极值点偏移问题的两种常见解法之比较

合集下载

极值点偏移的解题思路及比较

极值点偏移的解题思路及比较

用,在解答题中需要证明.
( 五) 思路五( 对称构造)
设 f( x) 的极值点为 m,构造函数 F( x) = f( x) - f( 2m -
x) 或 F( x) = f( m - x) - f( m + x) 并参照零点 x1 ( 或 x2 ) 注明 定义域,然后确定 F( x) 的符号,并依据极值点一侧的单调
( 三) 思路三: 双向型超越不等式
{ 借 助 形 如
lnx

2( x - m) x+m
+ lnx( x > m) ,( m > 0) ,
的双
lnx

2( x - m) x+m
+ lnm( 0 < x < m)
向型超越不等式化超越函数为有理函数,形成关于 x1 + x2 或 x1 x2 的有理不等式后进行证明.
ln1
=
2( x - 1) x +1

0

x

1)


证明略)
可以得到
2lnt
= x2
- x1
+
ln
2 2
- x2 - x1

x2

x1
+
2( x1 - x2 ) 4 - ( x1 + x2 )
=

x2

x1) [2 - ( 4 - ( x1 +
x1 + x2 )
x2)
] ,
∵ x2 - x1 ,4 - ( x1 + x2 ) > 0.
(* )
{lna + 2ln( 1 - x1 ) = x1 + ln( 2 - x1 ) , 两式相减, lna + 2ln( x2 - 1) = x2 + ln( 2 - x2 ) ,

导数中极值点偏移问题

导数中极值点偏移问题

极值点的“偏移”问题一、极值点“偏移”图示(左右对称,无偏移,如二次函数;若f(x1)=f(x2),则x1+x2=2x0)(左陡右缓,极值点向左偏移;若f(x1)=f(x2),则x1+x2>2x0)(左缓右陡,极值点向右偏移;若f(x1)=f(x2),则x1+x2<2x0)二、极值点偏移问题的结论不一定总是x1+x2>(<)2x0,也可能是x1x2>(<)x20.三、解题策略:对称化构造法;双变元不等式问题解法一【例1】已知函数f(x)=x e-x 如果x1≠x2,且f(x1)=f(x2),证明:x1+x2>2.1.设函数f(x)=(x−2)e x+a(x−1)2有两个零点.(1)求a的取值范围;(2)设x1,x2是f(x)的两个零点,证明:x1+x2<2.2.设函数 f(x)=ln x−ax(a>0),且实数m使得方程f(x)=m有两个不等实根x1,x2,其中x1<x2.求证:(1)0<x1<1a<x2;(2)x1+x22>1a.3.设函数f(x)=ln xx,且实数m使得方程f(x)=m有两个不等实根x1,x2,其中x1<x2.求证:(1)0<x1<e<x2;(2)x1+x22>e;(3)1x1+1x2>2ⅇ.4.已知函数f(x)=e x-ax有两个不同的零点x1,x2,其极值点为x0. (1)求a的取值范围;(2)求证:x1+x2<2x0;(3)求证:x1+x2>2;(4)求证:x1x2<1.5. 设函数f(x)=e x−ax,其中a>e,(1)求证:函数f(x)有且仅有两个零点x1,x2,且0<x1<1<x2;(2)对于(1)中的x1,x2,求证:f′(x1)+f′(x2)>0.6.已知函数f(x)=x ln x-x,两相异正实数x1,x2满足f(x1)=f(x2).求证:x1+x2>2.总结:用对称化构造的方法解决极值点偏移问题分为以下三步:(1)求导,获得f(x)的单调性,极值情况,作出f(x)的图象,由f(x1)=f(x2)得x1,x2的取值范围(数形结合);(2)构造辅助函数,对结论x1+x2>(<)2x00,构造F(x)=f(x)-f(2x0-x);对结论x1x2>(<)x20,构造F(x)=f(x)-f⎝⎛⎭⎫x20x,求导,限定范围(x1或x2的范围),判定符号,获得不等式;(3)代入x1(或x2),利用f(x1)=f(x2)及f(x)的单调性证明最终结论.双变元不等式问题解法二【例2】(2020·重庆调研二)已知函数f(x)=x ln x,g(x)=12mx2+x.设F(x)=f(x)-g(x),已知F(x)在(0,+∞)上存在两个极值点x1,x2,且x1<x2,求证:x1x2>e2(其中e为自然对数的底数).1.设A(x1,y1),B(x2,y2)是函数f(x)=ax2+(1−2a)x−ln x图像 C上不同两点,M为线段AB的中点,过M作x轴的垂线交曲线C于N点.试问:曲线C在点N处的切线是否平行于直线AB?2.设函数f(x)=x2−(a−2)x−a ln x,a>0.若方程f(x)=m有两个不等实根x1,x2,求证:f′(x1+x22)>0.3.设函数f(x)=x ln x,且实数m使得方程f(x)=m有两个不等实根x1,x2,求证:x1x2<1ⅇ2.4.设函数f(x)=ln xx,且实数m使得方程f(x)=m有两个不等实根x1,x2,求证:f′(x1)+f′(x2)>0. 5.设函数f(x)=e x−ax+a有两个零点x1,x2,求证:x1x2<x1+x2.6. 已知函数f(x)=ln x和g(x)=ax,若存在两个实数x1,x2,且x1≠x2,满足f(x1)=g(x1),f(x2)=g(x2),求证:x1x2>e2.。

