整式乘除,因式分解 综合训练

合集下载

整式的乘除因式分解练习题

整式的乘除因式分解练习题

练习题1、分解因式:(1)34xx (2)4282aa(3)2233m nm n(4)2224xxy y(5)225xxy x(6)2225x y xyxy(7)432462xxx(8)4234462x yx yxy(9)2232a x y b x y(10)223242a x y b y x c x y(11)224292a ba b(12)2961a ba b (13)22111439xxyy(14)222316131p x yp x y p x 2、求证:不论x 、y 为何有理数,2210845xyx y 的值均为正数。

3、若a 为整数,证明2211a 能被8整除。

4、计算:323220022200220002002200220035、已知2226100aa bb ,求a 、b 的值。

6、计算:(1)32232228a baab(2)225241x xx xx (3)11x y x y (4)33323538310ab ca ba b(5)32325223393aabb aba b(6)262132232xx x x x (7)22232394x y x y yx(8)2321223xx (9)22221112222x yx yxy(10)先化简,再求值:33222491233x y x y x y xyxyxy ,其中1,23xy7、下列运算正确的是()A 、6318aaaB 、639aaaC 、632aaaD 、639aaa8、下列运算中,正确的是()A 、236xxxB 、222235x xxC 、328x xD 、222x yxy9、下列多项式中,能够因式分解的是()A 、22xyB 、22xxy yC 、214p pD 、22mn10、分解因式2a ab 的结果是()A 、11a b bB 、21a bC 、21a bD 、11b b11、下列多项式能利用平方差公式分解的是()A 、2xyB 、22xyC 、22xyD 、22xy12、在多项式2222244,116,1,xx a xx xy y 中是完全平方式的有()A 、1个B 、2个C 、3个D 、4个13、数轴上的每一个点都表示一个()A 、无理数B 、有理数C 、实数D 、整数14、无理数是()A 、无限循环小数B 、无限不循环小数C 、不循环小数D 、有限小数15、下列说法中正确的是()A 、1的平方根是 1B 、21的平方根是1C 、2是8的立方根D 、16的平方根是 416、若12a a,则221aa的值为()A 、2B 、4C 、0D 、417、多项式22ac bc a b 分解因式的结果是()A 、a b a b cB 、a b a b cC 、a b a b cD 、a b a b c18、如果单项式423a bxy 与313a bx y是同类项,那么这两个单项式的积是()A 、64x yB 、32x yC 、3283x yD 、64x y19、若4xm,则2______xm20、2323_____12x y x y化简2222a a a 的结果是_______________。

整式的乘除法与因式分解练习题

整式的乘除法与因式分解练习题

整式的乘除法与因式分解练习题一.填空题1. 5324(123)()________.x y z x y xy -÷-=. 22[(2)](2)a b b a +-÷-_______________.2.2352332()()________.23a b c ab c -÷= ()2a b c +-=23.在多项式16a 2+4上加上一个单项式,使其成为一个整式的平方,该单项式是 .4.计算:=+--⋅⋅⋅---20191832222222___________.5.观察下列各式:l 2+1=1×2,22+2=2×3,32+3=3×4,……请你将猜想到的规律用自然数n(n ≥1)表示出来 .6.若代数式1322++a a 的值为6,则代数式5962++a a 的值为 .7.x 2-(_______)+16y 2=( )2 x 2-(_______)2=(x +5y)( x -5y)8. a 2-4(a -b)2=(__________)·(__________)9. a(x +y -z)+b (x +y -z)-c (x +y -z)= (x +y -z)·(________)10. 16(x -y )2-9(x +y )2=(_________)·(___________)11. (a +b )3-(a +b)=(a +b)·(___________)·(__________)12.x 2+3x +2=(___________)(__________) 已知x 2+px +12=(x -2)(x -6),则p=_______.13. ()()()x x x +-+=1112_________ ()()--=-13121419224m n n m 14 ()()[()][()]-+++-=-+=a b c a b c b b15. ()()()()x x x x n n n n 4216242+-++=16. . 