频率采样法设计FIR数字滤波器

合集下载

fir滤波器的主要设计方法 -回复

fir滤波器的主要设计方法 -回复

fir滤波器的主要设计方法-回复fir滤波器是一种基本的数字滤波器,主要用于数字信号处理中的滤波操作。

它的设计方法有很多种,包括频率采样法、窗函数法、最优权系数法等。

本文将一步一步回答"[fir滤波器的主要设计方法]",让我们一起来了解一下吧。

一、频率采样法频率采样法是fir滤波器设计的最基本方法之一。

它的主要思想是在频域中对滤波器的频响特性进行采样,然后通过反变换得到滤波器的冲激响应。

这种方法的优点是设计简单,适用于各种滤波器的设计。

1. 确定滤波器的截止频率和通带、阻带的要求。

根据应用的具体需求,确定滤波器的频率范围和滤波特性。

2. 设计理想的滤波器频率响应。

根据频率范围和滤波特性的要求,设计所需的滤波器频率响应。

常见的有低通、高通、带通、带阻等类型。

3. 进行频率采样。

根据滤波器频率响应的要求,在频域中进行一系列均匀或者非均匀的采样点。

4. 反变换得到滤波器的冲激响应。

对采样得到的频率响应进行反傅里叶变换,得到滤波器的冲激响应。

5. 标准化处理。

对得到的冲激响应进行标准化处理,使得滤波器的增益等于1。

6. 实现滤波器。

根据得到的冲激响应,使用差分方程或者卷积的方法实现fir滤波器。

二、窗函数法窗函数法是一种常用的fir滤波器设计方法,它主要是通过在频域中将理想的滤波器乘以一个窗函数来实现滤波器的设计。

1. 确定滤波器的截止频率和通带、阻带的要求,根据具体应用的需求确定滤波器的频率范围和滤波特性。

2. 设计理想的滤波器频率响应。

根据频率范围和滤波特性要求,设计所需的滤波器频率响应。

3. 选择窗函数。

根据滤波器的频率响应和窗函数的性质,选择合适的窗函数。

4. 计算窗函数的系数。

根据选择的窗函数,计算窗函数的系数。

5. 实现滤波器。

将理想滤波器的频率响应与窗函数相乘,得到实际的滤波器频率响应。

然后使用反变换将频率响应转换为滤波器的冲激响应。

6. 标准化处理。

对得到的冲激响应进行标准化处理,使得滤波器的增益等于1。

FIR滤波器频率采样法相关设计

FIR滤波器频率采样法相关设计
() 1 (N 1)
2
对 H(e j )在 (0 ~ 2 ) 等间隔N点采样得H(k)
H (k ) H (e j ) 2 k N
令H (k ) H g (k)e j (k)
,k=0,1,…,N-1
则:H g (k ) H g () 2 k N
, (k) () 2 k N
FIR滤波器频率采样法相关设计
FIR滤波器频率采样法相关设计
10
FIR滤波器频率采样法设计
由上图 d)可见,所设计的滤波器的阻带衰减很小,只有 -16dB。为了改进阻带衰减,在边界频率处增加一个过渡
H
g (k) H g (N k) ,k=0,1,…,N/2-1 , (k) N 1k , (N k) N 1k
Hg
(
N 2
)
0
N
N
FIR滤波器频率采样法相关设计
6
FIR滤波器频率采样法设计
➢ 滤波器的频率响应
将 z e j 代入频率采样公式得:
H (e j ) H (z) ze j
N 1
k 0
H (k) ( 2
N
k)
其中
()
1
sin(
N
/
2)
e
j
N 1 2
N sin( / 2)
在采样点 2k N , k 0,1,2,, N 1 ( 2k N ) 1
H (e jk )
与H (k)
k 2k / N
但在采样点之间,两者误差与
H
H d (e
d
(e
j
2k N
)无误差
j ) 特性的平滑程度有关:
从频域出发,对理想频响在0 ~ 2间进行N点的等间

