华师网院2016春作业《离散数学》
离散数学形成性考核作业4题目与答案

离散数学形成性考核作业4作业与答案离散数学综合练习书面作业要求:学生提交作业有以下三种方式可供选择:1. 可将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅.2. 在线提交word文档.3. 自备答题纸张,将答题过程手工书写,并拍照上传.一、公式翻译题1.请将语句“小王去上课,小李也去上课.”翻译成命题公式.设P:小王去上课Q:小李去上课则:命题公式P∧Q2.请将语句“他去旅游,仅当他有时间.”翻译成命题公式.设P:他去旅游Q:他有时间则命题公式为P→Q3.请将语句“有人不去工作”翻译成谓词公式.设A(x):x是人B(x):去工作则谓词公式为∃x(A(x)∧-B(x))4.请将语句“所有人都努力学习.”翻译成谓词公式.设A(x): x是人B(x):努力学习则谓词公式为∀x(A(x)∧B(x))二、计算题1.设A={{1},{2},1,2},B={1,2,{1,2}},试计算(1)(A-B);(2)(A∩B);(3)A×B.解:(1)(A-B)={{1},{2}}(2)(A∩B)={1,2}(3)A×B={<{1},1>,<{1},2>,<{1},{1,2}>,<{2},1>,<{2},2>,<{2},{1,2}>,<1,1>,<1,2>,<1,{1,2}>,<2,1>,<2,2>,<2,{1,2}>}2.设A={1,2,3,4,5},R={<x,y>|x∈A,y∈A且x+y≤4},S={<x,y>|x∈A,y∈A且x+y<0},试求R,S,R•S,S•R,R-1,S-1,r(S),s(R).解:R={<1,1>,<1,2>,<1,3>,<2,1>,<2,2>,<3,1>}S=空集R•S=空集S•R =空集R-1={<1,1>,<2,1>,<3,1>,<1,2>,<2,2>,<1,3>}S-1=空集r(S) ={<1,1>,<2,2>,<3,3>,<4,4>,<5,5>}s(R) ={<1,1>,<1,2>,<1,3>,<2,1>,<2,2>,<3,1>}3.设A={1, 2, 3, 4, 5, 6, 7, 8},R是A上的整除关系,B={2, 4, 6}.(1) 写出关系R的表示式;(2) 画出关系R的哈斯图;(3) 求出集合B的最大元、最小元.4.设G=<V,E>,V={ v1,v2,v3,v4,v5},E={ (v1,v3),(v2,v3),(v2,v4),(v3,v4),(v3,v5),(v4,v5) },试(1) 给出G的图形表示;(2) 写出其邻接矩阵;(3) 求出每个结点的度数;(4) 画出其补图的图形.答:(1)(2)(3)deg(v1)=1, deg(v2)=2 ,deg(v3)=4 ,deg(v4)=3,deg(v5)=2(4)5.图G=<V, E>,其中V={ a, b, c, d, e},E={ (a, b), (a, c), (a, e), (b, d), (b, e), (c, e), (c, d), (d, e) },对应边的权值依次为2、1、2、3、6、1、4及5,试(1)画出G的图形;(2)写出G的邻接矩阵;(3)求出G权最小的生成树及其权值.解:(1)(2)(3)其中权值是:76.设有一组权为2, 3, 5, 7, 17, 31,试画出相应的最优二叉树,计算该最优二叉树的权.解:权值:657.求P→Q∨R的析取范式,合取范式、主析取范式,主合取范式.解:8.设谓词公式()((,)()(,,))()(,)x P x y z Q y x z y R y z ∃→∀∧∀.(1)试写出量词的辖域;(2)指出该公式的自由变元和约束变元.9.设个体域为D ={a 1, a 2},求谓词公式(∀y )(∃x )P (x ,y )消去量词后的等值式;三、证明题1.对任意三个集合A , B 和C ,试证明:若A ⨯B = A ⨯C ,且A ≠∅,则B = C .证明:设x ∈A, y ∈B,则<x,y>∈A ⨯B因为A ⨯B =A ⨯C ,故<x, y>∈A ⨯C, 则有y ∈C所以 B ⊆C设x ∈A, z ∈C ,则<x, z>∈A ⨯C因为A ⨯B =A ⨯C ,故<x, z>∈A ⨯B, 则有z ∈B所以 C ⊆B故得A =B2.