若9422x mxy y ++是一个完全平方式,则m 的值是___________17. . -+=+⋅x y xy x y 33()()()18. 分解因式:x a y a 2211()()-+-= -+-=32448753x x x 19. 已知x y xy +==1742,,则x y xy 22+=20.4x 2y 3z -12x 3y 4的公因式是 _____________ 分解因式:x 3-x =______________21.x 2-4x +( )=( )2;23.如果x +y =10,xy =7,则x 2y +xy 2=______________24.计算:-5652×0.13+4652×0.13=______________二.选择题1 当代数式a +b 的值为3时,代数式2a +2b +1的值是( )A 、5B 、6C 、7D 、82.把多项式2x 2+bx +c 分解因式后得2(x -3)(x +1),则b 、c 的值为( )A 、b =3,c =-1B 、b =-6,c =2C 、b =-6,c =-4D 、b =-4,c =-63.若m 2+m -1=0,则m 3+2m 2+3=( )A 、2B 、4C 、-2D 、-44.已知x 2+ax -12能分解成两个整系数的一次因式的积,则符合条件的整数a 的个数是( )A 、3个B 、4个C 、6个D 、8个5.把多项式-2x 4-4x 2分解因式,其结果是( )A 、2(-x 4-2x 2)B 、-2(x 4+2x 2)C 、-x 2(2x 2+4)D 、 -2x 2(x 2+2)6. (-2)1998+(-2)1999等于( )A 、-21998B 、21998C 、-21999D 、219997. 把16-x 4分解因式,其结果是( )A 、(2-x)4B 、(4+x 2)( 4-x 2)C 、(4+x 2)(2+x)(2-x)D 、(2+x)3(2-x)8.把a 4-2a 2b 2+b 4分解因式,结果是( )A 、a 2(a 2-2b 2)+b 4B 、(a 2-b 2)2C 、(a -b)4D 、(a +b)2(a -b)29.把多项式2x 2-2x +21分解因式,其结果是( ) A 、(2x -21)2 B 、2(x -21)2 C 、(x -21)2 D 、21 (x -1)2 10 若9a 2+6(k -3)a +1是完全平方式,则 k 的值是( )A 、±4B 、±2C 、3D 、4或211. -(2x -y )(2x +y )是下列哪个多项式分解因式的结果( )A 、4x 2-y 2B 、4x 2+y 2C 、-4x 2-y 2D 、-4x 2+y 212.多项式x 2+3x -54分解因式为( )A 、(x +6)(x -9)B 、(x -6)(x +9)C 、(x +6)(x +9)D 、 (x -6)(x -9)13.下列多项式中,可以提取公因式的是( )A 、22y x -B 、x x +2C 、y x -2D 、222y xy x ++14.若2422549))(________57(y x y x -=--,括号内应填代数式( )A 、y x 572+B 、y x 572--C 、y x 572+-D 、y x 572- 15.2)2(n m +-的运算结果是 ( )A 、2244n mn m ++B 、2244n mn m +--C 、2244n mn m +-D 、2242n mn m +-16. 若22169y mxy x ++是完全平方式,则m =( )A 、12B 、24C 、±12D 、±2417.如果22)()(y x M y x +=+-,那么M 等于 ( )A 、 2xyB 、-2xyC 、4xyD 、-4xy18.下列运算正确的是( )A 、a b a b a 2)(222++=+ B 、222)(b a b a -=-C 、6)2)(3(2+=++x x xD 、22))((n m n m n m +-=+-+三.计算题1 (-2y 3)2+(-4y 2)3-[(-2y)2·(-3y 2)2]; 2. (3x +2)2-(3x -2)2+(3x +2)2·(3x -2)2;3. 3.76542+0.4692×3.7654+0.23462.4. 242215()(5)a bc ab -÷5. 82443215(3)(4)x y z x yz x y ÷-÷-6. (0.16mn 4-0.6m 2n 3+1.4mn 3)÷(-52mn 3)7.[(x+y )(x-y )-(x-y )2+2y (x-y )]÷4y . 8.()()()()()112113114119111022222-----四.简答题1、把下列各式因式分解。