极值点偏移问题的两种常见解法之比较演示教学

极值点偏移问题的两种常见解法之比较演示教学

极值点偏移问题的两种常见解法之比较浅谈部分导数压轴题的解法在高考导数压轴题中,不断出现极值点偏移问题,那么,什么是极值点偏移问题?参考陈宽宏、邢友宝、赖淑明等老师的文章,极值点偏移问题的表述是:已知函数()y f x =是连续函数,在区间12(,)x x 内有且只有一个极值点0x ,且12()()f x f x =,若极值点左右的“增减速度”相同,常常有极值点1202x x x +=,我们称这种状态为极值点不偏移;若极值点左右的“增减速度”不同,函数的图象不具有对称性,常常有极值点1202x x x +≠的情况,我们称这种状态为“极值点偏移”. 极值点偏移问题常用两种方法证明:一是函数的单调性,若函数()f x 在区间(,)a b 内单调递增,则对区间(,)a b 内的任意两个变量12x x 、,1212()()f x f x x x <⇔<;若函数()f x 在区间(,)a b 内单调递减,则对区间(,)a b 内的任意两个变量12x x 、,1212()()f x f x x x <⇔>. 二是利用“对数平均不等式”证明,什么是“对数平均”?什么又是“对数平均不等式”?两个正数a 和b 的对数平均数定义:,,(,)ln ln ,,a ba b L a b a b a a b -⎧≠⎪=-⎨⎪=⎩对数平均数与算术平均数、(,)2a bL a b +≤≤,(此式记为对数平均不等式)下面给出对数平均不等式的证明: i )当0a b =>时,显然等号成立 ii )当0a b ≠>时,不妨设0a b >>, ①ln ln a b a b -<-,ln ln a ba b-<-,只须证:ln a b <,1x =>,只须证:12ln ,1x x x x≤-> 设1()2ln ,1f x x x x x=-+>,则22221(1)()10x f x x x x -'=--=-<,所以()f x在(1,)+∞内单调递减,所以()(1)0f x f <=,即12ln x x x<-,ln ln a ba b --②再证:ln ln 2a b a ba b -+<- 要证:ln ln 2a b a ba b -+<-,只须证:1ln21a ab b a b-<+令1a x b =>,则只须证:1ln 12x x x -<+,只须证2ln 1112x x x -<>+,设2ln ()112xg x x =--+,1x >,则22221(1)()0(1)22(1)x g x x x x x --'=-=<++ 所以()g x 在区间(1,)+∞内单调递减,所以()g(1)0g x <=,即2ln 112xx -<+, 故ln ln 2a b a ba b -+<- 综上述,当0,0a b >>(,)2a bL a b +≤≤例1 (2016年高考数学全国Ⅰ理科第21题)已知函数2)1()2()(-+-=x a e x x f x有两个零点.(Ⅰ)求a 的取值范围;(Ⅱ)设21,x x 是)(x f 的两个零点,证明:221<+x x . 解:(Ⅰ)函数()f x 的定义域为R ,当0a =时,()(2)0xf x x e =-=,得2x =,只有一个零点,不合题意; 当0a ≠时,()(1)[2]x f x x e a '=-+当0a >时,由()0f x '=得,1x =,由()0f x '>得,1x >,由()0f x '<得,1x <, 故,1x =是()f x 的极小值点,也是()f x 的最小值点,所以min ()(1)0f x f e ==-< 又(2)0f a =>,故在区间(1,2)内存在一个零点2x ,即212x << 由21lim (2)limlim 0,xx x x x x x x e e e--→-∞→-∞→-∞--===-又2(1)0a x ->,所以,()f x 在区间 (,1)-∞存在唯一零点1x ,即11x <, 故0a >时,()f x 存在两个零点;当0a <时,由()0f x '=得,1ln(2)x x a ==-或, 若ln(2)1a -=,即2ea =-时,()0f x '≥,故()f x 在R 上单调递增,与题意不符 若ln(2)1a ->,即02ea -<<时,易证()=(1)0f x f e =-<极大值故()f x 在R 上只有一 个零点,若ln(2)1a -<,即2ea <-时,易证()=(ln(2)f x f a -极大值2(ln (2)4ln(2)5)0a a a =---+<,故()f x 在R 上只有一个零点综上述,0a >(Ⅱ)解法一、根据函数的单调性证明 由(Ⅰ)知,0a >且1212x x <<<令2()()(2)(2),1xxh x f x f x x e xe x -=--=-+>,则2(1)2(1)(e 1)()x x x h x e ----'= 因为1x >,所以2(1)10,10x x e-->->,所以()0h x '>,所以()h x 在(1,)+∞内单调递增所以()(1)0h x h >=,即()(2)f x f x >-,所以22()(2)f x f x >-,所以12()(2)f x f x >-,因为121,21x x <-<,()f x 在区间(,1)-∞内单调递减,所以122x x <-,即122x x +< 解法二、利用对数平均不等式证明由(Ⅰ)知,0a >,又(0)2f a =- 所以, 当02a <≤时,10x ≤且212x <<,故122x x +<当2a >时,12012x x <<<<,又因为12122212(2)(2)(1)(1)x x x e x e a x x --=-=--- 即12122212(2)(2)(1)(1)x x x e x e x x --=--所以111222ln(2)2ln(1)ln(2)2ln(1)x x x x x x -+--=-+--所以12122112ln(2)ln(2)2(ln(1)ln(1))(2)(2)x x x x x x x x -------=-=---所以1212121212ln(1)ln(1)(2)(2)412ln(2)ln(2)ln(2)ln(2)2x x x x x x x x x x ---------=<------所以1212122ln(1)ln(1)22ln(2)ln(2)x x x x x x +----<--- ①下面用反证法证明不等式①成立因为12012x x <<<<,所以12220x x ->->,所以12ln(2)ln(2)0x x ---> 假设122x x +≥,当122x x +=,1212122ln(1)ln(1)02=02ln(2)ln(2)x x x x x x +----=---且,与①矛盾; 当122x x +>时1212122ln(1)ln(1)02<02ln(2)ln(2)x x x x x x +---->---且,与①矛盾,故假设不成立 所以122x x +<例2 (2011年高考数学辽宁卷理科第21题)已知函数2()ln (2)f x x ax a x =-+-(Ⅰ)讨论函数()f x 的单调性;(Ⅱ)若曲线()y f x =与x 轴交于A B 、两点,A B 、中点的横坐标为0x ,证明:0()0f x '<解:(Ⅰ)函数()f x 的定义域是(0,)+∞1(12)(1)()2(2)x ax f x ax a x x+-'=-+-=当0a ≤时,()0f x '>在区间(0,)+∞内恒成立,即()f x 在区间(0,)+∞内单调递增 当0a >时,由()f x '>0,得函数()f x 的递增区间1(0,)a, 由()f x '<0,得函数()f x 的递减区间1(,)a+∞ (Ⅱ)解法一、根据函数的单调性求解设点A B 、的横坐标分别为12x x 、,则1202x x x +=,且1210x x a<<< 由(Ⅰ)知,当0a >时,max 111[()]=[()]()ln 1f x f x f a a a ==+-极大值因为函数()f x 有两个不同的零点,所以max [()]0f x >,所以01a <<要证0000(12)(1)()0x ax f x x +-'=<,只须证01ax >,即证122x x a+>令2()()()h x f x f x a =--=21ln ln()22,0x x ax x a a ---+<<则212(1)()202(2)a ax h x a x ax x ax -'=+-=>--,所以()h x 在1(0,)a内单调递增 所以1()()0h x h a <=,即2()()f x f x a <- 因为1210x x a <<<,所以112()()f x f x a <-,所以212()()f x f x a <-又21121,x x a a a >->,且()f x 在区间1(,)a +∞内单调递减所以212x x a >-,即122x x a+>,故0()0f x '<解法二、利用对数平均不等式求解设点A B 、的坐标分别为12(,0)(,0)A x B x 、,则1202x x x += 由(Ⅰ)知,当0a >时,max111[()]=[()]()ln 1f x f x f a a a==+-极大值因为函数()f x 有两个不同的零点,所以max [()]0f x >,所以01a <<因为21112222ln (2)0ln (2)0x ax a x x ax a x ⎧-+-=⎪⎨-+-=⎪⎩,所以212121ln ln [()(2)]()x x a x x a x x -=+--- 所以211212211()(2)ln ln 2x x x x a x x a x x -+=<+---,即12121()(2)2x x a x x a +<+--所以21212()(2)()20a x x a x x ++-+-> ,所以1212[()2][()1]0a x x x x +-++>所以12102x x a+-<,所以121212012(1)(1)2()()022x x x x ax xf x f x x +++-+''==<+.例3 (2014年高考数学湖南卷文科第21题)已知函数21()1xx f x e x-=+ (Ⅰ)求函数()f x 的单调区间;(Ⅱ)当1212()(),f x f x x x =≠时,求证:120x x +< 解:(Ⅰ)函数()f x 的定义域为R()f x '=2222222(1)2(1)1[(1)2](1)1(1)x x xx x x x x x e e e x x x -+-----++=+++ 由()0f x '=,得0x =,由()0f x '>,得函数的递增区间(,0)-∞,由()0f x '<,得函数的递减区间(0,)+∞,所以max ()(0)1f x f ==(Ⅱ)解法一、利用函数的单调性求解令2211()()()11x xx x h x f x f x e e x x --+=--=-++ ,0x > 则22222(23)(23)()(1)x xx x e x x h x xx e -+-++'=-+令222()(23)(2+3),0xH x x x ex x x =-+-+>则22()2[(2)(1)],0xH x x x ex x '=-+-+>,则22()2[(23)1],0x H x x e x ''=+->由0x >得,()2(31)40H x ''>-=>,故()H x '在(0,)+∞内单调递增 故()(0)20H x H ''>=>,故()H x 在(0,)+∞内单调递增 故()(0)0H x H >=,故()0h x '<,故()h x 在(0,)+∞上单调递减 所以,()(0)0h x h <=由(1)及1212()(),f x f x x x =≠知,1201x x <<<,故222()()()0h x f x f x =--< 所以22()()f x f x <-,所以12()()f x f x <-,又()f x 在(,0)-∞上单调递增 所以,12x x <-,即120x x +< 解法二、利用对数平均不等式求解因为1x <时,()0f x >,1x >时,()0f x <,1212()(),f x f x x x =≠ 所以,1201x x <<<,121222121111x x x x e e x x --=++,所以,21111222121111x x x x e e x x ----=++ 所以,22121212ln(1)(1)ln(1)ln(1)(1)ln(1)x x x x x x -+--+=-+--+ 所以,22212112(1)(1)ln(1)ln(1)ln(1)ln(1)x x x x x x ---=---++-+所以,222112212121(1)(1)ln(1)ln(1)111ln(1)ln(1)ln(1)ln(1)2x x x x x x x x x x ---+-+-+-=+<------ 所以,22121212ln(1)ln(1)2ln(1)ln(1)x x x x x x ++-+<---① 因为1201x x <<<,所以12ln(1)ln(1)0x x ---> 下面用反证法证明120x x +<,假设120x x +≥当120x x +=时,22121212ln(1)ln(1)0,=02ln(1)ln(1)x x x x x x ++-+=---且,与不等式①矛盾当120x x +>时,210x x >->,所以120,2x x +>且221212ln(1)ln(1)0ln(1)ln(1)x x x x +-+<---,与不等式①矛盾.所以假设不成立,所以120x x +<例4 (2014年江苏省南通市二模第20题)设函数()(),xf x e ax a a R =-+∈其图象与x 轴交于12(,0),(,0)A x B x 两点,且12x x <. (Ⅰ)求实数a 的取值范围;(Ⅱ)证明:0(()f f x ''<为函数()f x 的导函数); (Ⅲ)略.解:(Ⅰ)()xf x e a '=-,x R ∈,当0a ≤时,()0f x '>在R 上恒成立,不合题意 当0a >时,易知,ln x a =为函数()f x 的极值点,且是唯一极值点, 故,min ()(ln )(2ln )f x f a a a ==-当min ()0f x ≥,即20a e <≤时,()f x 至多有一个零点,不合题意,故舍去;当min ()0f x <,即2a e >时,由(1)0f e =>,且()f x 在(,ln )a -∞内单调递减,故()f x 在(1,ln )a 有且只有一个零点;由22(ln )2ln (12ln ),f a a a a a a a a =-+=+- 令212ln ,y a a a e =+->,则210y a'=->,故2212ln 1430a a e e +->+-=-> 所以2(ln )0f a >,即在(ln ,2ln )a a 有且只有一个零点. (Ⅱ)解法一、根据函数的单调性求解由(Ⅰ)知,()f x 在(,ln )a -∞内递减,在(ln ,)a +∞内递增,且(1)0f e => 所以121ln 2ln x a x a <<<<,要证0f '<,只须证a <ln a <122x x +<,故只须证122ln x x a +<令2ln ()()(2ln )(2ln ),xa xh x f x f a x e ax a e a a x a -=--=-+-+--222ln xxe a e ax a a -=--+,1ln x a <<则2()220x x h x e a e a a -'=+-≥=,所以()h x 在区间(1,ln )a 内递增所以ln 2ln ()2ln 2ln 0aa h x e a e a a a a -<--+=,即()(2ln )f x f a x <-所以11()(2ln )f x f a x <-,所以21()(2ln )f x f a x <-因为21ln ,2ln ln x a a x a >->,且()f x 在区间(ln ,)a +∞内递增所以212ln x a x <-,即122ln x x a +<,故0f '< 解法二、利用对数平均不等式求解由(Ⅰ)知,()f x 在(,ln )a -∞内递减,在(ln ,)a +∞内递增,且(1)0f e =>所以121ln 2ln x a x a <<<<,因为111()0x f x e ax a =-+=,222()0x f x e ax a =-+=121211x x e e a x x ==--,即12111211x x e e x x --=--,所以1212(1)(1)1ln(1)ln(1)x x x x ---=>---所以1212()0x x x x -+<,要证:0f '<,只须证a <ln a <11ln(1)x x <--22ln(1)x x <--所以1212ln(1)(1)x x x x <+---,所以121212ln(()1)x x x x x x -++<+-因为1212()0x x x x -+<,所以1212ln(()1)ln10x x x x -++<=,而120x x +->所以121212ln(()1)x x x x x x -++<+-0f '<从以上四个例题可以看出,两种方法解决的问题相同,即若12,x x 是函数()f x 的两个零点,而0x x =是函数()f x 的极值点,证明1202x x x +<(或1202x x x +>),根据函数单调性求解的步骤是:一、构建函数0()()(2)h x f x f x x =--,二、判断函数()h x 的单调性,三、证明()0h x >(或()0h x <)即0()(2)f x f x x >-(或0()(2)f x f x x <-),四、故函数()f x 的单调性证1202x x x +<(或1202x x x +>).根据对数平均不等式求解的步骤是:一、通过等式两边同取自然对数或相减等配凑出1212ln ln x x x x --及,二、通过等式两边同除以12ln ln x x -构建对数平均数1212ln ln x x x x --,三、利用对数平均不等式将1212ln ln x x x x --转化为122x x +后再证明1202x x x +<(或1202x x x +>). 两种方法各有优劣,适用的题型也略有差异,考生若能灵活驾驭这两种方法,便能在考场上发挥自如,取得理想的成绩.。