试证明:若R 与S 是集合A 上的自反关系,则R ∩S 也是集合A 上的自反关系.证明:R 和S 是自反的,∀x ∈A, <x,x>∈R, <x,x>∈S则<x, x>∈R ⋂S所以R ⋂S 是自反的3.设连通图G 有k 个奇数度的结点,证明在图G 中至少要添加2k 条边才能使其成为欧拉图.4.试证明 (P →(Q ∨⌝R ))∧⌝P ∧Q 与⌝ (P ∨⌝Q )等价.5.试证明:⌝(A ∧⌝B )∧(⌝B ∨C )∧⌝C ⇒⌝A .以上为离散数学形成性考核作业4作业与答案,请教师指正。
离散数学平时作业

第一章1.假定A是ECNU二年级的学生集合,B是ECNU必须学离散数学的学生的集合。
请用A和B表示ECNU不必学习离散数学的二年级的学生的集合。
解:_B A2.试求:(1)P(φ)(2)P(P(φ))(3)P(P(P(φ)))(1){φ}(2){φ,{φ}}3.在1~200的正整数中,能被3或5整除,但不能被15整除的正整数共有多少个?能被5整除的有40个,能被15整除的有13个,∴能被3或5整除,但不能被15整除的正整数共有66-13+40-13=80个。
第三章1.下列语句是命题吗?(1)2是正数吗?(2)x2+x+1=0。
(3)我要上学。
(4)明年2月1日下雨。
(5)如果股票涨了,那么我就赚钱。
解:(1)不是(2)不是(3)不是(4)是(5)是2.请用自然语言表达命题(p⌝→r)∨(q⌝→r),其中p、q、r为如下命题:p:你得流感了q:你错过了最后的考试r:这门课你通过了解:(1)如果你得流感了,你就不能通过这门课;或者你错过了最后的考试,你也不能通过这门课。
(2)如果你得流感了并且错过了最后的考试,那么你就不能通过这门课。
3.通过真值表求p→(p∧(q→p))的主析取范式和主合取范式。
解:主析取范式:(→p∧q)∨(→p∧→q)∨(p∧→q)∨(p∧q)主合取范式不存在4.给出p→(q→s),q,p∨⌝r⇒r→s的形式证明。
证明:(1)p∨⌝r前提引入(2)R附加前提引入(3)P (1)(2)析取三段(4)p→(q→s) 前提引入(5)q→s (3)(4)假言推理(6)Q 前提引入(7)S (5)(6)假言推理第四章1.将∀x(C(x)∨∃y(C(y)∧F(x,y)))翻译成汉语,其中C(x)表示x有电脑,F(x,y) 表示x和y是同班同学,个体域是学校全体学生的集合。
解:学校的全体学生要么自己有电脑,要么其同班同学有电脑。
2.构造∀x(P(x)∨Q(x)),∀x(Q(x)→⌝R(x)),∀xR(x)⇒∀xP(x)的形式证明。
(精华版)国家开放大学电大本科《离散数学》《学前儿童卫生与保健》网络课形考网考作业(合集)答案

(精华版)国家开放大学电大本科《离散数学》《学前儿童卫生与保健》网络课形考网考作业(合集)答案(精华版)国家开放大学电大本科《离散数学》《学前儿童卫生与保健》网络课形考网考作业(合集)答案《离散数学》网络课答案形考任务1 单项选择题题目1 若集合A={ a,{a},{1,2}},则下列表述正确的是().选择一项:题目2 若集合A={2,a,{ a },4},则下列表述正确的是( ).选择一项:题目3 设集合A={1 , 2 , 3 , 4}上的二元关系R={<1, 1>,<2, 2>,<2, 3>,<4, 4>},S={<1, 1>,<2, 2>,<2, 3>,<3, 2>,<4, 4>},则S是R的()闭包.选择一项: B. 对称题目4 设集合A={1, 2, 3},B={3, 4, 5},C={5, 6, 7},则A∪B–C=( ).选择一项: D. {1, 2, 3, 4} 题目5 如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个.选择一项: C. 2 题目6 集合A={1, 2, 3, 4}上的关系R={<x,y>|x=y且x, y∈A},则R的性质为().选择一项: D. 传递的题目7 若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是( ).