FIR滤波器设计分析

FIR滤波器设计分析

FIR滤波器设计分析FIR(Finite Impulse Response)滤波器是一类数字滤波器,其输出只取决于输入信号的有限数量的过去样本。

FIR滤波器的设计分析主要包括滤波器的设计目标、设计方法、设计参数选择、滤波器性能评估等方面。

首先,FIR滤波器的设计目标是根据特定的应用需求,设计一个能够满足给定要求的滤波器。

比如,在音频信号处理中,常见的设计目标包括降低噪声、增强语音清晰度等。

接下来,FIR滤波器的设计方法主要有窗函数法和频率采样法。

窗函数法是通过选择合适的窗函数来设计FIR滤波器,常见的窗函数有矩形窗、汉宁窗、汉明窗等。

频率采样法是通过在频域上选择一组等间隔的频率样点,然后通过频域设计方法将这些样点连接起来,得到FIR滤波器的频响。

设计参数选择是FIR滤波器设计的重要环节。

常见的设计参数包括滤波器阶数、截止频率、过渡带宽等。

滤波器阶数决定了滤波器的复杂度,一般情况下,滤波器阶数越高,滤波器的性能也会越好。

截止频率是指滤波器的频段边界,过渡带宽是指频域中通过频样点与阻带频样点之间的频带范围。

最后,FIR滤波器的性能评估主要包括幅频响应、相频响应、群延迟等指标。

幅频响应可以用来评估滤波器的频率特性,相频响应则描述了信号在滤波过程中的相对延迟。

群延迟是指信号通过滤波器时的延迟时间,对于实时信号处理应用非常重要。

总结起来,FIR滤波器设计分析主要涉及设计目标、设计方法、设计参数选择和滤波器性能评估四个方面。

通过合理选择设计方法和参数,并对滤波器的性能进行评估,可以设计出满足特定要求的FIR滤波器,从而实现信号处理、噪声降低等应用。

频率采样法设计fir滤波器

频率采样法设计fir滤波器

频率采样法设计fir滤波器
频率采样法设计FIR滤波器是一种在实际应用中非常有用的方法,它可以有效地实现滤波器的设计,并且能够得到良好的性能。

这种方法通过采样系统的输入信号来确定最佳滤波器设计,这些采样点是通过测量输入信号的功率谱密度函数(PSD)来确定的。

在频率采样法设计FIR滤波器的过程中,首先需要测量输入信号的PSD,这一步就是确定采样点的关键,因为这些采样点将作为滤波器设计的基石。

然后,需要使用Fourier变换来根据所采样的PSD来计算滤波器的频率响应,这一步也是决定滤波器特性的重要环节。

最后,需要使用反向FT算法来计算所需的滤波器系数,以实现滤波器的设计。

在频率采样法设计FIR滤波器的过程中,通常使用大量的采样点,以便能够更准确地表示信号的PSD,从而让滤波器的性能更好。

当采样点越多时,滤波器的响应就会变得更加精确,而且可以得到更低的相位延迟,从而使其具有更好的性能。

在实际应用中,频率采样法设计FIR滤波器通常能够得到很好的效果,但也存在一些不足之处。

首先,它所需要的采样点数量可能会比较多,这可能会增加设计的复杂
度,从而降低滤波器的性能。

其次,由于实际信号的PSD 可能受到噪声的影响,因此采样点的准确性也可能会受到影响,从而影响滤波器的性能。

