和海岛B的南偏西60°的方向上,则该灯塔的位置可能是()A.O1B.O2C.O3D.O4【解析】解:由题意知,若灯塔位于海岛A的南偏西30°、南偏西60°的方向上,如图所示,灯塔的位置可以是点O1,故选:A.【点睛】本题主要考查方向角,解题的关键是掌握方向角的定义.10.如图,将三个同样的正方形的一个顶点重合放置,如果∠1=α,∠2=β,那么∠3的度数是()A.90°﹣α﹣βB.90°﹣α+βC.90°+α﹣βD.α﹣β【解析】解:如图:解:∵∠BOD=90°﹣∠1=90°﹣α,∠EOC=90°﹣∠2=90°﹣β,又∵∠3=∠BOD+∠EOC﹣∠BOE,∴∠3=90°﹣α+90°﹣β﹣90°=90°﹣α﹣β.故选:A.【点睛】本题主要考查了正方形的性质,角度的计算,正确理解∠2=∠BOD+EOC﹣∠BOE这一关系是解决本题的关键.二.填空题(共6小题,满分24分,每小题4分)11.现在人们锻炼身体的意识日渐增强,但是一些人保护环境的意识却很淡薄.如图是昌平滨河公园的一角,有人为了抄近道而避开横平竖直的路,走“捷径AC”,于是在草坪内走出了一条不该有的“路线AC”.请你用数学知识解释出现这一现象的原因是两点之间,线段最短.【解析】解:为了抄近道而避开横平竖直的路,走“捷径AC”,用数学知识解释出现这一现象的原因是两点之间,线段最短.故答案为两点之间,线段最短.【点睛】本题考查了线段的性质,熟记线段的性质是解题关键.12.如图,若D是AB的中点,E是BC的中点,若AC=8,BC=5,则AD=.【解析】解:∵D是AB中点,E是BC中点,∴AD=DB,BE=EC,∴AB=AC﹣BC=3,∴AD=1.5.故答案为:1.5.【点睛】本题考查了两点间的距离,解题的关键是利用中点的性质.13.如图是用量角器测量角度的结果,如果∠AOB=∠COD,那么∠AOD的度数是80°.【解析】解:由图可得,∠AOC=55°,∠BOC=30°,∴∠AOB=25°,又∵∠AOB=∠COD,∴∠COD=25°,∴∠AOD=55°+25°=80°,故答案为:80°.【点睛】此题主要考查了角的计算,关键是理清角之间的和差关系.14.已知线段AB=8cm,点C在直线AB上,AC AB,则BC=6或10cm.【解析】解:点C在直线AB上,于是应该分C点在线段AB上与在线段AB外两种情况①若点C在线段AB上∵AC AB,∴BC AB8=6②若点C在线段AB外∵AC AB,∴BC=AB+AC AB8=10故答案为6或10.【点睛】本题考查的是线段的长度计算,熟练进行线段的和、差、倍、分的计算是解决问题的关键.15.钟面上12点30分,时针与分针的夹角是165度.【解析】解:12点半时,时针指向1和12中间,分针指向6,钟表12个数字,每相邻两个数字之间的夹角为30°,半个格是15°,因此12点半时,分针与时针的夹角正好是30°×5+15°=165°.【点睛】本题是一个钟表问题,钟表12个数字,每相邻两个数字之间的夹角为30°.借助图形,更容易解决.16.如图,已知OM,ON分别是∠BOC和∠AOC的角平分线,∠AOB=86°,(1)∠MON=43(度);(2)当OC在∠AOB内绕点O转动时,∠MON的值不会改变(填“会”或“不会”).【解析】解:(1)∵OM,ON分别是∠BOC和∠AOC的角平分线,∴∠MOC∠OBC,∠NOC∠AOC.∴∠MON=∠MOC+∠NOC∠OBC∠AOC(∠OBC+∠AOC)∠AOB86°=43°.故答案为43;(2)有(1)可知∠MON∠AOB,即∠MON的度数始终等于∠AOB度数的一半,所以当OC在∠AOB内绕点O转动时,∠MON的值不会改变.故答案为不会.【点睛】本题主要考查角平分线的定义,会运用整体思想找到∠MON与∠AOB的倍分关系是解题的关键.三.解答题(共6小题,满分46分)17.(6分)如图,已知平面上四个点A、B、C、D,请按要求作出相应的图形.(1)画直线AB;(2)连接BC并反向延长线段BC;(3)作射线DC;(4)作出到A、B、C、D四个点距离之和最小的点P.【解析】解:(1)如图所示,直线AB即为所求;(2)如图所示,射线BC即为所求;(3)如图所示,射线DC即为所求;(4)如图所示,点P即为所求.【点睛】本题考查作图﹣复杂作图、直线、射线、线段的定义,解题的关键是熟练掌握基本知识,属于中考基础题.18.(6分)如图是一个正方体的平面展开图,标注了A字母的是重正方体的正面,如果正方体的左面与右面标注的式子相等.①求x的值.②如果这个正方体前后左右四个面的数字和为﹣12,求正面字母A所表示的数.【解析】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“A”与“﹣2”是相对面,“3”与“1”是相对面,“x”与“3x﹣2”是相对面,(1)∵正方体的左面与右面标注的式子相等,∴x=3x﹣2,解得x=1.(2)正方体前后左右四个面的文字分别是:A、﹣2、x、3x﹣2,依题意得A﹣2+x+3x﹣2=﹣12A﹣2+1+3﹣2=﹣12A=﹣12.