选择一项:题目8 设A={a,b,c},B={1,2},作f:A→B,则不同的函数个数为().选择一项: C. 8 题目9 设A={1, 2, 3, 4, 5, 6, 7, 8},R是A上的整除关系,B={2, 4, 6},则集合B的最大元、最小元、上界、下界依次为( ).选择一项: B. 无、2、无、2 题目10 设集合A ={1 , 2, 3}上的函数分别为: f = {<1, 2>,<2, 1>,<3, 3>},g = {<1, 3>,<2, 2>,<3, 2>}, h = {<1, 3>,<2, 1>,<3, 1>},则h =().选择一项: D. f◦g 判断题题目11 设A={1, 2}上的二元关系为R={<x, y>|xA,yA, x+y =10},则R的自反闭包为{<1, 1>, <2, 2>}.()选择一项:对题目12 空集的幂集是空集.()选择一项:错题目13 设A={a, b},B={1, 2},C={a, b},从A到B的函数f={<a, 1>, <b, 2>},从B到C的函数g={<1, b>, <2, a >},则g° f ={<1,2 >, <2,1 >}.()选择一项:错题目14 设集合A={1, 2, 3, 4},B={2, 4, 6, 8},下列关系f = {<1, 8>, <2, 6>, <3, 4>, <4, 2,>}可以构成函数f:.()选择一项:对题目15 设集合A={1, 2, 3},B={2, 3, 4},C={3, 4, 5},则A∩(C-B )= {1, 2, 3, 5}.()选择一项:错题目16 如果R1和R2是A上的自反关系,则、R1∪R2、R1∩R2是自反的.()选择一项:对题目17 设集合A={a, b, c,d},A上的二元关系R={<a, b>, <b, a>, <b, c>, <c,d>},则R具有反自反性质.()选择一项:对题目18 设集合A={1, 2, 3},B={1, 2},则P(A)-P(B )= {{3},{1,3},{2,3},{1,2,3}}.()选择一项:对题目19 若集合A = {1,2,3}上的二元关系R={<1, 1>,<1, 2>,<3, 3>},则R是对称的关系.()选择一项:错题目20 设集合A={1, 2, 3, 4 },B={6, 8, 12}, A到B的二元关系R=那么R-1={<6, 3>,<8,4>}.()选择一项:对形考任务2 单项选择题题目1 无向完全图K4是().选择一项: C. 汉密尔顿图题目2 已知一棵无向树T中有8个顶点,4度、3度、2度的分支点各一个,T的树叶数为( ).选择一项: D. 5 题目3 设无向图G的邻接矩阵为则G的边数为( ).选择一项: A. 7 题目4 如图一所示,以下说法正确的是 ( ) .选择一项: C. {(d, e)}是边割集题目5 以下结论正确的是( ).选择一项: C. 树的每条边都是割边题目6 若G是一个欧拉图,则G一定是( ).选择一项: B. 连通图题目7 设图G=<V, E>,v∈V,则下列结论成立的是 ( ) .选择一项:题目8 图G如图三所示,以下说法正确的是( ).选择一项: C. {b, c}是点割集题目9 设有向图(a)、(b)、(c)与(d)如图五所示,则下列结论成立的是( ).选择一项: A. (a)是强连通的题目10 设有向图(a)、(b)、(c)与(d)如图六所示,则下列结论成立的是( ).选择一项: D. (d)只是弱连通的判断题题目11 设图G是有6个结点的连通图,结点的总度数为18,则可从G中删去4条边后使之变成树.( ) 选择一项:对题目12 汉密尔顿图一定是欧拉图.( ) 选择一项:错题目13 设连通平面图G的结点数为5,边数为6,则面数为4.( ) 选择一项:错题目14 设G是一个有7个结点16条边的连通图,则G为平面图.( ) 选择一项:错题目15 如图八所示的图G存在一条欧拉回路.( ) 选择一项:错题目16 设图G如图七所示,则图G的点割集是{f}.( ) 选择一项:错题目17 设G是一个图,结点集合为V,边集合为E,则( ) 选择一项:对题目18 设图G是有5个结点的连通图,结点度数总和为10,则可从G中删去6条边后使之变成树.