总之,频率采样法设计FIR滤波器是一个实用的方法,它可以有效地实现滤波器的设计,但也存在一些不足之处,因此在实际应用中,必须根据实际情况来进行适当的取舍。

fir滤波器设计方法

fir滤波器设计方法

fir滤波器设计方法
fir滤波器是数字信号处理中常用的一种滤波器,它可以对信号进行滤波处理,去除噪声和干扰,提高信号的质量。

fir滤波器的设计方法有很多种,下面我们来介绍一下其中的几种常用方法。

第一种方法是窗函数法。

这种方法是最简单的fir滤波器设计方法,它的原理是将理想滤波器的频率响应与一个窗函数相乘,得到fir滤波器的频率响应。

常用的窗函数有矩形窗、汉宁窗、汉明窗等。

这种方法的优点是简单易懂,计算量小,但是滤波器的性能不够理想。

第二种方法是频率抽样法。

这种方法的原理是将理想滤波器的频率响应进行抽样,得到fir滤波器的频率响应。

抽样的频率可以根据滤波器的要求进行选择。

这种方法的优点是可以得到比较理想的滤波器性能,但是计算量较大。

第三种方法是最小二乘法。

这种方法的原理是通过最小化滤波器的误差平方和来得到fir滤波器的系数。

这种方法可以得到比较理想的滤波器性能,但是计算量较大。

第四种方法是频率采样法。

这种方法的原理是通过对滤波器的频率响应进行采样,得到fir滤波器的系数。

这种方法可以得到比较理想的滤波器性能,但是需要进行频率响应的采样,计算量较大。

以上是fir滤波器的几种常用设计方法,不同的方法适用于不同的滤波器要求。

在实际应用中,需要根据具体的情况选择合适的设计
方法,以得到满足要求的fir滤波器。

利用频率采样法设计FIR滤波器

利用频率采样法设计FIR滤波器

)


N
1
πk

N
k 0,1, 2, , kc k kc 1, kc 2, k 1, 2, , kc
第 1 页
窗函数法与频率采样法比较:
窗函数法是从时域出发,把理想的hd (n)用一定
形状的窗函数截取成有限长的h(n),以此h(n)来
近似hd (n),这样得到的频率响应H(ej)逼近于 所要求的理想的频率响应H(d ej)。 频率采样法则是从频域出发,把给定的理想频率
响应Hd (e j )加以等间隔采样。
Hdg () Hdg (2π ) N = 偶数
X

表7.1.1 线性相位FIR数字滤波器的时域和频域特性一览 9 页
Hdg () Hdg (2π )
N = 奇数
X

表7.1.1 线性相位FIR数字滤波器的时域和频域特性一览
10 页
Hdg () Hdg (2π )
说明:N等于偶数时,Hg(k)关于N/2点奇对称, 且Hg(N/2)=0。
X

表7.1.1 线性相位FIR数字滤波器的时域和频域特性一览 13 页 Hg(k) Hg(N k) N为奇数
X

表7.1.1 线性相位FIR数字滤波器的时域和频域特性一览
14 页
N为偶数
Hg(k) Hg(N k)

Hd (e j
)
|



k
,k

0,1,2,,N
1
4 页
N
再对Hd(k)进行N点IDFT,得到h(n):
h(n)
1 N
N 1
j2π kn
Hd (k)e N ,n 0,1,2,,N