整式乘法与因式分解500题

整式乘法与因式分解500题

D. a6÷a2=a3
5.下面是一名学生所做的 4 道练习题:①(-3)0=1;②a3+a3=a6;③4m-4= ;④(xy2)3=x3y6,他做对的个数是( )
A. 0
B. 1
C.2
D. 3
6.下列计算中,结果正确的是( )
A. a2•a3=a6
B. (2a)•(3a)=6a
C.(a2)3=a6 D.a6÷a2=a3
17.下列运算丌正确的是( )
A. (a5)2=a10
B. 2a2•(-3a3)=-6a5
C. b•b3=b4
D. b5•b5=b25
18.下列计算正确的是( )
A. x2+2x2=3x4
B. a3•(-2a2)=-2a5
C. (-2x2)3=-6x6
D. 3a•(-b)2=-3ab2
19.下列计算正确的是( ) A. (2x3)•(3x)2=6x6
2×(22)3 中,结果等于 66 的是( )
A. ①②③
B. ②③④
C.②③
D. ③④
3.下列运算正确的是( )
A. 6a-5a=1
B. (a2)3=a5
C.3a2+2a3=5a5 D.2a2•3a3=6a5
4.下列运算中,正确的是( ) A.(a2)3=a5 B.2a•3a=6a2
C. 2a-a=2
14.下列计算中正确的是( )
A. a5-a2=a3
B. |a+b|=|a|+|b|
C. (-3a2)•2a3=-6a6
D.a2m=(-am)2(其中 m 为正整数)
15.下列计算正确的是( )
A. a2•a3=a6
B.(-2a)3=8a3 C.a+a4=a5