( ) 选择一项:错题目19 如图九所示的图G不是欧拉图而是汉密尔顿图.( ) 选择一项:对题目20 若图G=<V, E>,其中V={ a, b, c, d },E={ (a, b), (a, d),(b, c), (b, d)},则该图中的割边为(b, c).( ) 选择一项:对形考任务3 单项选择题题目1 命题公式的主合取范式是( ).选择一项:题目2 设P:我将去打球,Q:我有时间.命题“我将去打球,仅当我有时间时”符号化为( ).选择一项:题目3 命题公式的主析取范式是( ).选择一项:题目4 下列公式成立的为( ).选择一项:题目5 设A(x):x是书,B(x):x是数学书,则命题“不是所有书都是数学书”可符号化为().选择一项:题目6 前提条件的有效结论是( ).选择一项: B. ┐Q 题目7 命题公式(P∨Q)→R的析取范式是 ( ).选择一项: D. (┐P∧┐Q)∨R 题目8 下列等价公式成立的为( ).选择一项:题目9 下列等价公式成立的为( ).选择一项:题目10 下列公式中 ( )为永真式.选择一项: C. ┐A∧┐B ↔┐(A∨B) 判断题题目11 设个体域D={1, 2, 3},A(x)为“x小于3”,则谓词公式(∃x)A(x) 的真值为T.( )选择一项:对题目12 设P:小王来学校, Q:他会参加比赛.那么命题“如果小王来学校,则他会参加比赛”符号化的结果为P→Q.( ) 选择一项:对题目13 下面的推理是否正确.( ) (1) (∀x)A(x)→B(x) 前提引入(2) A(y)→B(y) US (1) 选择一项:错题目14 含有三个命题变项P,Q,R的命题公式P∧Q的主析取范式(P∧Q∧R)∨(P∧Q∧┐R).( ) 选择一项:对题目15 命题公式P→(Q∨P)的真值是T.( ) 选择一项:对题目16 命题公式┐P∧P的真值是T.( ) 选择一项:错题目17 谓词公式┐(∀x)P(x)(∃x)┐P(x)成立.( ) 选择一项:对题目18 命题公式┐(P→Q)的主析取范式是P∨┐Q.( ) 选择一项:错题目19 设个体域D={a, b},则谓词公式(∀x)(A(x)∧B(x))消去量词后的等值式为(A(a)∧B(a))∧(A(b)∧B(b)).( ) 选择一项:对题目20 设个体域D={a, b},那么谓词公式(∃x)A(x)∨(∀y)B(y)消去量词后的等值式为A(a)∨B(b).( ) 选择一项:错形考任务4 要求:学生提交作业有以下三种方式可供选择: 1. 可将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅. 2. 在线提交word文档. 3. 自备答题纸张,将答题过程手工书写,并拍照上传形考任务5 网上学习行为(学生无需提交作业,占形考总分的10%)《学前儿童卫生与保健》网络课答案讨论型:(10分)每个学前儿童的生长发育都有其特点:答:生长发育的一般规律是指群体儿童在生长发育过程中所具有的一般现象。
离散数学试题2018模拟1+答案

华南理工大学网络教育学院2016–2017学年度第一学期期末考试 《 离散数学 》试卷(模拟卷)(客观题电脑给分,主观题依过程给分)教学中心: 专业层次:学 号: 姓 名: 座号: 注意事项:1. 本试卷共 三 大题,满分100分,考试时间90分钟,闭卷;2. 考前请将以上各项信息填写清楚;3. 所有答案必须做在答题纸上,做在试卷、草稿纸上无效; 4.考试结束,试卷、答题纸、草稿纸一并交回。
一、单项选择题(本大题30分,每小题6分)1.设,P :他聪明;Q :他用功。
在命题逻辑中,命题: “他既聪明又用功。
” 可符号化为:( ) A .P ∧ Q B .P → Q C .P ∨ ⌝Q D .P ∧⌝Q 【答案:A 】2.下列式子( )是永真式A .Q →(P ∧ Q )B .P →(P ∧ Q )C .(P ∧ Q )→ PD .(P ∨Q )→ Q 【答案:C 】 3.设S (x ):x 是运动员,J (y ):y 是教练员,L (x ,y ):x 钦佩y 。