matlab频率采样法设计fir滤波器

matlab频率采样法设计fir滤波器频率采样法是一种常用的数字滤波器设计方法,可以用于设计FIR (有限脉冲响应)滤波器。

本文将介绍频率采样法的基本原理、设计步骤和实例应用。

我们来了解一下频率采样法的基本原理。

频率采样法的思想是将模拟滤波器的频率响应与数字滤波器的频率响应进行匹配。

具体地说,我们通过对模拟滤波器的单位样值响应进行频率采样,得到离散的样值序列。

然后,通过对这些样值进行离散傅里叶变换(DFT),得到数字滤波器的频率响应。

最后,根据所需的滤波器规格和设计要求,对数字滤波器的频率响应进行优化,得到滤波器的系数。

接下来,我们来介绍频率采样法的设计步骤。

首先,确定所需的滤波器规格,包括截止频率、通带衰减和阻带衰减等。

然后,选择合适的采样频率,通常要大于等于滤波器的最高频率分量的两倍。

接下来,根据所需的滤波器类型(如低通、高通、带通或带阻),选择相应的模拟滤波器原型。

然后,通过对模拟滤波器的单位样值响应进行频率采样,得到离散的样值序列。

再然后,对这些样值进行DFT,得到数字滤波器的频率响应。

最后,根据设计要求和优化准则,对数字滤波器的频率响应进行优化,得到滤波器的系数。

下面,我们以一个具体的实例来说明频率采样法的应用。

假设我们需要设计一个低通滤波器,截止频率为1kHz,通带衰减为0.5dB,阻带衰减为40dB。

我们选择采样频率为10kHz,并选择巴特沃斯滤波器作为模拟滤波器原型。

首先,我们根据通带衰减和阻带衰减的要求,确定模拟滤波器的阶数和截止频率。

然后,通过对模拟滤波器的单位样值响应进行频率采样,得到离散的样值序列。

接下来,对这些样值进行DFT,得到数字滤波器的频率响应。

最后,根据设计要求和优化准则,对数字滤波器的频率响应进行优化,得到滤波器的系数。

通过这些系数,我们可以实现一个满足要求的低通滤波器。

总结一下,频率采样法是一种常用的数字滤波器设计方法,可以用于设计各种类型的FIR滤波器。

通过对模拟滤波器的单位样值响应进行频率采样,得到离散的样值序列,然后通过DFT得到数字滤波器的频率响应,最后根据设计要求和优化准则对频率响应进行优化,得到滤波器的系数。

FIR频率采样设计


cˆ(n
N 5)
2
N 3 2
)

1)]
n

2,3,,
N 5 2
(6-4-5)
d (1)

d (n)

d
(
N 2
)

(0)

1 2
1 2
[dˆ
(n
1 2
dˆ(
N 2
dˆ(1) 1) 1)
dˆ(n)]
n

2,3,, (
N 2
1)
(6-4-6)
第六章第2讲
再利用式(6-3-11)和式(6-3-12)就可求出频率响应 其相位响应由式(6-3-6)给出,为线性相位。 过渡带为:2/20 /10 其幅度响应如下图,图中还给出了其单位脉冲响应
第六章第2讲
10
FIR滤波器频率采样法设计
由上图 d)可见,所设计的滤波器的阻带衰减很小,只有 -16dB。为了改进阻带衰减,在边界频率处增加一个过渡 点,为了保证过渡带宽不变,将采样点数增加一倍,变为 N=40,并将过渡点的采样值进行优化,取H1=0.3904,得到 和 H g (k分) 别为(k)
§3 FIR滤波器频率采样法设计
设计思想
按频域采样定理FIR数字滤波器的传输函数H(z)和单位
脉冲响应h(n)可由它的N个频域采样值H(k)唯一确定。
H (z)
1 zN N
N 1 H (k)
k
0
1

e
j
2k N
z
1
, h(n) IDFT[H (k)]
若要设计的FIR数字滤波器的频率响应为 H d (e j ) ,

基于频率采样法FIR数字滤波器的设计


0 引言
数字滤波器是一种用来过滤时间离散信号的数字系统 , 它是通过对抽样数 据进行数学处理来达到频 域滤 波的 目的。随 着现代 通信 的数 字 化 , 字滤 波 器变 得更 加 重要 。设 计 FR数 字 滤 波器 的方 法有 窗 函 数 I 数法 、 频率 采样 法和 切 比雪夫 逼近 法等 , 相关 文 献介 绍最 多 的是 窗 函数 设 计法 , 常用 窗 函数 设 计 FR数 字 I 滤波器的方法是从时域出发 , 把理想 的滤波器的单位取样 响应 h ( )用合适的窗 函数截短成为有限长度 n
维普资讯
第2 8卷
第 2期
大庆师范学院学报
J U N L O A I G N R L U I E ST O R A F D Q N O MA N V R IY
V0 . 8 No 2 I2 .
M ac 2 8 rh. 0o
20 0 8年 3月
把 H ( )当作待设 计 的 FR数 定滤 波器 的频率 特性 的采样 值 H( ), : dk I k 即
() 1
日 ()=H ( ) : ()= d l
由 H 通过 IF () D T可得有限长序列 h n ( ):
)= 附 ) Ⅳ
k 01… , 一 = ,, N 1
2 M TA A L B仿 真
2 1 真流程 .仿
频 率采样技 术是 基于频 率采样 理论 的一种 设 计方 法 , 一个 任 意 长 的序 列 , 它 的频 谱 进 行 N等 分 间 对 隔抽样 , 利用离 散傅 里叶反 变换 , 以得 到一个 N点有 限长序 列 , 个有 限长序 列是 原序 列 以 N为 周期 的 可 这 周 期序 列 的主值序列 , 它是 原序列 的近 似 , 因而 它 的频 率 特性 也将 逼 近原 序 列所 对应 的频率 特性 , 于一 对 个 理想 频响 H ( ), 对应 的单位 抽样 响应是 H ( ), 其 k 对 ( )在单位 圆上作 N等 分 间隔抽 样得 到 N