整式的乘除和因式分解单元测试题

整式的乘除和因式分解单元测试题

整式的乘除与因式分解复习试题(一)姓名得分1219.已知a3,贝V a 2的值是 ___________________ 。

a a10 .如果 2a+3b=1,那么 3-4a-6b= _____________ 。

二、选择题(每题3分,共30分) 11、下列计算错误的个数是()①(x 4-y 4) —(x'-y 2) =x -y 2 ;②(-2a )3=-8a 5;③(ax+by)十(a+b)=x+y; 2mm2④ 6x 十 2x =3xA. 4 B3 C. 2 D. 112. 已知被除式是 x 3+2x 2— 1,商式是 x ,余式是— 1,则除式是()A 、 2 2 x +3x — 1B 、x +2xC 、x 2— 1D 2 、x — 3x+1 13. 若 3x =a , 3y =b ,则 3x y等于( )A 、 aB 、 abC 、 b 2abD 1、a+b14.如(x+m)与(x+3)的乘积中不含 x 的一次项,贝U m 的值为( )A. - 3B. 3C. 0D. 115. 一个正方形的边长增加了2cm ,面积相应增加了32 cm 2,则这个正方形的边长为()A 、6cmB 、5cmC 、8cmD 、7cm20、已知多项式2x 2 bx c 分解因式为2(x-3)(x ,1),则b,c 的值为( )A 、b=3,c~-1B 、b--6,c=2C 、b--6,c--4D 、b~-4,c--6 三、解答题:(共60分) 1.计算题、填空(每题3分,共30分)m n m+n a =4,a =3, a = __ _2 2 (_—m 十n)(—一n _n) =_ 33 — 2 2 3若 A - 5ab =-7ab c ,则 1.3. 5. (2x — 1)( — 3x+2)= 2 3 2.( x y)=3 22 3 6.右(ax ■ b)( x • 2) = x— [[. 2&右 a —2 +bA= ________ ,若 4x yz 十 B=-8x,贝V B=_ -4,则 a b = _2b 1 =0,贝U a =16. 一个多项式分解因式的结果是 A 、b 6-4 B 4-b 17. 下列各式是完全平方式的是(21 2A 、 x —XB 1 x43 3(b 2)(2 —b ),C 、b 6 4) 那么这个多项式是( )c 、2x 2x -118. 19. 把多项式m 2 (a 「2) ■ m (2 —a )分解因式等于(2A 、(a —2)( m ' m )B 、 下列多项式中,含有因式2 2y — 2xy —3x22(y -1) -(y -1)2(a -2)(m -m) C 、m(a-2)(m-1) D 、m(a-2)(m+1)(y - 1)的多项式是( )2 2B 、(y -1) -(y -1)2D (y ■ 1) - 2(y -1)11⑴(-1) 2+ (-2 ) -1 — 5 +( 3.14 - n ) 0(4 分)1⑵ X 2 -(x - 2)(x 「2)—( x )2 (4 分)x⑶[(x+y ) 2 —( x — y ) 2] +(2xy) (4 分)2 2⑷ 简便方法计算①98 X 102 — 99 (4分)②99 198 1 (4分)ab = 2,求—a 3b ■ a 2 b 2 ■ — ab 3 的值。

整式的乘除、因式分解练习题(全)

整式的乘除、因式分解练习题(全)

整式乘除与因式分解专项练习知识网络归纳m n m+n m n mn n n n 22222a a =a (a )=a (m,n a,b )(ab)=a b ××:m(a +b)=ma +mb ×(m +n)(a +b)=ma +mb +na +nb :(a+b)(a -b)=a -b (a b)=a 2ab +b ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭⎧⎪⎪⎨⎧⎪−−−→⎨±±⎪⎩特殊的幂的运算法则为正整数,可为一个单项式或一个式项式单项式单项式单项式多项式多项式多项式:平方差公式 乘法公式完全平方公式:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩22222:a -b =(a +b)(a -b):a 2ab +b =(a b)⎧⎪⎧⎪⎪⎨⎪±±⎨⎪⎩⎪⎪⎪⎩因式分解的意义提公因式法平方差公式运用公式法因式分解的方法完全平方公式十字相乘法拆添项与分组分解法因式分解第一步:观察公因式,如果存在,提出来第二步:观察公式,如果符合公式条件,按公式进行分解第三步:观察首尾项与中间项系数是否满足十字相乘条件,因式分解的步骤 按十字相乘法则分解第四步:如果⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩上述方法均无法解决,尝试进行对某几项进 行拆分或分组,然后再重复上述操作。

一、整式综合计算:1、幂运算:(1)(-3a 2b 3c)3=(2)=-332)21(yz x (3)[-(-a 2b)3·a]3=(4)=⋅+122)()(n n b a ab (5))7(28324y x y x -÷= (6)()()()()32232228a b a a b --⋅--=(7)2321223x x ⎛⎫- ⎪⎝⎭= (8)()()32325223393a ab b ab a b ⎡⎤-⋅---⎢⎥⎣⎦ = (9)()33323538310ab c a b a b -⋅⋅-= (10)82005×0.1252006= (11)若43=n a ,则=n a 6 (12)已知4x =2x+3,则x=(13)如果3,2==y x a a ,则y x a 23+= y x a -2=整式的乘法(14)若3m ·3n =1,则m +n =_________ _____(15)已知x +4y -3=0,则y x 162⋅=(16)已知2124192n n ++=,求n 的值。

整式的乘除与因式分解综合练习题含答案

整式的乘除与因式分解综合练习题含答案

整式的乘除与因式分解综合练习题一、选择题1.下列计算中,运算正确的有几个( )(1) a 5+a 5=a 10(2) (a+b)3=a 3+b 3(3) (-a+b)(-a-b)=a 2-b 2(4) (a-b)3= -(b-a)3A 、0个B 、1个C 、2个D 、3个2.当a =-1时,代数式(a +1)2+ a (a +3)的值等于( )A.-4B.4C.-2D.23、下列各式中,能用平方差公式计算的是( )A 、B 、C 、D 、4.若x 2+2(m-3)x+16是完全平方式,则m 的值等于( )A.3B.-5C.7.D.7或-15.若,则的值为 ( ) A . B .5 C .D .26、计算:1.992-1.98×1.99+0.992得( )A 、0B 、1C 、8.8804D 、3.9601))((b a b a +--))((b a b a ---))((c b a c b a +---+-))((b a b a -+-7、(x 2+px+8)(x 2-3x+q)乘积中不含x 2项和x 3项,则p,q 的值 ( )A 、p=0,q=0B 、p=3,q=1C 、p=–3,–9D 、p=–3,q=18.如果一个单项式与的积为,则这个单项式为( ) A. B. C. D.9、对于任何整数,多项式都能( )A 、被8整除B 、被整除C 、被-1整除D 、被(2-1)整除10.已知,,则与的值分别是 ( )A. 4,1B. 2,C.5,1D. 10,二、填空题11、(1)化简:a 3·a 2b=12、把边长为12.75cm 的正方形中,挖去一个边长为7.25cm 的小正方形,则剩下的面积为 。