命题“所有运动员都钦佩一些教练员”的符号化公式是( ) A .∀x (S (x )∧ ∀ y (J (y )∧ L (x ,y ))) B .∀x ∃y (S (x )→(J (y )→ L (x ,y ))) C .∀x (S (x )→ ∃y (J (y )∧ L (x ,y ))) D .∃y ∀x (S (x )→(J (y )∧ L (x ,y ))) 【答案:C 】4.下列命题是真的是( )A .如果A ⊆B 及B ∈C,则A ⊆C B .如果A ⊆B 及B ∈C,则A ∈C C .如果A ∈B 及B ⊆C,则A ⊆CD .如果A ∈B 及B ⊆C,则A ∈C 【答案:D 】5.设G 是n 有个结点,m 条边的简单有向图。
若G 是连通的,则m 的下界是( )A .nB .1n -C .()1n n -D .()112n n -【答案:B 】二、 判断题(本大题20分,每小题4分)1. 设A ,B 是命题公式,则蕴涵等值式为A →B ⇔⌝A ∧B 。
华东师范大学离散数学章炯民课后习题第3章答案

华东师范大学离散数学章炯民课后习题第3章答案第一篇:华东师范大学离散数学章炯民课后习题第3章答案1.下列语句哪些是命题?(1)2是正数吗?(2)x2+x+1=0。
(3)我要上学。
(4)明年2月1日下雨。
(5)如果股票涨了,那么我就赚钱。
解:(1)不是(2)不是(3)不是(4)是(5)是2.判断下列命题的真值:(1)若1+1=3,则2+2=4(2)若鸟会飞,则 1+1=3 解:(1)1(2)011.将下列两个命题符号化,并分别用真值表和等值演算的方法证明所得到的那两个命题公式是等值的。
(1)你不会休息所以就不会工作,你没有丰富的知识所以你就不会工作;(2)你会工作所以一定会休息并具有丰富的知识。
解:设p:你会休息,q:你会工作,r:你有丰富的知识。
原命题符号化为(1)(⌝p→⌝q)∧(⌝r→⌝q)(2)q→(p∧r)12.(1)用等值演算的方法证明命题恒等式p→(q→p)=⌝p→(p→⌝q)。
13.构造一个只含命题变量p、q和r的命题公式A,满足:p、q 和r的任意一个赋值是A的成真赋值当且仅当p、q和r中恰有两个为真。
解:(p∧q∧⌝r)∨(p∧⌝q∧r)∨(⌝p∧q∧r)14.通过等值演算求p→(p∧(q→p))的主析取范式和主合取范式。
解:主析取范式:(⌝p∧q)∨(⌝p∧⌝q)∨(p∧⌝q)∨(p∧q)主合取范式不存在15.一教师要从3名学生A、B和C中选派1~2人参加市级科技竞赛,需满足以下条件:(1)若A去,则C同去;(2)若B去,则C不能去;(3)若C不去,则A或B可以去。
问该如何选派?解:为此问题建立数学模型。
有三个方案:仅C去,仅B去,仅A和C去16.证明{⌝,→}是功能完备集。
17.(1)证明p→(q→s),q,p∨⌝r⇒r→s。
证明:① p∨⌝r前提引入② r附加前提引入③ p①②析取三段④ p→(q→s)前提引入⑤ q→s③④假言推理⑥ q前提引入⑦ s⑤⑥假言推理19.构造下列推理的形式证明:“今天下午没有出太阳并且今天比昨天冷。
华师 离散数学 作业

这个很容易,但是需要话一个图,有4个二度节点,树叶有5片,所以一个三度节点都木有。
要算也简单,叶子数=总度数-节点数+1设:三度节点个数为x
即:2*4+x*3-4-x+1=5
解得x=0
∴一个三度节点都木有
3、B∪~((~A∪B)∩A)=B∪~((~A∩A)∪(B∩A))=B∪~(B∩A)=B∪(~B∪~A)=B∪~B∪~A=U∪~B=U
所以4-x是x的幺元
综上所述:<Z,☉>是群
5、证明:(P→Q)∧(Q→P)<=>(﹁P∨Q)∧(﹁Q∨P)<=>((﹁P∨Q)∧﹁Q)∨((﹁P∨Q)∧P)<=>
((﹁P∧﹁Q)∨(Q∧﹁Q))∨((﹁P∧P)∨(Q∧P))<=>(﹁P∧﹁Q)∨(Q∧P)<=>
﹁(P∨Q)∨(Q∧P)<=>(P∨Q)→(Q∧P)
4、
证明:如果x,y∈Z,则x☉y=x+y-2∈Z
∴<Z,+y-2)+z-2=x+(y+z-2)-2=x+(y☉z)-2=x☉(y☉z)
∴<Z,☉>是可结合的。
对于任意x∈Z
x☉2=x+2-2=x
2☉x=2+x-2=x
∴2是<Z,☉>的幺元