极值点偏移四种解题方法

极值点偏移四种解题方法

极值点偏移四种解题方法极值点偏移是数学中一个重要的概念,它指的是极值点在函数图像上偏移的现象。

本文将介绍四种解决极值点偏移问题的解题方法。

下面是本店铺为大家精心编写的5篇《极值点偏移四种解题方法》,供大家借鉴与参考,希望对大家有所帮助。

《极值点偏移四种解题方法》篇1一、定义法定义法是解决极值点偏移问题的一种基本方法。

该方法的主要思路是利用函数的定义式,通过分析函数在某一点处的导数值,来判断该点是否为极值点。

如果函数在某一点处的导数值等于零,则该点为极值点。

如果函数在某一点处的导数值不存在,则该点也可能是极值点。

二、导数法导数法是解决极值点偏移问题的另一种基本方法。

该方法的主要思路是利用函数的导数,通过分析函数在某一点处的导数值,来判断该点是否为极值点。

如果函数在某一点处的导数值等于零,则该点为极值点。

如果函数在某一点处的导数值不存在,则该点也可能是极值点。

三、极值判定法极值判定法是解决极值点偏移问题的一种重要方法。

该方法的主要思路是利用函数的极值判定条件,通过分析函数在某一点处的极值条件,来判断该点是否为极值点。

如果函数在某一点处满足极值条件,则该点为极值点。

四、图像法图像法是解决极值点偏移问题的一种直观方法。

该方法的主要思路是通过绘制函数的图像,来判断函数的极值点是否偏移。

如果函数的图像在某一点处发生变化,则该点可能是极值点。

如果函数的图像在某一点处出现拐点,则该点可能是极值点。

综上所述,极值点偏移四种解题方法分别为定义法、导数法、极值判定法和图像法。

《极值点偏移四种解题方法》篇2极值点偏移是高中数学中常见的问题之一,通常出现在导数相关的题目中。

极值点偏移指的是,在可导函数的一个区间内,如果存在一个极值点,且该极值点左右两侧的增减速度不同,那么这个极值点可能会偏移到区间的中点,从而造成函数图像的不对称。

解决极值点偏移问题的方法有很多种,以下是四种常见的解题方法: 1. 构造函数法:该方法的本质是构造一个新的函数,使得新函数的导数与原函数的导数之间存在一定的关系。

极值点偏移的解题方法

极值点偏移的解题方法

极值点偏移的解题方法在数学中,极值点是指函数在某个点上取得最大值或最小值的点。

在解题中,我们常常需要找到函数的极值点,以便求解问题。

然而,有时候函数的极值点会发生偏移,这就给我们的解题带来了困难。

本文将介绍一些解决极值点偏移的方法。

一、极值点的定义在数学中,如果函数f(x)在点x0处取得最大值或最小值,那么x0就是函数f(x)的极值点。

极值点可以分为两种类型,一种是最大值点,另一种是最小值点。

最大值点就是函数在该点上取得了最大值,而最小值点则是函数在该点上取得了最小值。

二、极值点的求解方法在求解函数的极值点时,我们一般采用求导法。

具体步骤如下:1、对函数f(x)求导,得到f'(x)。

2、令f'(x)=0,求出x的值。

3、将x的值代入原函数f(x)中,得到y的值。

4、得到极值点(x,y)。

三、极值点偏移的原因在实际问题中,函数的极值点可能会发生偏移,这是由于函数的性质或者外界因素的影响导致的。

例如,函数的定义域发生改变、函数的参数发生变化、函数的形式发生变化等都可能导致极值点的偏移。

四、极值点偏移的解决方法1、重新求导法当函数的形式发生变化时,我们可以重新对函数求导,得到新的导函数,再按照求解极值点的方法进行求解。

这种方法适用于函数的形式发生变化的情况。

2、参数法当函数的参数发生变化时,我们可以将参数视为变量,将函数看作一个二元函数,然后对该函数进行求导,得到关于参数的导函数。

再按照求解极值点的方法进行求解。

这种方法适用于函数的参数发生变化的情况。

3、图像法当函数的形式和参数都不发生变化时,我们可以通过观察函数的图像来判断极值点的位置。

具体方法是绘制函数的图像,然后根据图像的特点来确定极值点的位置。

这种方法适用于函数的形式和参数都不发生变化的情况。

五、实例分析下面以一个实例来说明极值点偏移的解决方法。

例:求函数f(x)=x^3-3x^2的极值点。

解:对函数f(x)求导,得到f'(x)=3x^2-6x。

极值点偏移问题的两种常见解法之比较(汇编)

极值点偏移问题的两种常见解法之比较(汇编)