FIR滤波器设计与实现实验报告

FIR滤波器设计与实现实验报告目录一、实验概述 (2)1. 实验目的 (3)2. 实验原理 (3)3. 实验设备与工具 (4)4. 实验内容与步骤 (6)5. 实验数据与结果分析 (7)二、FIR滤波器设计 (8)1. 滤波器设计基本概念 (9)2. 系数求解方法 (10)频谱采样法 (11)最小均方误差法 (14)3. 常用FIR滤波器类型 (15)线性相位FIR滤波器 (16)非线性相位FIR滤波器 (18)4. 设计实例与比较 (19)三、FIR滤波器实现 (20)1. 硬件实现基础 (21)2. 软件实现方法 (22)3. 实现过程中的关键问题与解决方案 (23)4. 滤波器性能评估指标 (25)四、实验结果与分析 (26)1. 实验数据记录与处理 (27)2. 滤波器性能测试与分析 (29)通带波动 (30)虚部衰减 (31)相位失真 (32)3. 与其他设计方案的对比与讨论 (33)五、总结与展望 (34)1. 实验成果总结 (35)2. 存在问题与不足 (36)3. 未来发展方向与改进措施 (37)一、实验概述本次实验的主要目标是设计并实现一个有限脉冲响应(Finite Impulse Response,简称FIR)滤波器。

FIR滤波器是数字信号处理中常用的一种滤波器,具有线性相位响应和易于设计的优点。

本次实验旨在通过实践加深我们对FIR滤波器设计和实现过程的理解,提升我们的实践能力和问题解决能力。

在实验过程中,我们将首先理解FIR滤波器的基本原理和特性,包括其工作原理、设计方法和性能指标。

我们将选择合适的实验工具和环境,例如MATLAB或Python等编程环境,进行FIR滤波器的设计。

我们还将关注滤波器的实现过程,包括代码编写、性能测试和结果分析等步骤。

通过这次实验,我们期望能够深入理解FIR滤波器的设计和实现过程,并能够将理论知识应用到实践中,提高我们的工程实践能力。

本次实验报告将按照“设计原理设计方法实现过程实验结果与分析”的逻辑结构进行组织,让读者能够清晰地了解我们实验的全过程,以及我们从中获得的收获和启示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验八频率采样法设计FIR数字滤波器一、实验目的掌握频率取样法设计FIR数字滤波器的原理及具体方法。

二、实验设备与环境计算机、MATLAB软件环境三、实验基础理论1.基本原理频率取样法从频域出发,把理想的滤波器等间隔取样得到,将作为实际设计滤波器的,N-1得到以后可以由来唯一确定滤波器的单位脉冲响应,()D_Dd___________ðϨϨ________________求得其中为内插函数由求得的频率响应来逼近。