x☉(4-x)=x+(4-x)-2=2=幺元
三项比赛都参加的有4这个很容易但是需要话一个图有4个二度节点树叶有5片所以一个三度节点都木有
1、
足球:|A|=28篮球:|B|=29排球:|C|=26 |A∩B|=7 |B∩C|=9 |A∩C|=11
|A|+|B|+|C|-|A∩B|-|B∩C|-|A∩C|+|A∩B∩C|=|A∪B∪C|=60
离散数学大作业

离散数学大作业题目赋权图的最小生成树算法学院班级学生姓名学号指导老师赋权图的最小生成树算法摘要一个有n个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有n个结点并且有保持图联通的最少的边问题就是最小生成树问题。
许多应用问题都是一个求无向连通图的最小生成树问题。
例如寻找在城市之间铺设光缆的最好方案问题等等。
解决权值最小生成树问题的方法有很多种,如Prim 算法、Kruskal算法等等都是很好的方法。
本文中使用了kruskal算法(避圈法)实现寻找赋权图的最小生成树问题。
概述离散数学(Discrete mathematics)是研究离散量的结构及其相互关系的数学学科,是现代数学的一个重要分支。
它在各学科领域,特别在计算机科学与技术领域有着广泛的应用,同时离散数学也是计算机专业的许多专业课程,如程序设计语言、数据结构、操作系统、编译技术、人工智能、数据库、算法设计与分析、理论计算机科学基础等必不可少的先行课程。
通过离散数学的学习,不但可以掌握处理离散结构的描述工具和方法,为后续课程的学习创造条件,而且可以提高抽象思维和严格的逻辑推理能力,为将来参与创新性的研究和开发工作打下坚实的基础。
随着信息时代的到来,工业革命时代以微积分为代表的连续数学占主流的地位已经发生了变化,离散数学的重要性逐渐被人们认识。
离散数学课程所传授的思想和方法,广泛地体现在计算机科学技术及相关专业的诸领域,从科学计算到信息处理,从理论计算机科学到计算机应用技术,从计算机软件到计算机硬件,从人工智能到认知系统,无不与离散数学密切相关。
由于数字电子计算机是一个离散结构,它只能处理离散的或离散化了的数量关系,因此,无论计算机科学本身,还是与计算机科学及其应用密切相关的现代科学研究领域,都面临着如何对离散结构建立相应的数学模型;又如何将已用连续数量关系建立起来的数学模型离散化,从而可由计算机加以处理。
离散数学是传统的逻辑学,集合论(包括函数),数论基础,算法设计,组合分析,离散概率,关系理论,图论与树,抽象代数(包括代数系统,群、环、域等),布尔代数,计算模型(语言与自动机)等汇集起来的一门综合学科。
国家开放大学电大《数据结构》《离散数学》网络课形考网考作业(合集)答案

国家开放大学电大《数据结构》《离散数学》网络课形考网考作业(合集)答案《数据结枸〉网络课答案形考任务]一、单项逸择题(每小题3分,共60分)题目1 把数据存储到计算机中,并具体体现数据元素间的逻辑结构称为()。
选择一项: A、算法的具体实现 B、逻辑结构 C、给相关变量分配存储单元 D、物理结构题目2 下列说法中,不正确的是()。
选择一项: A、数据项是数据中不可分割的最小可标识单位B、数据元素是数据的基本单位 C、数据项可由若干个数据元素构成 D、数据可有若干个数据元素构成题目3 一个存储结点存储一个()、选择一项: A、数据项 B、数据类型 C、顺元素 D、数据结构题目4 数据结构中,与所使用的计算机无关的是数据的()« 选择一项: A、存储结构 B、物理结构 C、逻辑靖构 D、物理和存储结构)。
在线性表的顺序结构中,以下说法正确的是(选择一项:A、进行数据元素的插入、删除效率较高 B、数据元素是不能随机访问的 C、逻辑上相邻的元素在物理位置上不一定相邻 D、逻辑上相邻的元素在物理位置上也相邻题目6 对链表,以下叙述中正确的是()。
选择一项: A、可以通过下标对链表进行直接访问 B、插入删除元素的操作一定要要移动结点 C、不能随机访问任一结点D、结点占用的存储空间是连续的题目7 下列的叙述中,不属于算法特性的是()、选择一项: A、可行性 B、有穷性 C、可读性 D、输入性题目8 算法的时间复杂度与()有关。