极值点偏移问题的两种常见解法之比较浅谈部分导数压轴题的解法在高考导数压轴题中,不断出现极值点偏移问题,那么,什么是极值点偏移问题?参考陈宽宏、邢友宝、赖淑明等老师的文章,极值点偏移问题的表述是:已知函数()y f x =是连续函数,在区间12(,)x x 内有且只有一个极值点0x ,且12()()f x f x =,若极值点左右的“增减速度”相同,常常有极值点1202x x x +=,我们称这种状态为极值点不偏移;若极值点左右的“增减速度”不同,函数的图象不具有对称性,常常有极值点1202x x x +≠的情况,我们称这种状态为“极值点偏移”. 极值点偏移问题常用两种方法证明:一是函数的单调性,若函数()f x 在区间(,)a b 内单调递增,则对区间(,)a b 内的任意两个变量12x x 、,1212()()f x f x x x <⇔<;若函数()f x 在区间(,)a b 内单调递减,则对区间(,)a b 内的任意两个变量12x x 、,1212()()f x f x x x <⇔>. 二是利用“对数平均不等式”证明,什么是“对数平均”?什么又是“对数平均不等式”?两个正数a 和b 的对数平均数定义:,,(,)ln ln ,,a ba b L a b a b a a b -⎧≠⎪=-⎨⎪=⎩对数平均数与算术平均数、(,)2a bL a b +≤≤,(此式记为对数平均不等式)下面给出对数平均不等式的证明: i )当0a b =>时,显然等号成立 ii )当0a b ≠>时,不妨设0a b >>, ①ln ln a b a b -<-,ln ln a ba b-<-,只须证:ln a b <,1x =>,只须证:12ln ,1x x x x≤-> 设1()2ln ,1f x x x x x=-+>,则22221(1)()10x f x x x x -'=--=-<,所以()f x在(1,)+∞内单调递减,所以()(1)0f x f <=,即12ln x x x<-,ln ln a ba b --②再证:ln ln 2a b a ba b -+<- 要证:ln ln 2a b a ba b -+<-,只须证:1ln21a ab b a b-<+令1a x b =>,则只须证:1ln 12x x x -<+,只须证2ln 1112x x x -<>+,设2ln ()112xg x x =--+,1x >,则22221(1)()0(1)22(1)x g x x x x x --'=-=<++ 所以()g x 在区间(1,)+∞内单调递减,所以()g(1)0g x <=,即2l n 112xx -<+, 故ln ln 2a b a ba b -+<- 综上述,当0,0a b >>(,)2a bL a b +≤≤例1 (2016年高考数学全国Ⅰ理科第21题)已知函数2)1()2()(-+-=x a e x x f x有两个零点.(Ⅰ)求a 的取值范围;(Ⅱ)设21,x x 是)(x f 的两个零点,证明:221<+x x . 解:(Ⅰ)函数()f x 的定义域为R ,当0a =时,()(2)0xf x x e =-=,得2x =,只有一个零点,不合题意; 当0a ≠时,()(1)[2]x f x x e a '=-+当0a >时,由()0f x '=得,1x =,由()0f x '>得,1x >,由()0f x '<得,1x <, 故,1x =是()f x 的极小值点,也是()f x 的最小值点,所以min ()(1)0f x f e ==-< 又(2)0f a =>,故在区间(1,2)内存在一个零点2x ,即212x << 由21lim (2)limlim 0,xx x x x x x x e e e--→-∞→-∞→-∞--===-又2(1)0a x ->,所以,()f x 在区间 (,1)-∞存在唯一零点1x ,即11x <, 故0a >时,()f x 存在两个零点;当0a <时,由()0f x '=得,1ln(2)x x a ==-或, 若ln(2)1a -=,即2ea =-时,()0f x '≥,故()f x 在R 上单调递增,与题意不符 若ln(2)1a ->,即02ea -<<时,易证()=(1)0f x f e =-<极大值故()f x 在R 上只有一 个零点,若ln(2)1a -<,即2ea <-时,易证()=(l n (2f x f a -极大值2(l n (2)4l n (2)5)0a a a =---+<,故()f x 在R 上只有一个零点综上述,0a >(Ⅱ)解法一、根据函数的单调性证明 由(Ⅰ)知,0a >且1212x x <<<令2()()(2)(2),1xxh x f x f x x e xe x -=--=-+>,则2(1)2(1)(e 1)()x x x h x e ----'= 因为1x >,所以2(1)10,10x x e-->->,所以()0h x '>,所以()h x 在(1,)+∞内单调递增所以()(1)0h x h >=,即()(2)f x f x >-,所以22()(2)f x f x >-,所以12()(2)f x f x >-,因为121,21x x <-<,()f x 在区间(,1)-∞内单调递减,所以122x x <-,即122x x +< 解法二、利用对数平均不等式证明由(Ⅰ)知,0a >,又(0)2f a =- 所以, 当02a <≤时,10x ≤且212x <<,故122x x +<当2a >时,12012x x <<<<,又因为12122212(2)(2)(1)(1)x x x e x e a x x --=-=--- 即12122212(2)(2)(1)(1)x x x e x e x x --=--所以111222ln(2)2ln(1)ln(2)2ln(1)x x x x x x -+--=-+--所以12122112ln(2)ln(2)2(ln(1)ln(1))(2)(2)x x x x x x x x -------=-=---所以1212121212ln(1)ln(1)(2)(2)412ln(2)ln(2)ln(2)ln(2)2x x x x x x x x x x ---------=<------所以1212122ln(1)ln(1)22ln(2)ln(2)x x x x x x +----<--- ①下面用反证法证明不等式①成立因为12012x x <<<<,所以12220x x ->->,所以12ln(2)ln(2)0x x ---> 假设122x x +≥,当122x x +=,1212122ln(1)ln(1)02=02ln(2)ln(2)x x x x x x +----=---且,与①矛盾; 当122x x +>时1212122ln(1)ln(1)02<02ln(2)ln(2)x x x x x x +---->---且,与①矛盾,故假设不成立 所以122x x +<例2 (2011年高考数学辽宁卷理科第21题)已知函数2()ln (2)f x x ax a x =-+-(Ⅰ)讨论函数()f x 的单调性;(Ⅱ)若曲线()y f x =与x 轴交于A B 、两点,A B 、中点的横坐标为0x ,证明:0()0f x '<解:(Ⅰ)函数()f x 的定义域是(0,)+∞1(12)(1)()2(2)x a x f x a x a x x+-'=-+-= 当0a ≤时,()0f x '>在区间(0,)+∞内恒成立,即()f x 在区间(0,)+∞内单调递增 当0a >时,由()f x '>0,得函数()f x 的递增区间1(0,)a, 由()f x '<0,得函数()f x 的递减区间1(,)a+∞ (Ⅱ)解法一、根据函数的单调性求解设点A B 、的横坐标分别为12x x 、,则1202x x x +=,且1210x x a<<< 由(Ⅰ)知,当0a >时,max 111[()]=[()]()ln 1f x f x f a a a ==+-极大值因为函数()f x 有两个不同的零点,所以max [()]0f x >,所以01a <<要证0000(12)(1)()0x ax f x x +-'=<,只须证01ax >,即证122x x a+>令2()()()h x f x f x a =--=21ln ln()22,0x x ax x a a ---+<<则212(1)()202(2)a ax h x a x ax x ax -'=+-=>--,所以()h x 在1(0,)a内单调递增所以1()()0h x h a <=,即2()()f x f x a <- 因为1210x x a <<<,所以112()()f x f x a <-,所以212()()f x f x a <-又21121,x x a a a >->,且()f x 在区间1(,)a +∞内单调递减所以212x x a >-,即122x x a+>,故0()0f x '<解法二、利用对数平均不等式求解设点A B 、的坐标分别为12(,0)(,0)A x B x 、,则1202x x x += 由(Ⅰ)知,当0a >时,max111[()]=[()]()ln 1f x f x f a a a==+-极大值因为函数()f x 有两个不同的零点,所以max [()]0f x >,所以01a <<因为21112222ln (2)0ln (2)0x ax a x x ax a x ⎧-+-=⎪⎨-+-=⎪⎩,所以212121ln ln [()(2)]()x x a x x a x x -=+--- 所以211212211()(2)ln ln 2x x x x a x x a x x -+=<+---,即12121()(2)2x x a x x a +<+--所以21212()(2)()20a x x a x x ++-+-> ,所以1212[()2][()1]0a x x x x +-++>所以12102x x a+-<,所以121212012(1)(1)2()()022x x x x ax xf x f x x +++-+''==<+.例3 (2014年高考数学湖南卷文科第21题)已知函数21()1xx f x e x -=+(Ⅰ)求函数()f x 的单调区间;(Ⅱ)当1212()(),f x f x x x =≠时,求证:120x x +< 解:(Ⅰ)函数()f x 的定义域为R()f x '=2222222(1)2(1)1[(1)2](1)1(1)x x xx x x x x x e e e x x x -+-----++=+++ 由()0f x '=,得0x =,由()0f x '>,得函数的递增区间(,0)-∞,由()0f x '<,得函数的递减区间(0,)+∞,所以max ()(0)1f x f == (Ⅱ)解法一、利用函数的单调性求解令2211()()()11x xx x h x f x f x e e x x --+=--=-++ ,0x > 则22222(23)(23)()(1)x xx x e x x h x xx e -+-++'=-+令222()(23)(2+3),0xH x x x ex x x =-+-+>则22()2[(2)(1)],0xH x x x ex x '=-+-+>,则22()2[(23)1],0x H x x e x ''=+->由0x >得,()2(31)40H x ''>-=>,故()H x '在(0,)+∞内单调递增 故()(0)20H x H ''>=>,故()H x 在(0,)+∞内单调递增 故()(0)0H x H >=,故()0h x '<,故()h x 在(0,)+∞上单调递减 所以,()(0)0h x h <=由(1)及1212()(),f x f x x x =≠知,1201x x <<<,故222()()()0h x f x f x =--< 所以22()()f x f x <-,所以12()()f x f x <-,又()f x 在(,0)-∞上单调递增 所以,12x x <-,即120x x +< 解法二、利用对数平均不等式求解因为1x <时,()0f x >,1x >时,()0f x <,1212()(),f x f x x x =≠ 所以,1201x x <<<,121222121111x x x x e e x x --=++,所以,21111222121111x x x x e e x x ----=++ 所以,22121212ln(1)(1)ln(1)ln(1)(1)ln(1)x x x x x x -+--+=-+--+ 所以,22212112(1)(1)ln(1)ln(1)ln(1)ln(1)x x x x x x ---=---++-+所以,222112212121(1)(1)ln(1)ln(1)111ln(1)ln(1)ln(1)ln(1)2x x x x x x x x x x ---+-+-+-=+<------ 所以,22121212ln(1)ln(1)2ln(1)ln(1)x x x x x x ++-+<---① 因为1201x x <<<,所以12ln(1)ln(1)0x x ---> 下面用反证法证明120x x +<,假设120x x +≥当120x x +=时,22121212ln(1)ln(1)0,=02ln(1)ln(1)x x x x x x ++-+=---且,与不等式①矛盾当120x x +>时,210x x >->,所以120,2x x +>且221212ln(1)ln(1)0ln(1)ln(1)x x x x +-+<---,与不等式①矛盾.所以假设不成立,所以120x x +<例4 (2014年江苏省南通市二模第20题)设函数()(),xf x e ax a a R =-+∈其图象与x 轴交于12(,0),(,0)A x B x 两点,且12x x <. (Ⅰ)求实数a 的取值范围;(Ⅱ)证明:0(()f f x ''<为函数()f x 的导函数); (Ⅲ)略.解:(Ⅰ)()xf x e a '=-,x R ∈,当0a ≤时,()0f x '>在R 上恒成立,不合题意 当0a >时,易知,ln x a =为函数()f x 的极值点,且是唯一极值点, 故,min ()(ln )(2ln )f x f a a a ==-当min ()0f x ≥,即20a e <≤时,()f x 至多有一个零点,不合题意,故舍去;当min ()0f x <,即2a e >时,由(1)0f e =>,且()f x 在(,ln )a -∞内单调递减,故()f x 在(1,ln )a 有且只有一个零点;由22(ln )2ln (12ln ),f a a a a a a a a =-+=+- 令212ln ,y a a a e =+->,则210y a'=->,故2212ln 1430a a e e +->+-=-> 所以2(ln )0f a >,即在(ln ,2ln )a a 有且只有一个零点. (Ⅱ)解法一、根据函数的单调性求解由(Ⅰ)知,()f x 在(,ln )a -∞内递减,在(ln ,)a +∞内递增,且(1)0f e => 所以121ln 2ln x a x a <<<<,要证0f '<,只须证a <ln a <122x x +<,故只须证122ln x x a +< 令2ln ()()(2ln )(2ln ),xa xh x f x f a x e ax a e a a x a -=--=-+-+--222ln xxe a e ax a a -=--+,1ln x a <<则2()220x x h x e a e a a -'=+-≥=,所以()h x 在区间(1,ln )a 内递增所以ln 2ln ()2ln 2ln 0aa h x ea e a a a a -<--+=,即()(2ln )f x f a x <-所以11()(2ln )f x f a x <-,所以21()(2ln )f x f a x <-因为21ln ,2ln ln x a a x a >->,且()f x 在区间(ln ,)a +∞内递增 所以212ln x a x <-,即122ln x x a +<,故0f '<解法二、利用对数平均不等式求解由(Ⅰ)知,()f x 在(,ln )a -∞内递减,在(ln ,)a +∞内递增,且(1)0f e =>所以121ln 2ln x a x a <<<<,因为111()0xf x e ax a =-+=,222()0xf x e ax a =-+=121211x x e e a x x ==--,即12111211x x e e x x --=--,所以1212(1)(1)1ln(1)ln(1)x x x x ---=>---所以1212()0x x x x -+<,要证:0f '<,只须证a <ln a<11ln(1)x x <--22ln(1)x x <--所以1212ln(1)(1)x x x x <+---,所以121212ln(()1)x x x x x x -++<+-因为1212()0x x x x -+<,所以1212ln(()1)ln10x x x x -++<=,而120x x +->所以121212ln(()1)x x x x x x -++<+-0f '<从以上四个例题可以看出,两种方法解决的问题相同,即若12,x x 是函数()f x 的两个零点,而0x x =是函数()f x 的极值点,证明1202x x x +<(或1202x x x +>),根据函数单调性求解的步骤是:一、构建函数0()()(2)h x f x f x x =--,二、判断函数()h x 的单调性,三、证明()0h x >(或()0h x <)即0()(2)f x f x x >-(或0()(2)f x f x x <-),四、故函数()f x 的单调性证1202x x x +<(或1202x x x +>).根据对数平均不等式求解的步骤是:一、通过等式两边同取自然对数或相减等配凑出1212ln ln x x x x --及,二、通过等式两边同除以12ln ln x x -构建对数平均数1212ln ln x x x x --,三、利用对数平均不等式将1212ln ln x x x x --转化为122x x +后再证明1202x x x +<(或1202x x x +>). 两种方法各有优劣,适用的题型也略有差异,考生若能灵活驾驭这两种方法,便能在考场上发挥自如,取得理想的成绩.。