如果我们设计的是线性相位FIR滤波器,则的幅度和相位一定满足线性相位滤波器的约束条件。

我们将表示成如下形式当为实数,则由此得到即以k=N/2为中心呈偶对称。

再利用线性条件可知,对于1型和2型线性相位滤波器对于3型和4型线性相位滤波器其中,表示取小于该数的最大的整数。

2.设计步骤(1)由给定的理想滤波器给出和。

(2)由式求得。

(3)根据求得和。

四、实验内容1.采用频率采样设计法设计FIR数字低通滤波器,满足以下指标(1)取N=20,过渡带没有样本。

(2)取N=40,过渡带有一个样本,T=0.39。

(3)取N=60,过渡带有两个样本,T1=0.5925,T2=0.1009。

(4)分别讨论采用上述方法设计的数字低通滤波器是否能满足给定的技术指标。

实验代码与实验结果(1)N=20 过渡带没有样本N=20;alpha=(N-1)/2;l=0:N-1;wl=(2*pi/N)*l;Hrs=[1,1,1,zeros(1,15),1,1]; *对理想幅度函数取样得到取样样本Hdr=[1,1,0,0];wdl=[0,0.25,0.25,1]; *用于绘制理想函数幅度函数的曲线k1=0:floor((N-1)/2);k2=floor((N-1)/2)+1:N-1;angH=[-alpha*(2*pi)/N*k1,alpha*(2*pi)/N*(N-k2)];H=Hrs.*exp(j*angH); *计算H(k)h=ifft(H,N); *计算h(n)w=[0:500]*pi/500;H=freqz(h,1,w); *计算幅度响应[Hr,wr]=zerophase(h); *计算幅度函数subplot(221);plot(wdl,Hdr,wl(1:11)/pi,Hrs(1:11),'o');axis([0,1,-0.1,1.1]);xlabel('\omega(\pi)');ylabel('Hr(k)');subplot(222);stem(l,h,'filled');axis([0,N-1,-0.1,0.3]);xlabel('n');ylabel('h(n)');subplot(223);plot(wr/pi,Hr,wl(1:11)/pi,Hrs(1:11),'o');axis([0,1,-0.2,1.2]);xlabel('\omega(\pi)');ylabel('Hr(w)');subplot(224);plot(w/pi,20*log10((abs(H)/max(abs(H)))));axis([0,1,-50,5]);grid;xlabel('\omega(\pi)');ylabel('dB');0.51ω(π)H r (k )051015nh (n )0.51ω(π)H r (w )0.51-40-20ω(π)d B(2)N=40 过渡带有一个样本,T=0.39 N=40;alpha=(N-1)/2;l=0:N-1;wl=(2*pi/N)*l;Hrs=[1,1,1,1,1,0.39,zeros(1,29),0.39,1,1,1,1]; *设置过渡带样本 Hdr=[1,1,0.39,0,0];wdl=[0,0.2,0.25,0.3,1]; k1=0:floor((N-1)/2); k2=floor((N-1)/2)+1:N-1;angH=[-alpha*(2*pi)/N*k1,alpha*(2*pi)/N*(N-k2)]; H=Hrs.*exp(j*angH); h=ifft(H,N);w=[0:500]*pi/500; H=freqz(h,1,w);[Hr,wr]=zerophase(h); subplot(221);plot(wdl,Hdr,wl(1:21)/pi,Hrs(1:21),'o'); axis([0,1,-0.1,1.1]); xlabel('\omega(\pi)'); ylabel('Hr(k)'); subplot(222);stem(l,h,'filled'); axis([0,N-1,-0.1,0.3]); xlabel('n');ylabel('h(n)'); subplot(223);plot(wr/pi,Hr,wl(1:21)/pi,Hrs(1:21),'o'); axis([0,1,-0.2,1.2]); xlabel('\omega(\pi)'); ylabel('Hr(w)'); subplot(224);plot(w/pi,20*log10((abs(H)/max(abs(H))))) axis([0,1,-80,5]);grid;xlabel('\omega(\pi)'); ylabel('dB');0.51ω(π)H r (k )0102030nh (n )0.51ω(π)H r (w )0.51-80-60-40-200ω(π)d B(3)N=60 过渡带有两个样本 T1=0.5925,T2=0.1009 N=60;alpha=(N-1)/2;l=0:N-1;wl=(2*pi/N)*l;Hrs=[1,1,1,1,1,1,1,0.5925,0.1099,zeros(1,43), 0.1099, 0.5925, 1,1,1,1,1,1]; *设置过渡带样本Hdr=[1,1,0.5925,0.1099,0,0];wdl=[0,0.2,0.2+1/30,0.3-1/30,0.3,1]; k1=0:floor((N-1)/2); k2=floor((N-1)/2)+1:N-1;angH=[-alpha*(2*pi)/N*k1,alpha*(2*pi)/N*(N-k2)]; H=Hrs.*exp(j*angH); h=ifft(H,N);w=[0:500]*pi/500;H=freqz(h,1,w);[Hr,wr]=zerophase(h); subplot(221);plot(wdl,Hdr,wl(1:31)/pi,Hrs(1:31),'o'); axis([0,1,-0.1,1.1]);xlabel('\omega(\pi)');ylabel('Hr(k)'); subplot(222);stem(l,h,'filled'); axis([0,N-1,-0.1,0.3]); xlabel('n');ylabel('h(n)'); subplot(223);plot(wr/pi,Hr,wl(1:31)/pi,Hrs(1:31),'o'); axis([0,1,-0.2,1.2]); xlabel('\omega(\pi)'); ylabel('Hr(w)'); subplot(224);plot(w/pi,20*log10((abs(H)/max(abs(H))))) axis([0,1,-120,5]);grid;xlabel('\omega(\pi)');ylabel('dB');0.5100.51ω(π)H r (k )02040-0.10.10.20.3nh (n )0.5100.51ω(π)H r (w )0.51-100-50ω(π)d B(4)答:由实验结果第四个图可知,当时,阻带增益都没有达到-50dB,阻带增益有所减低,所以设计结果不能满足最初的设计要求。