选择一项: A、所使用的计算机 B、计算机的操作系统C、数据结构 D、算法本身题目9 设有一个长度为n的顺序表,要在第i个元素之前(也就是插入元素作为新表的第i个元素),插入一个元素、则移动元素个数为()- 选择一项: A、n-i-1 C、 n~i+l D、 n-i 题目10 设有一个长度为n的顺序表,要删除第i个元素移动元素的个数为()、选择一项: A、 i B、 n-i-1 C、 n-i D、 n-i+1 题目11 在一个单链表中,P、q 分别指向表中两个相邻的结点,且q所指结点是P所指结点的直接后继,现要删除q所指结点, 可用语句()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散数学
2016.1.3期末试卷出现过的题目,有以下几道题:
1、答案:错误
2、5阶完全图有10条边。
答案:正确
3、答案:正确
4、答案:正确
5、答案:错误
证明题有,第三道和第十一道,类似第十二道的有一题
判断题:
1答案:错误;2 答案:错误;3答案:正确
4答案:正确 5答案:正确6答案:正确
7答案:错误 7答案:正确
8欧拉图含有初级回路。
答案:错误9、可逆映射是双射。
答案:正确
10永真式是可满足式。
答案:正确 11、完全有向图是有向哈米尔顿图。
答案:正确
12零元是不可逆的。
答案:正确;13、逻辑结论是正确结论。
答案:错误;
14空集是任何集合的真子集。
答案:错误15空集是任何集合的子集。
答案:正确
16单位元是可逆的。
答案:正确 17一棵树的树叶树至少为2。
答案:错误
18有生成树的无向图是连通的。
答案:正确18、5阶完全图有10条边。
答案:正确
19强连通有向图一定是单向连通的。
答案:正确
5、n阶完全图的任意2个结点的距离都是1。
答案:正确
6、2个具有相同结点数和边数的图是同构的答案:错误
11答案:正确
12答案:正确
13答案:正确
13答案:正确14 答案:正确
15答案:错误15答案:错误
16 答案:正确16答案:错误
17答案:错误18答案:错误
19答案:正确20答案:错误22答案:错误
25答案:错误
27答案正确
28答案:正确
28答案:正确
29答案:正确
30答案:错误
31答案:错误
31答案:错误
32答案正确
证明题
第一题:
第二题
答案:
第三题
第四题
答案:第五题
答案:
第六题
第七题
第八题
第九题
第十题
第十一题
某班共有60人参加比赛,其中参加足球比赛的有28人,有29人参加篮球比赛,26人参加排球比赛,7人既踢足球又打篮球,9人既打篮球又打排球,11人既打排球又踢足球,求同时参加三种比赛的人数。
方案一:解设参加足球、篮球、排球比赛的学生集合分别为A、B、C
设x y z分别表示只参加足球、篮球、排球的人数
设同时参加足球、篮球和排球的人数为Q?
X+11+7-Q=28,
Y+9+7-Q=29,
Z+11+9-Q=26,
X+Y+Z+11+9+7-2Q=60
解得
x=28+Q-11-7,
y=29+Q-9-7,
z=26+Q-11-9,
则Q=28+29+26+Q-11-9-7=60,从而Q=4,所以同时参加足球、篮球、排球比赛的人数为4人
方案二:
解:设参加足球比赛的人为集合A;
设参加篮球的比赛的人为集合B;
设参加排球的比赛的人为集合C;
则有:(用减代表交,用加代表并)。
,A,=28, ,B,=29,,C,=26,,A-B,=7,,B-C,=9,,A-C,=11 ,A,+,B,+,C,-,A∩B,-,B∩C,-,A∩C,+,A∩B∩C,=,A∪B∪C,=60 ,A∩B∩C,=60-28-29-26+7+9+11=4 即:三项比赛都参加的有4人。
第十二题
1.设树T有5片树叶,4个2度结点,其余都是3度结点,求3度结点的个数。
解:
方案一:设:3度结点的个数为X 树的枝数+1=结点数 4*2+3X+1=5+4+X X=0,故T有3个3度结点。
方案二:设:有x个3度结点,则一共有n=5+4+x=x+9个结点,T是树,则边数m=n-1=x+8,由握手定理,5*1+4*2+3x=2m=2(x+8),得x=3。
故T有3个3度结点
2016年1月3日。