剖析极值点偏移问题的处理方法

剖析极值点偏移问题的处理方法

剖析极值点偏移问题的处理方法ʏ江苏省盐城市时杨中学 刘长柏极值点偏移是指函数在极值点左右的增减速度不一样,导致函数图像不对称,极值点偏移问题常常出现在高考数学的压轴题中㊂这类题往往对思维要求较高,过程较为烦琐,计算量较大㊂解决极值点偏移问题,常见的有构造对称函数法和比值代换法,二者各有千秋,独具特色㊂一㊁极值点偏移的概念已知函数y =f (x )是连续函数,在区间(a ,b )内只有一个极值点x 0,f (x 1)=f (x 2),且x 0在x 1与x 2之间,由于函数在极值点左右两侧的变化速度不同,使得极值点偏向变化速度快的一侧,常常有x 0ʂx 1+x 22这种情况,称为极值点偏移㊂二㊁极值点偏移问题的处理方法1.对称构造法求极值点偏移问题例1 已知函数f (x )=a x 2+l n (x -1)㊂(1)求函数f (x )的单调区间;(2)若a >2,在x ɪ32,+ɕ内存在不等实数x 1,x 2,使得f (x 1)+f (x 2)=8a ,证明:x 1+x 2<4㊂解析:(1)函数的定义域为(1,+ɕ),并且f '(x )=2a x +1x -1=2a x 2-2a x +1x -1㊂①若a =0,f '(x )=1x -1>0,f (x )的单调递增区间为(1,+ɕ)㊂②若a ʂ0,二次函数φ(x )=2a x 2-2a x +1的对称轴是x =12,φ(0)=φ(1)=1㊂i )若a >0,φ(x )在(1,+ɕ)上大于0,从而f '(x )>0,故函数f (x )的单调递增区间是(1,+ɕ)㊂i i )若a <0,当x ɪ1,a -a 2-2a 2a时,f '(x )>0;当x ɪa -a 2-2a 2a,+ɕ时,f'(x )<0㊂此时函数f (x )的单调递增区间是1,a -a 2-2a 2a,单调递减区间是a -a 2-2a2a,+ɕ㊂(2)由对称性,不妨设x 1<x 2㊂因为f (2)=4a ,所以f (x 1)+f (x 2)=2f (2)㊂若2ɤx 1<x 2,a >0,由(1)得f (x )在(1,+ɕ)上单调递增,则f (2)<f (x 1)<f (x 2),f (x 1)+f (x 2)>2f (2),与已知条件矛盾㊂若x 1<x 2ɤ2,仿上也可推出矛盾㊂故32<x 1<2<x 2,即2<4-x 1㊂要证明x 1+x 2<4,只需证明x 2<4-x 1㊂因为a >0,f (x )在(1,+ɕ)上单调递增,所以只需证明f (x 2)<f (4-x 1)㊂又f (x 1)+f (x 2)=8a ,故只需证明8a -f (x 1)<f (4-x 1)㊂构造函数h (x )=f (4-x )+f (x )-8a ,x ɪ32,2,其中h (2)=2f (2)-8a =0㊂则h '(x )=-f '(4-x )+f'(x )=2a x +1x -1-2a (4-x )-13-x =4a (x -2)+4-2x(x -1)(3-x )=(x -2)4a -2(x -1)(3-x )㊂因32<x <2,故x -2<0,2(x -1)(3-x )<83㊂当a >2时,4a -2(x -1)(3-x )>0㊂故h '(x )<0,h (x )在32,2 上单调递减,h (x )>h (2)=0㊂82 解题篇 经典题突破方法 高二数学 2024年3月当x ɪ32,2时,f (4-x )+f (x )-8a >0,8a -f (x 1)<f (4-x 1)成立,即f (x 2)<f (4-x 1)㊂由f (x )在定义域内单调递增,得x 2<4-x 1,即x 1+x 2<4成立㊂例2已知函数f (x )=x +3x+2l n x -a (a ɪR )有两个不同的零点x 1,x 2,求证:x 1x 2>1㊂解析:由题意,假设0<x 1<1<x 2,构造函数g (x )=f (x )-f1x(x >1)㊂故g (x )=2x-2x +4l n x ,则g '(x )=-2(x -1)2x2,g (x )在(1,+ɕ)上单调递减㊂因g (1)=0,故当x 2>1时,g (x 2)<g (1)=0,即f (x 2)<f1x 2成立㊂而f (x 1)=f (x 2),故f (x 1)<f 1x 2㊂又f '(x )=(x +3)(x -1)x2,故f (x )在(0,1)上单调递减,x 1>1x 2,则x 1x 2>1㊂点评:对称变换求极值点偏移,主要用来解决与两个极值点之和㊁积相关的不等式的证明问题㊂解题的关键在于构造函数,对结论x 1+x 2>2x 0型,构造函数F (x )=f (x )-f (2x 0-x )或F (x )=f (x 0+x )-f (x 0-x ),判断函数F (x )在某段区间上的正负,并得出f (x )与f (2x 0-x )的大小关系,进一步转化为x 与2x 0-x 之间的关系,进而得到所证或所求;对结论x 1㊃x 2>x 20型问题,构造函数F (x )=f (x )-fx 2x,通过研究F (x )的单调性获得不等式证明㊂2.消参减元法求极值点偏移问题(i)比值代换法求极值点偏移问题㊂例3 已知函数f (x )=l n x -a x ,a为常数,若函数f (x )有两个零点x 1,x 2,试证明:x 1x 2>e 2㊂解析:不妨设x 1>x 2>0㊂由题意知l n x 1-a x 1=0,l n x 2-a x 2=0,即l n x 1+l n x 2=a (x 1+x 2),l n x 1-l n x 2=a (x 1-x 2)㊂则l n x 1-l n x 2x 1-x 2=a ㊂欲证明x 1x 2>e 2,即证l n x 1+l n x 2>2㊂而l n x 1+l n x 2=a (x 1+x 2),即证a >2x 1+x 2㊂原命题等价于证明l n x 1-l n x 2x 1-x 2>2x 1+x 2,即证l n x 1x 2>2(x 1-x 2)x 1+x 2㊂令t =x 1x 2,t >1㊂构造g (t )=l n t -2(t -1)t +1,t >1,则g '(t )=1t -4(t +1)2=(t -1)2t (t +1)2>0㊂故g (t )在(1,+ɕ)上单调递增㊂又g (1)=0,故g (t )>g (1)=0,即l n t >2(t -1)t +1,也即x 1x 2>e 2㊂(i i)差值换元法求极值点偏移问题㊂例4 已知函数f (x )=x e -x (x ɪR ),若x 1ʂx 2,且f (x 1)=f (x 2),证明:x 1+x 2>2㊂解析:由题意,函数f (x )=x e -x(x ɪR ),可得f '(x )=(1-x )e -x ㊂当x <1时,f '(x )>0;当x >1时,f'(x )<0㊂可知函数f (x )在(-ɕ,1)上单调递增,在(1,+ɕ)上单调递减,且f (0)=0㊂因f (x 1)=f (x 2),故x 1e-x1=x 2e-x2,化简得e x 2-x1=x 2x 1㊂①不妨设x 2>x 1,可得0<x 1<1<x 2㊂令t =x 2-x 1,则t >0,x 2=t +x 1,代入①式,可得e t=t +x 1x 1,解得x 1=t e t -1㊂则x 1+x 2=2x 1+t =2te t -1+t ,故要证x 1+x 2>2,即证2te t -1+t >2㊂92解题篇 经典题突破方法 高二数学 2024年3月又e t-1>0,故等价于证明2t+(t-2)㊃(e t-1)>0㊂②构造函数G(t)=2t+(t-2)(e t-1), t>0,则G'(t)=(t-1)e t+1,Gᵡ(t)=t e t> 0㊂故G'(t)在(0,+ɕ)上单调递增, G'(t)>G'(0)=0㊂从而G(t)也在(0,+ɕ)上单调递增, G(t)>G(0)=0㊂故②式成立,也即原不等式x1+x2>2成立㊂点评:比(差)值换元的目的是消参㊁减元,是根据已知条件首先建立极值点之间的关系,然后利用两个极值点之比(差)作为变量,从而实现消参㊁减元的目的㊂设法用比值(一般用t表示)表示两个极值点关系,即t= x1x2,化为单变量的函数不等式,继而将所求问题转化为关于t的函数问题求解㊂变式训练1.已知函数f(x)=2a l n x-x2+2(a-1)x+a㊂若f(x)有两个不同的零点x1,x2,求a的取值范围,并证明:x1+x2>2a㊂解析:f(x)的定义域为(0,+ɕ)㊂f'(x)=2a x-2x+2(a-1)= -2(x-a)(x+1)x㊂当aɤ0时,f'(x)<0在(0,+ɕ)上恒成立,则f(x)在(0,+ɕ)上单调递减,不符合题意㊂当a>0时,在(0,a)上有f'(x)>0,在(a,+ɕ)上有f'(x)<0,所以f(x)在(0,a)上单调递增,在(a,+ɕ)上单调递减㊂f(a)>0,解得a>1,经检验满足题意㊂不妨设0<x1<a<x2,令F(x)= f(x)-f(2a-x),则F'(x)=f'(x)-f'(2a-x)(2a-x)'=f'(x)+f'(2a-x)=2a x-2x+2(a-1)+2a2a-x-2(2a-x)+2(a-1)=4(a-x)2x(2a-x)㊂当xɪ(0,a)时,F'(x)>0,F(x)在(0,a)上单调递增,故F(x)<F(a)=f(a)-f(2a-a)=0,即f(x)<f(2a-x)㊂因为0<x1<a<x2,所以f(x1)< f(2a-x1)㊂又f(x1)=f(x2),a<2a-x1<2a,故f(x2)<f(2a-x1)㊂又f(x)在(a,+ɕ)上单调递减,故x2>2a-x1,即x1+x2>2a㊂2.已知f(x)=x l n x-12m x2-x,若f(x)有两个极值点x1,x2,且x1<x2,求证: x1x2>e2(e为自然对数的底数)㊂解析:f(x)=x l n x-12m x2-x(x> 0),f'(x)=l n x-m x㊂f(x)在(0,+ɕ)上存在两个极值点x1, x2,且x1<x2,故l n x1-m x1=0,l n x2-m x2=0㊂整理得m=l n x1+l n x2x1+x2㊂并且m= l n x1-l n x2x1-x2,即l n x1+l n x2x1+x2= l n x1-l n x2x1-x2,也即l n x1+l n x2=x1+x2x1-x2㊃l n x1x2=x1x2+1l nx1x2x1x2-1㊂设t=x1x2ɪ(0,1),则l n x1+l n x2= (t+1)l n tt-1㊂要证x1x2>e2,即证l n x1+l n x2>2㊂只需证明(t+1)l n tt-1>2,即证明l n t-2(t-1)t+1<0㊂设h(t)=l n t-2(t-1)t+1,则h'(t)= 1t-4(t+1)2=(t-1)2t(t+1)2>0㊂故h(t)在(0,1)上单调递增,h(t)<h(1)=0,即h(t)=l n t-2(t-1)t+1<0㊂因此,l n x1+l n x2>2,x1x2>e2㊂(责任编辑徐利杰)0 3解题篇经典题突破方法高二数学2024年3月。