13.已知31=-a a ,则221a a + 的值等于 。

14、有一串单项式:……,(1)第2006个单项式是 ;(2)第(n+1)个单项式是 .三、解答题。

m 9)54(2-+m m m m 234,2,3,4,x x x x --192019,20x x -15、化简(1)3x2y·(-2xy3); (2)2a2(3a2-5b);(3)(-2a2)(3a b2-5a b3). (4)(5x+2y)(3x-2y).1)2009 (5)(3y+2)(y-4)-3(y-2)(y-3);(6)(-3)2008·(316、因式分解(1)xy+a y-by; (2)3x(a-b)-2y(b-a);(3)m2-6m+9;(4) 4x2-9y2(5) x4-1; (6) x2-7x+10;17、先化简,再求值(a+b)(a-2b)-(a+2b)(a-b),其中a=2, b=-1 18.已知x-y=1,xy=3,求x3y-2x2y2+xy3的值.19、如图是L 形钢条截面,试写出它的面积公式。

(完整版)整式乘除与因式分解培优精练专题答案.docx

(完整版)整式乘除与因式分解培优精练专题答案.docx

整式乘除与因式分解培优精练专题答案一.选择题(共 9 小题)1.( 2014?台湾)算式 2 2 2之值的十位数字为何?()99903 +88805 +77707 A .1B . 2C . 6D . 8分析: 分别得出 999032、888052、 777072的后两位数,再相加即可得到答案.2解答: 解: 99903 的后两位数为 09,288805 的后两位数为 25,277707 的后两位数为 49,09+25+49=83 ,所以十位数字为 8, 故选: D .2.( 2014?盘锦)计算(2a 2) 3? a 正确的结果是( )A .3a7B . 4a7C . a7D . 4a6分析: 根据幂的乘方与积的乘方、单项式与单项式相乘及同底数幂的乘法法则进行计算即可.解答:解:原式 ==4a 7,故选: B .3.( 2014?遵义)若 a+b=2 , ab=2,则 a 2+b 2的值为( )A .6B . 4C . 3D . 2分析: 利用 a 2+b 2=( a+b ) 2﹣2ab 代入数值求解.解答: 解: a 2+b 2=( a+b ) 2﹣ 2ab=8﹣ 4=4,故选: B .4.( 2014?拱墅区二模)如果 ax 2+2x+ =(2x+) 2+m ,则 a , m 的值分别是()A . 2,0B . 4, 0C .2,D . 4,运用完全平方公式把等号右边展开,然后根据对应项的系数相等列式求解即可.解答:22+m ,解: ∵ax +2x+ =4x +2x+∴ ,解得 .故选 D.5.( 2014?江阴市模拟)如图,设(a>b>0),则有()A .B.C. 1<k< 2D. k>2解答:解:甲图中阴影部分的面积=a 2﹣ b2,乙图中阴影部分的面积=a( a﹣ b),=,∵a> b> 0,∴,∴1< k<2.故选: C.6.( 2012?鄂州三月调考)已知,则的值为()A .B.C. D .无法确定解答:解:∵a+ =,∴两边平方得:( a+ )2=10 ,展开得: a 2+2a? +=10 ,∴a 2+=10 ﹣ 2=8 ,∴( a﹣)2=a2﹣2a?+=a2+﹣2=8﹣2=6,∴a﹣=±,故 C.7.已知,代数式的等于()A .B.C.D.分析:先判断 a 是正数,然后利用完全平方公式把两平方并整理成的平方的形式,开方即可求解.解答:解:∵,∴a> 0,且2+a 2=1,∴+2+a 2=5,即(+|a|)2=5,开平方得,+|a|=.故 C.8.( 2012?州)求1+2+2 2+23+⋯+22012的,可令S=1+2+22+23+⋯+22012,2S=2+22+23+24+⋯+22013,因此 2S S=220131.仿照以上推理,算出1+5+5 2+53+⋯+52012的()A .520121B. 520131C.D.分析:根据目提供的信息,S=1+5+5 2+53+⋯+52012,用 5S S 整理即可得解.解答:解: S=1+5+52320125S=5+52342013 +5 +⋯+5,+5 +5 +⋯+5,因此, 5S S=520131,S=.故 C.9.( 2004?州)已知 a=x+20 ,b=x+19 , c=x+21 ,那么代数式 a 2+b2+c2ab bcac 的是()A .4B. 3C. 2D. 1:.分析:已知条件中的几个式子有中间变量 x ,三个式子消去 x 即可得到: a ﹣b=1 ,a ﹣ c=﹣ 1,b ﹣ c=﹣ 2,用这三个式子表示出已知的式子,即可求值.解答:解:法一: a 2+b 2+c 2﹣ ab ﹣ bc ﹣ ac , =a ( a ﹣ b ) +b ( b ﹣c ) +c ( c ﹣ a ),又由 a= x+20, b= x+19, c=x+21 ,得( a ﹣b ) = x+20 ﹣x ﹣ 19=1,同理得:( b ﹣ c )=﹣ 2,( c ﹣ a ) =1 , 所以原式 =a ﹣ 2b+c= x+20 ﹣ 2(x+19 ) + x+21=3 .故选 B .法二: a 2+b 2+c 2﹣ ab ﹣ bc ﹣ ac ,= ( 2a 2+2b 2+2c 2﹣ 2ab ﹣2bc ﹣ 2ac ),22 2 2 2 2= [( a ﹣ 2ab+b )+( a ﹣ 2ac+c ) +( b ﹣2bc+c ) ],= [( a ﹣ b ) 2+(a ﹣ c ) 2+( b ﹣ c ) 2] ,= ×( 1+1+4) =3. 故选 B .二.填空题(共 9 小题)x+5 )( x+n ) =x 2+mx ﹣ 5,则 m+n= 3 .10.( 2014?