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.19.(8分)线段AB=12cm,点C在线段AB上,点D、E分别是AC和BC的中点.(1)若点C恰好是AB中点,求DE的长.(2)若AC=4cm,求DE的长.(3)若点C为线段AB上的一个动点(点C不与A,B重合),求DE的长.【解析】解:(1)∵点D是AC中点,∴AC=2AD=6,又∵D、E分别是AC和BC的中点,∴DE=DC+CE AC BC AB=6;故DE的长为6cm;(2)∵AB=12cm,AC=4cm,∴BC=8cm,∵点D、E分别是AC和BC的中点,∴DC AC=2,CE BC=4,∴DE=6cm;(3)∵DE=DC+CE AC BC AB而AB=12,∴DE=6cm.【点睛】本题考查了线段的长度计算问题,把握中点的定义,灵活运用线段的和、差、倍、分进行计算是解决本题的关键.20.(8分)如图,将两块直角三角板的直角顶点C叠放在一起.(1)若∠DCE=28°10',求∠ACB的度数;(2)若∠ACB=148°21',求∠DCE的度数;(3)直接写出∠ACB与∠DCE的数量关系.【解析】解:(1)∵∠DCE=28°10',∠ACD=90°,∴∠ACB=90°+90°﹣28°10'=151°50';(2)∵∠ACB=148°21',∠ECB=90°,∴∠ACE=148°21'﹣90°=58°21',∵∠ACD=90°,∴∠ECD=31°39';(3)∠ACB+∠DCE=180°,∵∠ACD=∠ECB=90°.∴∠ACB+∠ECD=∠ECB+∠ACE+∠ECD=90°+90°=180°.【点睛】此题主要考查了余角和补角,关键是理清角之间的和差关系.21.(8分)如图1,点O是直线AB上的一点.(1)如图1,当∠AOD是直角,3∠AOC=∠BOD,求∠COD的度数;(2)在(1)中∠COD绕着点O顺时针旋转(OD与OB重合即停止),如图2,OE、OF分别平分∠AOC、∠BOD,则在旋转过程中∠EOF的大小是否变化?若不变,求出∠EOF的大小;若改变,说明理由;(3)在(1)中线段OC、OD绕着点O顺时针旋转,速度分别为每秒20°和每秒10°(当OD与OB重合时旋转都停止),OM、ON分别平分∠BOC、∠BOD,多少秒时∠COM=∠BON(直接写出答案,不必写出过程).【解析】解:(1)∵∠AOD是直角,∴∠BOD=∠AOD=90°,∵3∠AOC=∠BOD=90°,∴∠AOC=30°,∴∠COD=90°﹣30°=60°;(2)不会变化,理由如下:∵OE、OF分别平分∠AOC、∠BOD,∴∠COE∠AOC,∠DOF∠BOD,∵∠AOC+∠BOD=180°﹣∠COD,∴∠COE+∠DOF(180°﹣∠COD)=90°∠COD,∴∠EOF=∠COE+∠DOF+∠COD=90°∠COD+∠COD=120°(3)如图设运动时间为t秒,则∠BOC=150﹣20t,∠BOD=90﹣10t所以∠COM∠BOC(150﹣20t)∠BON∠BOD(90﹣10t)∴(150﹣20t)(90﹣10t)解得t=6所以6秒时∠COM=∠BON.【点睛】本题考查了角平分线的意义,角的和差倍分的关系,和一元一次方程的应用,第三题关键画出图形,找出角和t的关系.22.(10分)点O在直线AB上,射线OC上的点C在直线AB上方,∠AOC=4∠BOC.(1)如图1,求∠AOC的度数;(2)如图2,点D在直线AB上方,∠AOD与∠BOC互余,OE平分∠COD求∠BOE的度数;(3)在(2)的条件下,点F,G在直线AB下方,OG平分∠FOB,若∠FOD与∠BOG互补,求∠EOF的度数.【解析】解:(1)设∠BOC=α,则∠AOC=4α,∵∠BOC+∠AOC=180°,∴α+4α=180°,∴α=36°,∴∠AOC=144°;(2)∵∠AOD与∠BOC互余,∴∠AOD=90°﹣∠BOC=90°﹣36°=54°,∴∠COD=180°﹣∠AOD﹣∠BOC=180°﹣54°﹣36°=90°,∵OE平分∠COD,∴∠COE90°=45°,∴∠BOE=∠COE+∠BOC=45°+36°=81°,(3)①如图1,∵OG平分∠FOB,∴∠FOG=∠BOG,∵∠FOD与∠BOG互补,∴∠FOD+∠BOG=180°,设∠BOG=x°,∠BOF=2x°,∠BOD=∠DOC+∠BOC=36°+90°=126°,∵∠FOD=∠BOD+∠BOF,∴126+2x+x=180,解得:x=18,∴∠EOF=∠BOE+∠BOF=81°+2×18°=117°;②如图2,∵OG平分∠FOB,∴∠FOG=∠BOG,∵∠FOD与∠BOG互补,∴∠FOD+∠BOG=180°,∴∠FOD+∠BOG=180°,∴D,O,G共线,∴∠BOG=∠AOD=54°,∴∠AOF=180°﹣∠BOF=72°,∴∠AOE=180°﹣∠BOE=180°﹣81°=99°,∴∠EOF=∠AOF+∠AOE=72°+99°=171°.【点睛】本题考查了余角和补角,角平分线的定义,补角的定义,正确的识别图形是解题的关键.。