极值点偏移四种题型的解法及例题

极值点偏移四种题型的解法及例题

极值点偏移是高中数学中的一个重要概念,也是学生们比较头疼的一个知识点。

在解决数学问题时,我们经常会遇到一些与极值点有关的题型,比如函数的极值问题、优化问题等。

而在解决这些问题时,极值点偏移方法是一种非常实用的解题技巧。

本文将从四种题型出发,对极值点偏移方法进行详细解析,并结合具体例题进行说明。

1. 函数的极值问题函数的极值问题是高中数学中的一个重要内容。

在解决这类问题时,我们常常会用到导数的概念,来求函数的极值点。

但有些情况下,我们可以通过极值点偏移方法更快地得到函数的极值点。

比如对于一些简单的函数,通过极值点的平移和对称性,可以用更简洁的方法求得函数的极值点。

举例说明:已知函数 $f(x)=x^3-3x^2+2$,求 $f(x)$ 的极值点。

解:求导得 $f'(x)=3x^2-6x$。

令导数为零,得到 $x=0$ 或 $x=2$。

根据导数的符号,可知 $x=0$ 是极小值点,$x=2$ 是极大值点。

但通过极值点偏移方法,我们可以发现,当 $x=0$ 时,$f(x)=2$;而当$x=2$ 时,$f(x)=2$。

也就是说,极小值点 $x=0$ 对应的函数值和极大值点 $x=2$ 对应的函数值相等。

这就是极值点偏移的思想。

2. 优化问题优化问题是数学建模中常见的类型之一,也是考察学生综合运用数学知识解决实际问题的一种形式。

当我们遇到优化问题时,常常需要求解函数的极值点。

而极值点偏移方法可以帮助我们更快地找到函数的极值点,从而解决优化问题。

举例说明:一块长为20厘米的铁皮,可以做成一个底面积为 $x cm^2$ 的正方形盒子和一个底面积为 $y cm^2$ 的开口放平盒子,求怎样分割这块铁皮才能使总体积最大。