江西样卷)已知(分析: 把式子展开,根据对应项系数相等,列式求解即可得到m 、 n 的值.解答: 解:展开( x+5 )(x+n ) =x 2+( 5+n ) x+5n∵( x+5 )( x+n ) =x 2+mx ﹣5,∴5+n=m , 5n= ﹣5,∴n=﹣ 1, m=4 .∴m+n=4 ﹣ 1=3 .故答案为: 311.(2014?徐州一模)已知 x ﹣ =1,则 x 2+ = 3 .分析:首先将 x ﹣ =1 的两边分别平方,可得(x ﹣ )2=1,然后利用完全平方公式展开,解答:变形后即可求得 x 2+的值.或者首先把 x 2+凑成完全平方式 x 2+ =( x ﹣ )2+2,然后将 x ﹣ =1 代入,即可求得 x 2+的值.解:方法一: ∵x ﹣ =1,∴( x ﹣ ) 2=1,即 x 2+ ﹣ 2=1,∴x 2+=3.方法二: ∵x ﹣ =1 ,2 2,∴x + =( x ﹣ ) +2 =1 2+2, =3 .故答案为: 3.12.( 2011?平谷区二模)已知2 2.,那么 x +y = 6分析:首先根据完全平方公式将( x+y ) 2用( x+y )与 xy 的代数式表示,然后把x+y , xy的值整体代入求值.解答:解: ∵x+y=, xy=2 ,∴( x+y ) 2=x 2+y 2+2xy ,∴10=x 2+y 2+4,∴x 2+y 2=6.故答案是: 6.点评:本题主要考查完全平方公式的变形,熟记公式结构是解题的关键.完全平方公式:( a ±b )2=a 2±2ab+b 2.13.( 2010?贺州)已知 10m =2, 10n =3,则 103m+2n= 72 .解答: 解: 103m+2n =103m 102n =( 10m ) 3( 10n ) 2=23?32=8×9=72.点评: 本题利用了同底数幂相乘的性质的逆运算和幂的乘方的性质的逆运算.同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘.14.( 2005?宁波)已知 a ﹣ b=b ﹣ c= , a 2+b 2+c 2=1,则 ab+bc+ca 的值等于 ﹣.分析:先求出 a ﹣ c 的值,再利用完全平方公式求出(a ﹣b ),( b ﹣c ),( a ﹣ c )的平方和,然后代入数据计算即可求解.解答: 解: ∵a ﹣ b=b ﹣ c= ,∴( a ﹣ b )2= ,( b ﹣ c )2=, a ﹣ c= ,22﹣ 2ab= 2 2﹣ 2bc= 22,∴a +b , b +c , a +c ﹣ 2ac=∴2( a 2+b 2+c 2)﹣ 2( ab+bc+ca ) = ++= ,∴2﹣ 2( ab+bc+ca ) = ,∴1﹣( ab+bc+ca ) = ,∴ab+bc+ca=﹣ =﹣ .故答案为:﹣.点评:a ﹣ b=b ﹣ c= ,得到 a ﹣ c= ,然后对 a本题考查了完全平方公式,解题的关键是要由﹣ b= , b ﹣ c= , a ﹣ c= 三个式子两边平方后相加,化简求解.15.( 2014?厦门)设 a=192×918, b=8882﹣ 302, c=10532﹣ 7472,则数 a , b , c 按从小到大的顺序排列,结果是 a < c < b .考点 :因式分解的应用.分析:运用平方差公式进行变形,把其中一个因数化为 918,再比较另一个因数,另一个因数大的这个数就大.解答:解: a=192×918=361×918,b=888 2﹣302=( 888﹣ 30) ×(888+30 )=858×918,c=1053 2﹣7472=( 1053+747 )×( 1053﹣ 747)=1800×306=600×918,所以 a <c < b . 故答案为: a < c < b .16.( 1999?杭州)如果 a+b+ ,那么 a+2b ﹣ 3c= 0 .分析:先移项,然后将等号左边的式子配成两个完全平方式,从而得到三个非负数的和为0,根据非负数的性质求出a 、b 、c 的值后,再代值计算.解答:解:原等式可变形为:a ﹣ 2+b+1+|﹣ 1|=4+2﹣ 5( a ﹣ 2)+( b+1 )+|﹣ 1|﹣ 4﹣ 2 +5=0( a ﹣ 2)﹣ 4+4+ ( b+1 )﹣ 2+1+|﹣1|=0( ﹣ 2) 2+(﹣ 1)2+| ﹣ 1|=0;即:﹣ 2=0,﹣ 1=0,﹣ 1=0 ,∴=2, =1, =1,∴a ﹣ 2=4 ,b+1=1 , c ﹣1=1,解得: a=6, b=0 ,c=2;∴a+2b ﹣ 3c=6+0﹣ 3×2=0.17.已知 x ﹣ =1,则 = .分析:2的值,再把所求算式整理成 的形式, 然把 x ﹣ =1 两边平方求出x + 后代入数据计算即可.解答:解: ∵x ﹣ =1,∴x 2+﹣2=1 ,∴x 2+=1+2=3 ,= = = .故应填:.18.已知( 2008﹣ a )2+( 2007 ﹣a ) 2=1,则( 2008﹣a ) ?( 2007﹣ a ) = 0.解答:解: ∵( 2008﹣ a ) 2+(2007﹣ a )2=1,22﹣ 2( 2008﹣ a)( 2007﹣ a),∴(2008 ﹣ a)﹣ 2(2008 ﹣ a)( 2007﹣ a)+( 2007﹣ a) =1即( 2008﹣ a﹣ 2007+a)2=1﹣ 2( 2008﹣a)( 2007﹣a),整理得﹣ 2( 2008﹣a)(2007﹣ a) =0,∴( 2008 ﹣a)( 2007﹣ a) =0.三.解答题(共8 小题)22是一个完全平方式,那么k= 4 或﹣ 2 .19.如果 a ﹣2( k﹣ 1) ab+9b解答:解:∵a 2﹣2(k﹣1)ab+9b2=a2﹣2(k﹣1)ab+(3b)2,∴﹣ 2( k﹣1) ab=±2×a×3b,∴k﹣ 1=3 或 k﹣ 1=﹣ 3,解得 k=4 或 k= ﹣ 2.即k=4 或﹣ 2.