【四川版】2020中考数学复习试题:第四单元_图形的初步认识与三角形单元测试卷_含答案

【四川版】2020中考数学复习试题:第四单元_图形的初步认识与三角形单元测试卷_含答案

单元测试(四) 图形的初步认识与三角形(时间:45分钟 满分:100分)一、选择题(每小题3分,共30分)1.已知∠α=32°,求∠α的补角为( C )A .58°B .68°C .148°D .168° 2.(2016·黔南)下面四个图形中,∠1=∠2一定成立的是( B )3.(2016·重庆)如图,直线a ,b 被直线c 所截,且a∥b,若∠1=55°,则∠2等于( C ) A .35° B .45° C .55° D .125°4.如图,在直角三角形ABC 中,斜边AB 的长为m ,∠B =40°,则直角边BC 的长是( B )A .msin40°B .mcos40°C .mtan40° D.mtan40°5.如图,在△ABC 中,∠A =60°,点D ,E 分别在AC ,AB 上,则∠1+∠2的大小为( B ) A .120° B .240° C .180° D .300°6.(2015·黄冈)如图,在△ABC 中,∠C =90°,∠B =30°,设AB 的垂直平分线DE 交AB 于点E ,交BC 于点D ,CD =3,则BC 的长为( C )A .6B .6 3C .9D .3 37.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上一个动点,若PA=3,则PQ的最小值为( C ) A. 3 B.2 C.3 D.2 38.如图,在△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE 的周长为( C )A.20 B.12 C.14 D.139.如图,在▱ABCD中,点E在AD上,且AE∶ED=3∶1,CE的延长线与BA的延长线交于点F,则S△AFE∶S 四边形ABCE为( D )A.3∶4 B.4∶3 C.7∶9 D.9∶710.(2016·武汉)平面直角坐标系中,已知A(2,2),B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是( A )A.5 B.6 C.7 D.8提示:由点A,B的坐标可得到AB=22,然后分类讨论:①AC=AB;②BC=AB;③CA=CB,确定C点的个数.二、填空题(每小题4分,共24分)11.如图,△A BD≌△CBD,若∠A=80°,∠ABC=70°,则∠ADC的度数为130°.12.若a,b,c为三角形的三边,且a,b满足a2-9+(b-2)2=0,则第三边c的取值范围是1<c<5.13.如图,∠AOB是放置在正方形网格中的一个角,则cos∠AOB214.如图,AC ,BD 相交于O ,AB ∥DC ,AB =BC ,∠D =40°,∠ACB =35°,则∠AOD=75°.15.(2015·巴中)如图,在△ABC 中,AB =5,AC =3,AD ,AE 分别为△ABC 的中线和角平分线,过点C 作CH⊥AE 于点H ,并延长交AB 于点F ,连接DH ,则线段DH 的长为1.16.(2016·凉山)如图,四边形ABCD 中,∠BAD =∠ADC=90°,AB =AD =32,CD =22,点P 是四边形ABCD 四条边上的一个动点,若P 到BD 的距离为52,则满足条件的点P 有2个.三、解答题(共46分)17.(10分)如图,AC =AE ,∠1=∠2,AB =AD.求证:BC =DE.证明:∵∠1=∠2, ∴∠CAB =∠EAD.在△BAC 和△DAE 中,⎩⎪⎨⎪⎧AC =AE ,∠CAB =∠EAD,AB =AD ,,∴△BAC ≌△DAE(SAS). ∴BC =DE.18.(10分)某校八年级(3)班开展了手工制作竞赛,每个同学都在规定时间内完成一件手工作品.陈莉同学在制作手工作品的第一、二个步骤是:①先裁下了一张长BC =20 cm ,宽AB =16 cm 的矩形纸片ABCD ,②将纸片沿着直线AE 折叠,点D 恰好落在BC 边上的F 处,…,请你根据①②步骤解答下列问题: (1)找出图中∠FEC 的余角; (2)计算EC 的长.解:(1)∠CFE,∠BAF.(2)设EC =x cm ,则EF =DE =(16-x)cm ,AF =AD =20 cm. 在Rt △ABF 中, BF =AF 2-AB 2=12 cm , FC =BC -BF =20-12=8(cm). 在Rt △EFC 中,EF 2=FC 2+EC 2, ∴(16-x)2=82+x 2,解得x =6. ∴EC 的长为6 cm.19.(12分)(2015·泸州)如图,海中一小岛上有一个观测点A ,某天上午9:00观测到某渔船在观测点A 的西南方向上的B 处跟踪鱼群由南向北匀速航行.当天上午9:30观测到该渔船在观测点A 的北偏西60°方向上的C 处.若该渔船的速度为每小时30海里,在此航行过程中,问该渔船从B 处开始航行多少小时,离观测点A 的距离最近?(计算结果用根号表示,不取近似值)解:过点A 作AP ⊥BC,垂足为P.设AP =x 海里. 在Rt △APC 中,∵∠APC =90°,∠PAC =30°,∴tan ∠PAC =CPAP .∴CP =AP·tan ∠PAC =33x. 在Rt △APB 中,∵∠APB =90°,∠PAB =45°, ∴BP =AP =x.∵PC +BP =BC =30×12,∴33x +x =15,解得x =15(3-3)2. ∴PB =x =15(3-3)2.∴航行时间为:15(3-3)2÷30=3-34(小时).答:该渔船从B 处开始航行3-34小时,离观测点A 的距离最近.20.(14分)(2015·资阳)如图,E ,F 分别是正方形ABCD 的边DC ,CB 上的点,且DE =CF ,以AE 为边作正方形AEHG ,HE 与BC 交于点Q ,连接DF. (1)求证:△ADE≌△DCF;(2)若E 是CD 的中点,求证:Q 为CF 的中点;(3)连接AQ ,设S △CEQ =S 1,S △AED =S 2,S △EAQ =S 3,在(2)的条件下,判断S 1+S 2=S 3是否成立?并说明理由.解:(1)证明:∵四边形ABCD 为正方形, ∴AD =CD ,∠ADE =∠DCF=90°. 又∵DE=CF ,∴△ADE ≌△DCF. (2)证明:易证△ECQ∽△ADE, ∴CQ DE =CE AD . ∵CE AD =DE AD =12, ∴CQ DE =CQ CF =12,即点Q 是CF 的中点. (3)S 1+S 2=S 3成立.理由:∵△ECQ∽△ADE,∴CQ DE =QE AE .∴CQ CE =QEAE .又∵∠C=∠AEQ =90°,∴△AEQ ∽△E CQ. ∴△AEQ ∽△ECQ ∽△ADE.∴S 1S 3=(EQ AQ )2,S 2S 3=(AE AQ)2. ∴S 1S 3+S 2S 3=(EQ AQ )2+(AE AQ )2=EQ 2+AE 2AQ2. ∵EQ 2+AE 2=AQ 2,∴S 1S 3+S 2S 3=1,即S 1+S 2=S 3.。