2.采用频率采样技术设计下面的高通滤波器对于高通滤波器,N必须为奇数。

选择N=33,过渡带有两个样本,过渡带样本最优值为T1=0.1095,T2=0.598。

实验代码与实验结果:N=33;alpha=(N-1)/2;l=0:N-1;wl=(2*pi/N)*l;Hrs=[zeros(1,11),0.1095,0.598,ones(1,7),0.598,0.1095,zeros(1,11)]; Hdr=[0,0,0.1095,0.598,1,1];wdl=[0,20/33,22/33,24/33,26/33,1];k1=0:floor((N-1)/2);k2=floor((N-1)/2)+1:N-1;angH=[-alpha*(2*pi)/N*k1,alpha*(2*pi)/N*(N-k2)];H=Hrs.*exp(j*angH);h=ifft(H,N);w=[0:500]*pi/500;H=freqz(h,1,w);h=real(h);[Hr,wr]=zerophase(h);subplot(221);plot(wdl,Hdr,wl(1:17)/pi,Hrs(1:17),'o');axis([0,1,-0.1,1.1]);xlabel('\omega(\pi)');ylabel('Hr(k)');subplot(222);stem(l,h,'filled');axis([0,N-1,-0.1,0.3]);xlabel('n');ylabel('h(n)');subplot(223);plot(wr/pi,Hr,wl(1:17)/pi,Hrs(1:17),'o');axis([0,1,-0.2,1.2]);xlabel('\omega(\pi)');ylabel('Hr(w)');subplot(224);plot(w/pi,20*log10((abs(H)/max(abs(H)))));axis([0,1,-120,5]);grid;xlabel('\omega(\pi)');ylabel('dB');0.51ω(π)H r (k )0102030nh (n )0.51ω(π)H r (w )0.51-100-50ω(π)d B五、实验心得与体会通过这次实验,我掌握了用MATLAB 实现采用频率取样法设计FIR 数字滤波器的具体方法,在实验过程中,我加深了对频率取样法原理的理解和学习,对理论知识有了更深刻的记忆。

相关文档
最新文档