解:设正方形盒子的边长为 $a$,开口朝下的放平矩形盒子的底边长为 $b$,高为 $h$。

则根据题意可知,$b=a+2h$,且 $x=a^2$,$y=bh$。

问题转化为求 $x+y$ 的最大值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

极值点偏移问题的两种常见解法之比较浅谈部分导数压轴题的解法在高考导数压轴题中,不断出现极值点偏移问题,那么,什么是极值点偏移问题?参考陈宽宏、邢友宝、赖淑明等老师的文章,极值点偏移问题的表述是:已知函数()y f x =是连续函数,在区间12(,)x x 内有且只有一个极值点0x ,且12()()f x f x =,若极值点左右的“增减速度”相同,常常有极值点1202x x x +=,我们称这种状态为极值点不偏移;若极值点左右的“增减速度”不同,函数的图象不具有对称性,常常有极值点1202x x x +≠的情况,我们称这种状态为“极值点偏移”.极值点偏移问题常用两种方法证明:一是函数的单调性,若函数()f x 在区间(,)a b 内单调递增,则对区间(,)a b 内的任意两个变量12x x 、,1212()()f x f x x x <⇔<;若函数()f x 在区间(,)a b 内单调递减,则对区间(,)a b 内的任意两个变量12x x 、,1212()()f x f x x x <⇔>. 二是利用“对数平均不等式”证明,什么是“对数平均”?什么又是“对数平均不等式”?两个正数a 和b 的对数平均数定义:,,(,)ln ln ,,a ba b L a b a b a a b -⎧≠⎪=-⎨⎪=⎩对数平均数与算术平均数、(,)2a bL a b +≤≤,(此式记为对数平均不等式)下面给出对数平均不等式的证明: i )当0a b =>时,显然等号成立ii )当0a b ≠>时,不妨设0a b >>,ln ln a b a b --,ln ln a ba b -<-,只须证:ln a b <1x =>,只须证:12ln ,1x x x x ≤->设1()2ln ,1f x x x x x =-+>,则22221(1)()10x f x x x x -'=--=-<,所以()f x在(1,)+∞内单调递减,所以()(1)0f x f <=,即12ln x x x<-,ln ln a ba b --②再证:ln ln 2a b a ba b -+<-要证:ln ln 2a b a ba b -+<-,只须证:1ln21a a b b a b-<+令1a x b =>,则只须证:1ln 12x x x -<+,只须证2ln 1112xx x -<>+, 设2ln ()112xg x x =--+,1x >,则22221(1)()0(1)22(1)x g x x x x x --'=-=<++ 所以()g x 在区间(1,)+∞内单调递减,所以()g(1)0g x <=,即2ln 112x x -<+, 故ln ln 2a b a b a b -+<-综上述,当0,0a b >>(,)2a bL a b +≤≤例1 (2016年高考数学全国Ⅰ理科第21题)已知函数2)1()2()(-+-=x a e x x f x 有两个零点.(Ⅰ)求a 的取值范围;(Ⅱ)设21,x x 是)(x f 的两个零点,证明:221<+x x . 解:(Ⅰ)函数()f x 的定义域为R ,当0a =时,()(2)0xf x x e =-=,得2x =,只有一个零点,不合题意; 当0a ≠时,()(1)[2]xf x x e a '=-+当0a >时,由()0f x '=得,1x =,由()0f x '>得,1x >,由()0f x '<得,1x <, 故,1x =是()f x 的极小值点,也是()f x 的最小值点,所以min ()(1)0f x f e ==-< 又(2)0f a =>,故在区间(1,2)内存在一个零点2x ,即212x <<由21lim (2)limlim 0,xx x x x x x x e e e--→-∞→-∞→-∞--===-又2(1)0a x ->,所以,()f x 在区间 (,1)-∞存在唯一零点1x ,即11x <, 故0a >时,()f x 存在两个零点;当0a <时,由()0f x '=得,1ln(2)x x a ==-或, 若ln(2)1a -=,即2ea =-时,()0f x '≥,故()f x 在R 上单调递增,与题意不符 若ln(2)1a ->,即02ea -<<时,易证()=(1)0f x f e =-<极大值故()f x 在R 上只有一 个零点,若ln(2)1a -<,即2ea <-时,易证()=(ln(2)f x f a -极大值2(ln (2)4ln(2)5)0a a a =---+<,故()f x 在R 上只有一个零点 综上述,0a >(Ⅱ)解法一、根据函数的单调性证明 由(Ⅰ)知,0a >且1212x x <<<令2()()(2)(2),1xxh x f x f x x e xex -=--=-+>,则2(1)2(1)(e 1)()x x x h x e ----'= 因为1x >,所以2(1)10,10x x e -->->,所以()0h x '>,所以()h x 在(1,)+∞内单调递增 所以()(1)0h x h >=,即()(2)f x f x >-,所以22()(2)f x f x >-,所以12()(2)f x f x >-, 因为121,21x x <-<,()f x 在区间(,1)-∞内单调递减,所以122x x <-,即122x x +< 解法二、利用对数平均不等式证明由(Ⅰ)知,0a >,又(0)2f a =- 所以, 当02a <≤时,10x ≤且212x <<,故122x x +<当2a >时,12012x x <<<<,又因为12122212(2)(2)(1)(1)x x x e x e a x x --=-=--- 即12122212(2)(2)(1)(1)x x x e x e x x --=--所以111222ln(2)2ln(1)ln(2)2ln(1)x x x x x x -+--=-+--所以12122112ln(2)ln(2)2(ln(1)ln(1))(2)(2)x x x x x x x x -------=-=---所以1212121212ln(1)ln(1)(2)(2)412ln(2)ln(2)ln(2)ln(2)2x x x x x x x x x x ---------=<------ 所以1212122ln(1)ln(1)22ln(2)ln(2)x x x x x x +----<--- ①下面用反证法证明不等式①成立因为12012x x <<<<,所以12220x x ->->,所以12ln(2)ln(2)0x x ---> 假设122x x +≥,当122x x +=,1212122ln(1)ln(1)02=02ln(2)ln(2)x x x x x x +----=---且,与①矛盾;当122x x +>时1212122ln(1)ln(1)02<02ln(2)ln(2)x x x x x x +---->---且,与①矛盾,故假设不成立 所以122x x +<例2 (2011年高考数学辽宁卷理科第21题)已知函数2()ln (2)f x x ax a x =-+-(Ⅰ)讨论函数()f x 的单调性;(Ⅱ)若曲线()y f x =与x 轴交于A B 、两点,A B 、中点的横坐标为0x ,证明:0()0f x '<解:(Ⅰ)函数()f x 的定义域是(0,)+∞1(12)(1)()2(2)x ax f x ax a x x+-'=-+-= 当0a ≤时,()0f x '>在区间(0,)+∞内恒成立,即()f x 在区间(0,)+∞内单调递增 当0a >时,由()f x '>0,得函数()f x 的递增区间1(0,)a, 由()f x '<0,得函数()f x 的递减区间1(,)a+∞ (Ⅱ)解法一、根据函数的单调性求解设点A B 、的横坐标分别为12x x 、,则1202x x x +=,且1210x x a<<< 由(Ⅰ)知,当0a >时,max 111[()]=[()]()ln 1f x f x f a a a ==+-极大值因为函数()f x 有两个不同的零点,所以max [()]0f x >,所以01a <<要证0000(12)(1)()0x ax f x x +-'=<,只须证01ax >,即证122x x a +>令2()()()h x f x f x a=--=21ln ln()22,0x x ax x aa ---+<<则212(1)()202(2)a ax h x a x ax x ax -'=+-=>--,所以()h x 在1(0,)a 内单调递增所以1()()0h x h a <=,即2()()f x f x a <-因为1210x x a <<<,所以112()()f x f x a <-,所以212()()f x f x a <-又21121,x x a a a >->,且()f x 在区间1(,)a +∞内单调递减所以212x x a >-,即122x x a+>,故0()0f x '<解法二、利用对数平均不等式求解设点A B 、的坐标分别为12(,0)(,0)A x B x 、,则1202x x x += 由(Ⅰ)知,当0a >时,max111[()]=[()]()ln 1f x f x f a a a==+-极大值因为函数()f x 有两个不同的零点,所以max [()]0f x >,所以01a <<因为21112222ln (2)0ln (2)0x ax a x x ax a x ⎧-+-=⎪⎨-+-=⎪⎩,所以212121ln ln [()(2)]()x x a x x a x x -=+--- 所以211212211()(2)ln ln 2x x x x a x x a x x -+=<+---,即12121()(2)2x x a x x a +<+--所以21212()(2)()20a x x a x x ++-+-> ,所以1212[()2][()1]0a x x x x +-++>所以12102x x a+-<,所以121212012(1)(1)2()()022x x x x ax xf x f x x +++-+''==<+.