2019年人教版七年级上册数学《第4章几何图形初步》单元测试卷(解析版)

2019年人教版七年级上册数学《第4章几何图形初步》单元测试卷(解析版)

2019年人教版七年级上册数学《第4章几何图形初步》单元测试卷一.选择题(共10小题)1.如图,一个有盖的圆柱形玻璃杯中装有半杯水,若任意放置这个水杯,则水面的形状不可能是()A.B.C.D.2.如图所示的花瓶中,()的表面,可以看作由所给的平面图形绕虚线旋转一周形成的.A.B.C.D.3.一个棱柱有18条棱,那么它的底面一定是()A.十八边形B.八边形C.六边形D.四边形4.10个棱长为1的正方体木块堆成如图所示的形状,则它的表面积是()A.30B.34C.36D.485.如图,三个大小相同的长方形拼在一起组成一个大长方形,把第二个长方形平均分成2份;再把第3个长方形平均分成3份,那么图中阴影部分是大长方形面积的()A.B.C.D.6.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.7.如图,依据尺规作图的痕迹,计算∠α=()A.56°B.68°C.28°D.34°8.如图,点C在∠AOB的边OB上,用尺规作出了∠BCN=∠AOC,作图痕迹中,弧FG是()A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧9.如图,在△ABC中,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF长为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D.则∠ADC的度数为()A.40°B.55°C.65°D.75°10.用直尺和圆规作Rt△ABC斜边AB上的高线CD,以下四个作图中,作法错误的是()A.B.C.D.二.填空题(共5小题)11.若一个棱柱有十个顶点,且所有侧棱长的和为30cm,则每条侧棱长为cm.12.长方形绕其一边旋转一周形成的几何体是,直角三角板绕其一直角边旋转一周形成的几何体是.13.一个多面体的面数为6,棱数是12,则其顶点数为.14.如图,依据尺规作图的痕迹,计算∠α=°.15.下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程:已知:直线l和l外一点P.(如图1)求作:直线l的垂线,使它经过点P.作法:如图2(1)在直线l上任取两点A,B;(2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;(3)作直线PQ.所以直线PQ就是所求的垂线.请回答:该作图的依据是.三.解答题(共4小题)16.(1)下面这些基本图形和你很熟悉,试一试在括号里写出它们的名称.()()()()()(2)将这些几何体分类,并写出分类的理由.17.已知长方形的长为4cm.宽为3cm,将其绕它的一边所在的直线旋转一周,得到一个几何体,(1)求此几何体的体积;(2)求此几何体的表面积.(结果保留π)18.如图,已知点D为OB上的一点,按下列要求进行作图.(1)作∠AOB的平分线OC;(2)在OC上取一点P,使得OP=a;(3)爱动脑筋的小刚经过仔细观察后,进行如下操作:在边OA上取一点E,使得PE=PD,这时他发现∠OEP与∠ODP之间存在一定的数量关系,请写出∠OEP与∠ODP的数量关系,并说明理由.19.如图,已知△ABC,按要求作图.(1)过点A作BC的垂线段AD;(2)过C作AB、AC的垂线分别交AB于点E、F;(3)AB=15,BC=7,AC=20,AD=12,求点C到线段AB的距离.2019年人教版七年级上册数学《第4章几何图形初步》单元测试卷参考答案与试题解析一.选择题(共10小题)1.如图,一个有盖的圆柱形玻璃杯中装有半杯水,若任意放置这个水杯,则水面的形状不可能是()A.B.C.D.【分析】根据圆柱体的截面图形可得.【解答】解:将这杯水斜着放可得到A选项的形状,将水杯倒着放可得到B选项的形状,将水杯正着放可得到D选项的形状,不能得到三角形的形状,故选:C.【点评】本题主要考查认识几何体,解题的关键是掌握圆柱体的截面形状.2.如图所示的花瓶中,()的表面,可以看作由所给的平面图形绕虚线旋转一周形成的.A.B.C.D.【分析】根据面动成体,可得答案.【解答】解:由题意,得图形与B的图形相符,故选:B.【点评】本题考查了点、线、面、体,培养学生的观察能力和空间想象能力.3.一个棱柱有18条棱,那么它的底面一定是()A.十八边形B.八边形C.六边形D.四边形【分析】根据欧拉公式简单多面体的顶点数V、面数F及棱数E间的关系是V+F﹣E=2,然后把棱数18代入进行讨论即可求解.【解答】解:根据欧拉公式有:V+F﹣E=2,∵E=18,∴V+F=2+18=20,①当棱柱是四棱柱时,V=8,F=6,V+F=14,②当棱柱是五棱柱时,V=10,F=7,V+F=17,③当棱柱是六棱柱时,V=12,F=8,V+F=20,∴有18条棱的棱柱是六棱柱,它的底面是六边形.故选:C.【点评】考查了欧拉公式的应用,需要对棱柱的顶点数与面数的关系有全面的认识并熟记欧拉公式方可进行解答.4.10个棱长为1的正方体木块堆成如图所示的形状,则它的表面积是()A.30B.34C.36D.48【分析】如图所示:第一层露出5个面;第二层露出4×2+2个面;第三层露出4×2+3+2×1+2;底面6个面.【解答】解:根据以上分析露出的面积=5+4×2+2+4×2+3+2×1+2+6=36.故选:C.【点评】本题关键是要注意立体图形的各个面,每个面能看到的正方形,结合作答.5.