故答案为: 4 或﹣ 2.点评:本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.x x+320.已知 3 =8,求 3.解答:解: 3x+3=3x?33=8 ×27=216 .点评:本题考查了同底数幂的乘法,底数不变指数相加.n﹣5n+1 3m﹣22n﹣ 1 m﹣233m+221.计算: a ( a b) +( a b)(﹣ b)分析:先利用积的乘方,去掉括号,再利用同底数幂的乘法计算,最后合并同类项即可.解答:解:原式=a n﹣5(a2n+2b6m﹣4)+a3n﹣3b3m﹣6(﹣b3m+2),=a3n﹣ 3b6m﹣4+a3n﹣ 3(﹣b6m﹣ 4),3n﹣ 36m﹣43n﹣ 36m﹣4,=a b﹣ a b=0 .点评:本题考查了合并同类项,同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.22.已知 n 是正整数, 1++是一个有理式 A 的平方,那么,A=±.解答:解: 1++=,分子: n 2( n+1 )2+(n+1 )2+n2=n2( n+1 )2+n2+2n+1+n2,22=n ( n+1) +2n( n+1) +1,2=[n ( n+1 )+1] ,∴分子分母都是完全平方的形式,∴A= ±.故答案为:±.23.已知 2008=,其中 x,y 为正整数,求 x+y 的最大值和最小值.分析:首先根据 2008=可知 xy=2009 ,再根据 x,y 为正整数,确定 x、y 可能的取值.根据 xy 的乘积的个位是 9,确定 x、 y 的个位可能是1、3、 7、 9.通过 x、y 都具有同等的地位,那么x 取过的值, y 也有可能,故只取x 即可, x 的十位数最大不会超过 5.因而就x 取值可能是 1、 11、 13、 17、 19、 21、 23、 27、 29、 31、 33、 37、 39、 41、 43、47、 49.就这几种情况讨论即可.解答:解:∵2008=2008=xy ﹣ 1∴2009=xy∵x, y 为正整数,并且乘积是2009 的个位数是9因而 x、y 的个位可能是1、 3、 7、 9①当 x 的个位是 1 时,x=1 , y=2009 显然成立,x=11 , y 不存在,x=21 , y 不存在,x=31 , y 不存在,x=41 , y=49,②当 x 的个位是 3 时x=3 , y 不存在,x=13 , y 不存在,x=23 , y 不存在,x=33 , y 不存在,x=43 , y 不存在;③当的个位是7 时x=7 , y=287x=17 , y 不存在x=27 , y 不存在x=37 , y 不存在x=47 , y 不存在;④当 x 的个位是9 时x=9 , y 不存在 x=19 , y 不存在 x=29 , y 不存在 x=39 , y 不存在 x=49 , y=41. 故可能的情况是① x=1 , y=2009 或 x=2009 , y=1, x+y=2010 ② x=7 , y=287 或 x=287 , y=7, x+y=7+287=394 ③ x=41 , y=49 或 x=49, y=41, x+y=41+49=90故 x+y 的最大值是 2010,最小值是 9024.( 2000?内蒙古)计算:解答: 解:由题意可设字母 n=12346,那么 12345=n ﹣1, 12347=n+1 ,于是分母变为 n 2﹣( n ﹣ 1)(n+1 ).应用平方差公式化简得22222n ﹣( n ﹣1 ) =n ﹣ n +1=1 ,所以原式 =24690 .25.设 a 2+2a ﹣1=0 , b 4 ﹣2b 2﹣ 1=0 ,且 1﹣ ab 2≠0,求的值.分析:解法一:根据 1﹣ab 2≠0 的题设条件求得 b 2=﹣ a ,代入所求的分式化简求值.解法二:根据a 2+2a ﹣ 1=0 ,解得 a=﹣ 1+ 或 a=﹣ 1﹣,由 b 4﹣2b 2﹣ 1=0 ,解得:2b = +1,把所求的分式化简后即可求解.解答:解法一:解: ∵a 2+2a ﹣ 1=0 , b 4﹣2b 2﹣ 1=0∴( a 2+2a ﹣1)﹣( b 4﹣ 2b 2﹣ 1)=0化简之后得到: (a+b 2)( a ﹣ b 2+2) =0若 a ﹣ b 2+2=0 ,即 b 2=a+2,则 1﹣ ab 2=1﹣ a ( a+2) =1﹣ a 2﹣ 2a=0,与题设矛盾,所以a ﹣ b 2+2≠0因此 a+b 2=0,即 b 2=﹣ a∴===(﹣ 1) 2003=﹣ 1解法二: 解: a 2+2a ﹣ 1=0(已知),解得 a=﹣ 1+ 或 a=﹣1﹣ , 由 b 4﹣ 2b 2﹣ 1=0 ,解得: b 2= +1 , ∴ =b 2+ ﹣ 2+= +1﹣ 2+ ,当 a= ﹣ 1 时,原式 = +1﹣ 2+4+3 =4 +3 ,∵1﹣ ab 2≠0, ∴a= ﹣ 1 舍去;当 a=﹣ ﹣ 1 时,原式 = +1﹣2﹣ =﹣ 1,∴(﹣ 1) 2003=﹣ 1,即 =﹣ 1. 点评:本题考查了因式分解、根与系数的关系及根的判别式,解题关键是注意 1﹣ab 2≠0 的运用. 26.已知3|2x ﹣ 1|+ +( z ﹣1) 2=0,求 x 2+y 2+z 2+2xy+2xz+2yz 值. 分析:首先利用非负数的性质求得 x 、 y 、 z 的值,然后代入代数式求解即可. 解答:解: ∵3|2x ﹣1|+ +( z ﹣ 1) 2=0,∴2x ﹣ 1=0, 3y ﹣ 1=0, z ﹣ 1=0 ∴x= , y= , z=1 ∴x 2+y 2+z 2+2xy+2xz+2yz= ( )2+( ) 2+12+2× × +2× ×1+2 × ×1=点评: 本题考查了因式分解的应用及非负数的性质,解题的关键是求得未知数的值.。