例3 (2014年高考数学湖南卷文科第21题)已知函数21()1xx f x e x -=+ (Ⅰ)求函数()f x 的单调区间;(Ⅱ)当1212()(),f x f x x x =≠时,求证:120x x +< 解:(Ⅰ)函数()f x 的定义域为R()f x '=2222222(1)2(1)1[(1)2](1)1(1)x x xx x x x x x e e e x x x -+-----++=+++ 由()0f x '=,得0x =,由()0f x '>,得函数的递增区间(,0)-∞,由()0f x '<,得函数的递减区间(0,)+∞,所以max ()(0)1f x f == (Ⅱ)解法一、利用函数的单调性求解令2211()()()11x xx x h x f x f x e e x x--+=--=-++ ,0x > 则22222(23)(23)()(1)x xx x e x x h x xx e -+-++'=-+令222()(23)(2+3),0x H x x x e x x x =-+-+>则22()2[(2)(1)],0x H x x x e x x '=-+-+>,则22()2[(23)1],0x H x x e x ''=+-> 由0x >得,()2(31)40H x ''>-=>,故()H x '在(0,)+∞内单调递增 故()(0)20H x H ''>=>,故()H x 在(0,)+∞内单调递增 故()(0)0H x H >=,故()0h x '<,故()h x 在(0,)+∞上单调递减 所以,()(0)0h x h <=由(1)及1212()(),f x f x x x =≠知,1201x x <<<,故222()()()0h x f x f x =--< 所以22()()f x f x <-,所以12()()f x f x <-,又()f x 在(,0)-∞上单调递增 所以,12x x <-,即120x x +< 解法二、利用对数平均不等式求解因为1x <时,()0f x >,1x >时,()0f x <,1212()(),f x f x x x =≠ 所以,1201x x <<<,121222121111x x x x e e x x --=++,所以,21111222121111x x x x e e x x ----=++ 所以,22121212ln(1)(1)ln(1)ln(1)(1)ln(1)x x x x x x -+--+=-+--+ 所以,22212112(1)(1)ln(1)ln(1)ln(1)ln(1)x x x x x x ---=---++-+所以,222112212121(1)(1)ln(1)ln(1)111ln(1)ln(1)ln(1)ln(1)2x x x x x x x x x x ---+-+-+-=+<------ 所以,22121212ln(1)ln(1)2ln(1)ln(1)x x x x x x ++-+<---① 因为1201x x <<<,所以12ln(1)ln(1)0x x ---> 下面用反证法证明120x x +<,假设120x x +≥当120x x +=时,22121212ln(1)ln(1)0,=02ln(1)ln(1)x x x x x x ++-+=---且,与不等式①矛盾当120x x +>时,210x x >->,所以120,2x x +>且221212ln(1)ln(1)0ln(1)ln(1)x x x x +-+<---,与不等式①矛盾.所以假设不成立,所以120x x +<例4 (2014年江苏省南通市二模第20题)设函数()(),x f x e ax a a R =-+∈其图象与x 轴交于12(,0),(,0)A x B x 两点,且12x x <. (Ⅰ)求实数a 的取值范围;(Ⅱ)证明:0(()f f x ''<为函数()f x 的导函数); (Ⅲ)略.解:(Ⅰ)()xf x e a '=-,x R ∈,当0a ≤时,()0f x '>在R 上恒成立,不合题意 当0a >时,易知,ln x a =为函数()f x 的极值点,且是唯一极值点, 故,min ()(ln )(2ln )f x f a a a ==-当min ()0f x ≥,即20a e <≤时,()f x 至多有一个零点,不合题意,故舍去;当min ()0f x <,即2a e >时,由(1)0f e =>,且()f x 在(,ln )a -∞内单调递减,故()f x 在(1,ln )a 有且只有一个零点;由22(ln )2ln (12ln ),f a a a a a a a a =-+=+- 令212ln ,y a a a e =+->,则210y a'=->,故2212ln 1430a a e e +->+-=-> 所以2(ln )0f a >,即在(ln ,2ln )a a 有且只有一个零点. (Ⅱ)解法一、根据函数的单调性求解由(Ⅰ)知,()f x 在(,ln )a -∞内递减,在(ln ,)a +∞内递增,且(1)0f e => 所以121ln 2ln x a x a <<<<,要证0f '<,只须证a <ln a <122x x +<,故只须证122ln x x a +< 令2ln ()()(2ln )(2ln ),xa xh x f x f a x e ax a e a a x a -=--=-+-+--222ln x xe a e ax a a -=--+,1ln x a <<则2()220x x h x e a e a a -'=+-≥=,所以()h x 在区间(1,ln )a 内递增 所以ln 2ln ()2ln 2ln 0a a h x e a e a a a a -<--+=,即()(2ln )f x f a x <- 所以11()(2ln )f x f a x <-,所以21()(2ln )f x f a x <-因为21ln ,2ln ln x a a x a >->,且()f x 在区间(ln ,)a +∞内递增 所以212ln x a x <-,即122ln x x a +<,故0f '< 解法二、利用对数平均不等式求解由(Ⅰ)知,()f x 在(,ln )a -∞内递减,在(ln ,)a +∞内递增,且(1)0f e =>所以121ln 2ln x a x a <<<<,因为111()0x f x e ax a =-+=,222()0x f x e ax a =-+=121211x x e e a x x ==--,即12111211x x e e x x --=--,所以1212(1)(1)1ln(1)ln(1)x x x x ---=>---所以1212()0x x x x -+<,要证:0f '<,只须证a <ln a<11ln(1)x x <--22ln(1)x x --所以1212ln(1)(1)x x x x +---,所以121212ln(()1)x x x x x x -++<+-因为1212()0x x x x -+<,所以1212ln(()1)ln10x x x x -++<=,而120x x +->所以121212ln(()1)x x x x x x -++<+-f '<从以上四个例题可以看出,两种方法解决的问题相同,即若12,x x 是函数()f x 的两个零点,而0x x =是函数()f x 的极值点,证明1202x x x +<(或1202x x x +>),根据函数单调性求解的步骤是:一、构建函数0()()(2)h x f x f x x =--,二、判断函数()h x 的单调性,三、证明()0h x >(或()0h x <)即0()(2)f x f x x >-(或0()(2)f x f x x <-),四、故函数()f x 的单调性证1202x x x +<(或1202x x x +>).根据对数平均不等式求解的步骤是:一、通过等式两边同取自然对数或相减等配凑出1212ln ln x x x x --及,二、通过等式两边同除以12ln ln x x -构建对数平均数1212ln ln x x x x --,三、利用对数平均不等式将1212ln ln x x x x --转化为122x x +后再证明1202x x x +<(或1202x x x +>). 两种方法各有优劣,适用的题型也略有差异,考生若能灵活驾驭这两种方法,便能在考场上发挥自如,取得理想的成绩.。

相关文档
最新文档