如图,三个大小相同的长方形拼在一起组成一个大长方形,把第二个长方形平均分成2份;再把第3个长方形平均分成3份,那么图中阴影部分是大长方形面积的()A .B .C .D .【分析】三个大小相同的长方形拼在一起,组成一个大长方形,把第二个长方形平均分成2份,则其中一份就是一个长方形的,再把第三个长方形平均分成3份,则其中2份就是一个小长方形的,所以阴影部分的面积等于一个小长方形的+=,又因为一个小长方形占大长方形的,所以阴影部分的面积等于大长方形的×=,据此即可解答. 【解答】解:阴影部分的面积是大长方形面积的:(+)×,=×,=,答:图中阴影部分的面积是大长方形面积的. 故选:D .【点评】此题重点考查学生看图计算的能力,注意把阴影部分转化为大长方形面积的几分之几. 6.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A .B .C .D .【分析】根据三角形高线的定义:过三角形的顶点向对边引垂线,顶点和垂足之间的线段叫做三角形的高线解答【解答】解:∵四个选项中只有AD⊥BC,∴C正确.故选:C.【点评】本题考查的是作图﹣基本作图,熟记三角形高线的定义是解题的关键.7.如图,依据尺规作图的痕迹,计算∠α=()A.56°B.68°C.28°D.34°【分析】先根据矩形的性质得出AD∥BC,故可得出∠DAC的度数,由角平分线的定义求出∠EAF 的度数,再由EF是线段AC的垂直平分线得出∠AEF的度数,根据三角形内角和定理得出∠AFE 的度数,进而可得出结论.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠DAC=∠ACB=68°.∵由作法可知,AF是∠DAC的平分线,∴∠EAF=∠DAC=34°.∵由作法可知,EF是线段AC的垂直平分线,∴∠AEF=90°,∴∠AFE=90°﹣34°=56°,∴∠α=56°.故选:A.【点评】本题考查的是作图﹣基本作图,熟知角平分线及线段垂直平分线的作法是解答此题的关键.8.如图,点C在∠AOB的边OB上,用尺规作出了∠BCN=∠AOC,作图痕迹中,弧FG是()A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧【分析】运用作一个角等于已知角可得答案.【解答】解:根据作一个角等于已知角可得弧FG是以点E为圆心,DM为半径的弧.故选:D.【点评】本题主要考查了作图﹣基本作图,解题的关键是熟习作一个角等于已知角的方法.9.如图,在△ABC中,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF长为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D.则∠ADC的度数为()A.40°B.55°C.65°D.75°【分析】根据角平分线的作法可得AG是∠CAB的角平分线,然后再根据角平分线的性质可得∠CAD=∠CAB=25°,然后再根据直角三角形的性质可得∠CDA=90°﹣25°=65°.【解答】解:根据作图方法可得AG是∠CAB的角平分线,∵∠CAB=50°,∴∠CAD=∠CAB=25°,∵∠C=90°,∴∠CDA=90°﹣25°=65°,故选:C.【点评】此题主要考查了基本作图,关键是掌握角平分线的作法,以及直角三角形的性质.关键是掌握直角三角形两锐角互余.10.用直尺和圆规作Rt△ABC斜边AB上的高线CD,以下四个作图中,作法错误的是()A.B.C.D.【分析】根据过直线外一点作已知直线的垂线作图即可求解.【解答】解:A、根据垂径定理作图的方法可知,CD是Rt△ABC斜边AB上的高线,不符合题意;B、根据直径所对的圆周角是直角的方法可知,CD是Rt△ABC斜边AB上的高线,不符合题意;C、根据相交两圆的公共弦的性质可知,CD是Rt△ABC斜边AB上的高线,不符合题意;D、无法证明CD是Rt△ABC斜边AB上的高线,符合题意.故选:D.【点评】此题考查了作图﹣基本作图,关键是熟练掌握作过直线外一点作已知直线的垂线的方法.二.填空题(共5小题)11.若一个棱柱有十个顶点,且所有侧棱长的和为30cm,则每条侧棱长为6cm.【分析】根据棱柱顶点的个数确定出是五棱柱,然后根据棱柱的每一条侧棱都相等列式求解即可.【解答】解:∵棱柱共有10个顶点,∴该棱柱是五棱柱,∵所有的侧棱长的和是30cm,∴每条侧棱长为30÷5=6cm.故答案为:6.【点评】本题考查了认识立体图形,主要利用了棱柱顶点的个数与棱数的关系,比较简单.12.长方形绕其一边旋转一周形成的几何体是圆柱,直角三角板绕其一直角边旋转一周形成的几何体是圆锥.【分析】根据面动成体的原理即可解.【解答】解:长方形绕它的一边旋转一周可形成圆柱,直角三角形绕它的直角边旋转一周可形成圆锥.故答案为圆柱,圆锥.【点评】解决本题的关键是掌握各种面动成体的特征.13.一个多面体的面数为6,棱数是12,则其顶点数为8.【分析】因为多面体的面数为6,棱数是12,故多面体为四棱柱.【解答】解:根据四棱柱的概念,有8个顶点.故答案为8.【点评】本题考查的棱柱的定义,关键点在于:棱柱的面与面相交成棱,棱与棱相交成点.14.如图,依据尺规作图的痕迹,计算∠α=56°.【分析】先根据矩形的性质得出AD∥BC,故可得出∠DAC的度数,由角平分线的定义求出∠EAF 的度数,再由EF是线段AC的垂直平分线得出∠AEF的度数,根据三角形内角和定理得出∠AFE 的度数,进而可得出结论.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠DAC=∠ACB=68°.