《整式的乘除与因式分解》培优训练及答案

《整式的乘除与因式分解》培优训练及答案

整式的乘除与因式分解一、选择题:1.下列计算正确的是( )A .105532a a a =+B .632a a a =⋅C .532)(a a =D . 8210a a a =÷2.下列计算结果正确的是( )A .4332222y x xy y x -=⋅-B .2253xy y x -=y x 22-C .xy y x y x 4728324=÷D .49)23)(23(2-=---a a a3.两个三次多项式相加,结果一定是 ( )A .三次多项式B .六次多项式C .零次多项式D .不超过三次的多项式4.把多项式()()()111---+x x x 提取公因式()1-x 后,余下的部分是( )A .()1+xB .()1+-xC .xD .()2+-x5.计算24(1)(1)(1)(1)x x x x -++--的结果是 ( )A 、2B 、0C 、-2D 、-56.已知代数式12x a -1y 3与-3x -b y 2a+b 是同类项,那么a 、b 的值分别是( )A .2,1a b =-⎧⎨=-⎩B .2,1a b =⎧⎨=⎩C .2,1a b =⎧⎨=-⎩D .2,1a b =-⎧⎨=⎩7.已知2239494b b a b a n m =÷,则( )A .3,4==n mB .1,4==n mC .3,1==n mD .3,2==n m8.如图,是一个正方形与一个直角三角形所拼成的图形,则该图形的面积为()A .m 2+12mnB .22mn n -C .22m mn+ D .222m n +9.若2()9a b +=,2()4a b -=,则ab 的值是( )A 、54B 、-54C 、1D 、-1 二、填空题: 1.分解因式2233ax ay -= .2.分解因式ab b a 8)2(2+- =_______.3.分解因式221218x x -+= .4.若22210a b b -+-+=,则a = ,b = .5.代数式4x 2+3mx +9是完全平方式,则m =___________.6. 已知a+b=5,ab=3,求下列各式的值:(1)a 2+b 2= ;(2)-3a 2+ab-3b 2= .7. 已知522=+b a ,()()223232a b a b --+=-48,则a b +=________. 8. 已知正方形的面积是2269y xy x ++ (x >0,y >0),利用分解因式,写出表示该正方形的边长的代数式 .9.观察下列等式: 第一行 3=4-1第二行 5=9-4第三行 7=16-9第四行 9=25-16… …按照上述规律,第n 行的等式为____________ .三、解答题:1.计算题(1)(-3xy 2)3·(61x 3y )2 (2)4a 2x 2·(-52a 4x 3y 3)÷(-21a 5xy 2)(3)222)(4)(2)x y x y x y --+( (4)221(2)(2))x x x x x-+-+-(2.因式分解(1)3123x x - (2)2222)1(2ax x a -+(3)xy y x 2122--+ (4))()3()3)((22a b b a b a b a -+++-3.解方程:41)8)(12()52)(3(=-+--+x x x x4.已知x 2+x -1=0,求x 3+2x 2+3的值5.若(x 2+px +q )(x 2-2x -3)展开后不含x 2,x 3项,求p 、q 的值.四.综合拓展:1.已知c b a 、、是△ABC 的三边的长,且满足0)(22222=+-++c a b c b a ,试判断此三角形的形状.2.已知2006x+2006y=1,x+3y=2006,试求2x 2+8xy+6y 2的值五.巩固练习:1.若n221623=÷,则n 等于( )A .10B .5C .3D .62.计算:xy xy y x y x 2)232(2223÷+--的结果是( ) A .xy y x 232- B .22322+-xy y x C .1232+--xy y x D .12322+--xy y x3.下列计算正确的是( )A .x y x y x 221222223=⋅÷ B .57222257919n m n m m n n m =÷⋅ C .mn mn n m n m =⋅÷24322)(2 D .22242231043)3012(y x y x y x y x +=÷+4.已知一个多项式与单项式457y x -的积为2234775)2(72821y x y y x y x +-,则这个多项式为___5.若(a+b )2=13(a-b )2=7求a 2+b 2和ab 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 页 共 4 页
整式的乘除及因式分解全面检测
一、选择题
1、 =∙-n m a a 5)(( )
(A )m a +-5 (B )m a +5 (C ) n m a +5 (D )n m a +-5
2、下列运算正确的是( )
(A )954a a a =+ (B )33333a a a a =⨯⨯ (C )9
54632a a a =⨯ (D )743)(a a =- 3、=⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-20032003532135( )
(A )1- (B )1 (C )0 (D)2003
4、设A b a b a +-=+22)35()35( ,则=A ( )
(A )ab 30 (B )ab 60 (C ) ab 15 (D )ab 12
5、已知)(
3522=+=-=+y x xy y x ,则, (A )25(B )25-(C )19(D )19-
6、)(5323===-b a b a x
x x ,则,已知 (A )2527 (B )10
9 (C )53 (D )52 7、一个正方形的边长增加了cm 2,面积相应增加了232cm ,则这个正方形的边长为( )
(A )6cm (B )5cm (C )8cm (D )7cm
8、)(
)23)(23(=---b a b a (A )2269b ab a -- (B )2296a ab b -- (C )2249b a - (D )2294a b -
9、计算结果是187-+x x 的是( )
(A)(x-1)(x+18) (B)(x+2)(x+9) (C)(x-3)(x+6) (D)(x-2)(x+9)
10、===+b a b a 2310953,,( )
第 2 页 共 4 页
(A)50 (B)-5 (C)15 (D)b a +27
11、一个多项式的平方是22124m ab a ++,则=m ( )。

(A)29b (B) 23b - (C)29b - (D)2
3b 二、 填空题
12、=-∙-3245)()(a a _______。

13、=-n a )(2_______。

14、设12142
++mx x 是一个完全平方式,则m =_______。

15、已知51=+x x ,那么=+221x
x _______。

16、方程41)8)(12()52)(3(=-+--+x x x x 的解是_______。

17、已知==-=-y
x y x y x ,则,21222 。

18、若m ab a 22++是一个完全平方式,则m= ;
19、若22916m kmn m +-是一个完全平方式,则k= ;
因式分解:20、 432--x x = ;21、2286b ab a +-= ;
22、a ax 42-= ;23、)(5)(5a b b a x ---= ;
三、计算题
24、)2)(4)(222y x y x y x +--( 25、 2)2331(2y x -
- 26、)21)(3y x y x --(
27、)5
3()10951(23243ax x a x a -÷--
28、[(x+y )2-(x -y )2]÷(2xy)
第 3 页 共 4 页
四、因式分解29、432--x x 30、2286b ab a +- 31、a ax 42-
32、)(5)(5a b b a x --- 33、2222)82()823(----+x x x x
34、6)2(11)2(2222-+-+a a a a 35、18)92)(2(22+---a a a
36、解方程)3)(2()2()5)(3(22+-+-+=+-x x x x x x
37、简便方法计算(1)982; (2)899×901+1; (3)98×102-992 (4) 1198992++
六、解答题
38. 已知22==+ab b a ,,求
32232
121ab b a b a ++的值。

39、.先化简,再求值. .2)3)(3()2)(3(2-=-+-+-a a a x x 其中
第 4 页 共 4 页
40.对于任意的正整数n ,代数式n(n+7)-(n+3)(n-2)的值是否总能被6整除,请说明理由。

41.已知c b a 、、是△ABC 的三边的长,且满足0)(22222=+-++c a b c b a ,试判断此三角形的形状。

42.已知a +b =5,ab =7,求2
2
2b a +,a 2-ab +b 2的值.
43.已知(a +b )2=10,(a -b )2=2,求a 2+b 2,ab 的值.
44、已知026441022=++++b b a a ,求a+b 的值。

45、证明:无论x,y 为何值,代数式4581022++-+y x y x 的值总是非负数。

46、若012=++a a ,求120092010++++a a a 的值。

相关文档
最新文档