∵由作法可知,AF是∠DAC的平分线,∴∠EAF=∠DAC=34°.∵由作法可知,EF是线段AC的垂直平分线,∴∠AEF=90°,∴∠AFE=90°﹣34°=56°,∴∠α=56°.故答案为:56.【点评】本题考查的是作图﹣基本作图,熟知角平分线及线段垂直平分线的作法是解答此题的关键.15.下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程:已知:直线l和l外一点P.(如图1)求作:直线l的垂线,使它经过点P.作法:如图2(1)在直线l上任取两点A,B;(2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;(3)作直线PQ.所以直线PQ就是所求的垂线.请回答:该作图的依据是到线段两个端点的距离相等的点在线段的垂直平分线上(A、B都在线段PQ的垂直平分线上).【分析】只要证明直线AB是线段PQ的垂直平分线即可.【解答】解:到线段两个端点的距离相等的点在线段的垂直平分线上(A、B都在线段PQ的垂直平分线上),理由:如图,∵PA=AQ,PB=QB,∴点A、点B在线段PQ的垂直平分线上,∴直线AB垂直平分线段PQ,∴PQ⊥AB.【点评】本题考查作图﹣基本作图,解题的关键是理解到线段两个端点的距离相等的点在线段的垂直平分线上,属于中考常考题型.三.解答题(共4小题)16.(1)下面这些基本图形和你很熟悉,试一试在括号里写出它们的名称.()()()()()(2)将这些几何体分类,并写出分类的理由.【分析】(1)针对立体图形的特征,直接填写它们的名称即可.(2)可以按柱体、锥体和球进行分类,也可以按平面和曲面进行分类,方法不同,答案不同,只要合理即可.【解答】解:(1)从左向右依次是:球、圆柱、圆锥、长方体、三棱柱.(2)观察图形,按柱、锥、球划分,则有圆柱、长方体、三棱柱为柱体;圆锥为锥体;球为球体.【点评】本题考查了立体图形的认识和几何体的分类.熟记常见立体图形的特征是解决此类问题的关键.几何体的分类,从图形形状可以分为柱体、锥体和球三种,注意结合实际几何体的特征进行分类.17.已知长方形的长为4cm.宽为3cm,将其绕它的一边所在的直线旋转一周,得到一个几何体,(1)求此几何体的体积;(2)求此几何体的表面积.(结果保留π)【分析】(1)旋转后的几何体是圆柱体,先确定出圆柱的底面半径和高,再根据圆柱的体积公式计算即可求解;(2)根据圆柱的表面积公式计算即可求解.【解答】解:长方形绕一边旋转一周,得圆柱.(1)情况①:π×32×4=36π(cm3);情况②:π×42×3=48π(cm3);(2)情况①:π×3×2×4+π×32×2=24π+18π=42π(cm2);情况②:π×4×2×3+π×42×2=24π+32π=56π(cm2).【点评】本题主要考查的是点、线、面、体,根据图形确定出圆柱的底面半径和高的长是解题的关键.18.如图,已知点D为OB上的一点,按下列要求进行作图.(1)作∠AOB的平分线OC;(2)在OC上取一点P,使得OP=a;(3)爱动脑筋的小刚经过仔细观察后,进行如下操作:在边OA上取一点E,使得PE=PD,这时他发现∠OEP与∠ODP之间存在一定的数量关系,请写出∠OEP与∠ODP的数量关系,并说明理由.【分析】(1)以点O为圆心,以任意长为半径画弧与∠AOB的两边分别相交,再以两交点为圆心,以大于两交点之间的距离的一半为半径画弧,相交于一点,过这一点与O作射线OC即可;(2)在OC上取一点P,使得OP=a;(3)以O为圆心,以OD为半径作弧,交OA于E2,连接PE2,作PM⊥OA于M,PN⊥OB于N,根据角平分线上的点到角的两边的距离相等可得PM=PN,利用HL证明△E2PM≌△DPN,得出∠OE2P=∠ODP,再根据平角的定义即可求解.【解答】解:(1)如图,OC即为所求;(2)如图,OP=a;(3)∠OEP=∠ODP或∠OEP+∠ODP=180°.理由是:以O为圆心,以OD为半径作弧,交OA于E2,连接PE2,作PM⊥OA于M,PN⊥OB于N,则PM=PN.在△E2PM和△DPN中,,∴△E2PM≌△DPN(HL),∴∠OE2P=∠ODP;以P为圆心,以PD为半径作弧,交OA于另一点E1,连接PE1,则此点E1也符合条件PD=PE1,∵PE2=PE1=PD,∴∠PE2E1=∠PE1E2,∵∠OE1P+∠E2E1P=180°,∵∠OE2P=∠ODP,∴∠OE1P+∠ODP=180°,∴∠OEP与∠ODP所有可能的数量关系是:∠OEP=∠ODP或∠OEP+∠ODP=180°.【点评】本题主要考查了角平分线的作法,作一个角等于已知角,过直线外一点作已知直线的垂线,都是基本作图,需要熟练掌握,另外还考查了角平分线上的点到角的两边的距离相等的性质,30°角所对的直角边等于斜边的一半的性质.19.如图,已知△ABC,按要求作图.(1)过点A作BC的垂线段AD;(2)过C作AB、AC的垂线分别交AB于点E、F;(3)AB=15,BC=7,AC=20,AD=12,求点C到线段AB的距离.【分析】(1)、(2)根据几何语言作图;(3)利用三角形面积公式得到•AB•CE=•BC•AD,然后把AB=15,BC=7,AD=12代入计算可求出CE.【解答】解:(1)如图,AD为所作;(2)如图,CE、CF为所作;=•AB•CE=•BC•AD,(3)∵S△ABC∴CE===,即点C到线段AB的距离为.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).。

第4章图形的初步认识单元测试卷20212022学年华东师大版七年级上册数学.docx

第4章图形的初步认识单元测试卷20212022学年华东师大版七年级上册数学.docx

2021-2022学年华东师大新版七年级上册数学《第4章图形的初步认识》单元测试卷一. 选择题1.有5个大小一样的正方形制成如图所示的拼接图形(阴影部分),请你在图中的拼接图形上再接一个正方形,使新拼接成的图形折叠后能成为一个封闭的正方体盒子,你不能选择图中A, B, C,。

中的()位置接正方形.2.下列几何体中,是圆锥的为(4.如图所示的物体是一个几何体,从正面看到的图形是(B. C. D.5.如图是一个由4个相同的正方体组成的立体图形,则它的主视图为(A.天空划过一道流星B.汽车雨刷在挡风玻璃上刷出的痕迹C.抛出一块小石子,石子在空中飞行的路线D.旋转一扇门,门在空中运动的痕迹9.把14个棱长为1的正方体在地面上堆叠如图所示的立体,然后将露出的表面部分涂成红色,那么红色部分的面积为()A. 21B. 24C. 33D. 3710.如图所示是一个三棱柱,画出它的主视图和左视图均正确的是()主视图左视图二. 填空题11 •如果一个六棱柱的一条侧棱长为5cm,那么所有侧棱之和为12.已知圆柱按如图所示方式放置,其左视图的面积为48,则该圆柱的侧面积为主视方向13.请你写出一种几何体,使得它的主视图、左视图和俯视图都一样,它是.14.若一个棱柱有30条棱,那么该棱柱有个面.15.在①长方体、②球、③圆锥、④圆柱、⑤三棱柱这五种几何体中,其主视图、左视图、俯视图都完全相同的是(填上序号即可).16.墙角处有若干大小相同的小正方体堆成如图所示的立体图形,如果你打算搬走其中部分小正方体(不考虑操作技术的限制),但希望搬完后从正面、从上面、从右面用平行光线照射时,在墙面及地面上的影子不变,那么你最多可以搬走个小正方体.I上面7正面17.如图所示,在直角三角形中,以其中一条直角边所在的直线为轴旋转一周,得到几何体的体积为.(结果保留TT)18.长方体是一个立体图形,它有个面,条棱,个顶点.19.一个正〃棱柱共有15条棱,一条侧棱的长为5cm, 一条底面边长为3cm,则这个棱柱的侧面积为cnr.20.如图所示,是由若干相同大小的小立方体组成的立体图形的三视图,请在右边的立体图形中画出所缺少的小立方体.三. 解答题21.画出如图图形的三视图.23.将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现在有一个长为8cm.宽为4cm的长方形,绕它的一条边所在的直线旋转一周,求得到的圆柱体的体积是多少?24.已知一个直棱柱有8个面,它的底面边长都是5ce侧棱长都是4cm.(1)它是几棱柱?它有多少个顶点?多少条棱?(2)这个棱柱的所有侧面的面积之和是多少?25.由7个相同的小立方块搭成的几何体如图所示,(1)请画出它的三视图?(2)请计算它的表面积?(棱长为1)IF而26.如图,如图几何体是由若干棱长为1的小立方体按一定规律在地面上摆成的,若将露出的表面都涂上颜色(底面不涂色),观察该图,探究其中的规律.图①图②(1) 第1个几何体中只有2个面涂色的小立方体共有 个.第3个几何体中只有2个面涂色的小立方体共有 个.(2) 求出第100个几何体中只有2个面涂色的小立方体的块数.(3) 求出前100个几何体中只有2个面涂色的小立方体的块数的和.27. 如图四个几何体分别是三棱柱,四棱柱,五棱柱和六棱柱,三棱柱有5个面,9条棱, 6个顶点,观察图形,填写下面的空. (1)四棱柱有——个面,_ ___ 条棱,_ __ 个顶点; (2)六棱柱有— —个面,_ ___ 条棱,— __ 个顶点;(3) 由此猜想”棱柱有 个面,条棱,个顶点.三棱柱四棱柱五棱柱六棱柱参考答案与试题解析一.选择题1.解:如图所示:根据立方体的展开图可知,不能选择图中A的位置接正方形.故选:A.2.解:观察可知,C选项图形是圆锥.故选:C.3.解:A、该几何体为四棱柱,不符合题意;3、该几何体为圆锥,不符合题意;C、该几何体为三棱柱,符合题意;D、该几何体为圆柱,不符合题意.故选:C.4.解:该几何体是一个圆台,从正面看到的图形是一个等腰梯形,故选C.5.解:根据题干分析可得,从正面看到的图形是| | ..故选:A.6.解:A、圆柱的主视图和左视图都是长方形,俯视图是圆,故此选项错误;3、长方体的三视图不相同,故此选项错误;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

综合练习
选择题
1、如图1,A 、B 、C 、D 、E 顺次在同一条直线上,则图中有( )条线段.
A 7
B 8
C 9
D 10
2、一个角的补角是这个角的余角的的5倍,则这个角为( )
A 05.22
B 045
C 05.67
D 075 3、如图2,CO ⊥AB ,垂足为O ,DO ⊥O
E ,则图中互余的角有( )
A 3对
B 4对
C 5对
D 6对
4、如图3,三条直线AB 、CD 、EF 相交于一点O ,则共有对顶角( )
A 3对
B 4对
C 5对
D 6对
5、三条直线相交于一点,则图中的对顶角共有( )对
A .6
B .5
C .4
D .3
6、如图5,AE//CD//FB ,∠1=075,∠2=040,则∠3=( )
A 025
B 035
C 45
D 055
7、下列条件中能得到互相垂直的是( )
A 一对对顶角的平分线
B 平行线的同旁内角的角平分线
C 平行线的内错角的平分线
D 平行线的同位角的平分线
8、下列结论中,正确的是( )
A 若∠A +∠B=0180,则∠A 与∠
B 一定互补
B 若AB =B
C ,那么点B 是线段AC 的中点
C 线段AB 表示A 、B 两点的距离
D 两点之间,直线最短
9、钟表在5点半时,它的时针和分针所成的锐角是( )
A .70°
B .75°
C .15°
D .90°
10、学校、电影院、公园在平面图上的标点分别是A 、B 、C ,已知电影院在学校的正东方向,公园在学校的南偏西25°方向,那么平面图上的∠CAB 等于( )
A .115°
B .155°
C .25°
D .65°

1

2 图 2 图 4 图 5
二、填空题
1、把一根木条固定在墙上,至少要钉 个钉子,根据是 .
2、已知线段AB =10cm ,在AB 所在的直线上画线段BC ,使BC =4cm ,则线段AC 的长是 .
3、如图6,点1P 分线段AB 为5 : 7两部分,点2P 分线段AB 为5 : 11两部分,
已知1P 2P =10厘米,则AB= 厘米 4、互为补角的两个角之比1 :11,则较小的角为
5、=042.36 度 分 秒 '''0482540=
6、α、β都是钝角,甲、乙、丙、丁四人计算
()βα+61 的结果依次为000090722650、、、其中确有正确的结果,那么算得正确者为 。

7、如图7,已知:∠1∶∠2∶∠3=1∶2∶4,∠4=108°,则∠3-∠1= .
8、如图8,已知AB//CD//EF ,∠1=0110,∠2 =0120,则∠3= .
9、如图9,已知AB//CD, ∠AGH=50,HP 平分∠DHF ,则∠1= ,∠2= ,∠3= .
图7
三、按要求画图(不定画法,只画图形)
1、如图,①画∠BAC 的角平分线AD ;②过点A 画线段BC 的垂线段AE ;③取线段BC 的中点F ,连结AF ;④过点A 、C 分别画BC 、AB 的平行线,两平行线交于点G .
图 6
图 8
图 9 12
34
2、一个角的补角与它的余角的2倍的差是平角的31
,求这个角.
3、如图,已知:点O 在直线AE 上,OB 平分∠AOC ,OD 平分∠COE ,求∠BOD 的度数.
4、已知一条射线OA ,若从点O 再引两条射线OB 和OC ,使∠AOB =95°,∠BOC =65°,求∠AOC 的度数.
E O A
B C D
5、如图AB//CD,∠1与∠A互补,试证明:EF//CD.(用两种证法)
6、如图,CD是∠ACB的平分线,∠EDC=0
25,∠B=0
70
25,∠DCE=0
①求证:DE//BC ②求∠BDC的度数。

7、如图,AB//CD,∠1=∠B,∠2=∠D ,A、E、C在同一直线上。

试问,BE和
ED具备哪种位置关系?
答案:。

相关文档
最新文档