北师大版七年级数学上册第三章知识点整理(20200608135923)

合集下载

第3章 问题解决策略-归纳七年级上册数学北师大版

第3章 问题解决策略-归纳七年级上册数学北师大版

三角形的个数同样增加2.
新知探究 知识点 问题解决策略—归纳
【实施计划】
长方形内点的个数 1 2 3 4 …
三角形的个数
4 6 8 10 …
长方形内点的个数增加 1,三角形的个数增加 2.
当长方形内有35个点时,分得的三角形的个数是 4+2×34=72.
新知探究 知识点 问题解决策略—归纳
【回顾反思】 (1)如果长方形内有100个点呢?一般地,如果长方形内有 n个点呢? 长方形内有100个点:4+2×(100-1)=202. 长方形内有n个点: 4+2×(n-1)=2n+2.
图① 图② 图③
新知探究 知识点 问题解决策略—归纳
【回顾反思】 你还能提出并解决哪些问题? 答案不唯一,如:若图①中等边三角形的边长为1,根据 以上步骤进行操作,第n次分形后得到的“雪花曲线” 的边长是多少?(用含n的代数式表示)
新知探究 知识点 问题解决策略—归纳
解:第1次分形后得到的“雪花曲线”的边长是13, 第2次分形后得到的“雪花曲线”的边长是(13)2,
随堂练习
3.如图,将一根绳子折成三段,然后按如图所示的方式 剪开,剪1刀,绳子变为4段;剪2刀,绳子变为7段. (2)有可能正好剪得 101段吗? 解:由(1)中的规律可得,剪n刀, 绳子变成4+3× (n-1)段,即(3n+1)段.
当3n+1=101时,n= 1030,不是整数, 所以不可能正好剪得 101 段.
……
所以第n次分形后得到的“雪花曲线”的边长是(13)n.
1
13×13
3
1
图①
图② 图③
随堂练习
1. 32024的个位数字是多少? 解:31=3,32=9,33=27,34=81, 35=243,36=729,37=2 187,… 根据规律可知,3n的个位数字以3,9,7,1为一个循环. 又因为 2024 ÷4 =506, 所以32024的个位数字是 1.

北师大版七年级数学上册知识点归纳:第三章整式及其加减

北师大版七年级数学上册知识点归纳:第三章整式及其加减

北师大版七年级数学上册知识点归纳:第三章 整式及其加减1 字母表示数2 代数式3 整式4 整式的加减5 探索与表达规律※代数式的概念:用运算符号(加、减、乘除、乘方、开方等)把数与表示数的字母连接而成的式子叫做代数式...。

单独的一个数或一个字母也是代数式。

注意:①代数式中除了含有数、字母和运算符号外,还可以有括号;②代数式中不含有“=、>、<、≠”等符号。

等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。

※代数式的书写格式:①代数式中出现乘号,通常省略不写,如vt ;②数字与字母相乘时,数字应写在字母前面,如4a ;③带分数与字母相乘时,应先把带分数化成假分数后与字母相乘,如a ⨯312应写作a 37; ④数字与数字相乘,一般仍用“×”号,即“×”号不省略;⑤在代数式中出现除法运算时,一般按照分数的写法来写,如4÷(a-4)应写作44-a ;注意:分数线具有“÷”号和括号的双重作用。

⑥在表示和(或)差的代差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如)(22b a -平方米 ※代数式的系数:代数式中的数字中的数字因数叫做代数式的系数......。

如3x,4y 的系数分别为3,4。

注意:①单个字母的系数是1,如a 的系数是1;②只含字母因数的代数式的系数是1或-1,如-ab 的系数是-1。

a 3b 的系数是1※代数式的项:代数式7262--x x 表示6x 2、-2x 、-7的和,6x 2、-2x 、-7是它的项,其中把不含字母的项叫做常数项注意:在交待某一项时,应与前面的符号一起交待。

※同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

注意:①判断几个代数式是否是同类项有两个条件:a.所含字母相同;b.相同字母的指数也相同。

北师大版七年级数学上册第三章知识点整理

北师大版七年级数学上册第三章知识点整理

北师大版七年级数学上册第三章知识点整理 北师大版七年级数学上册第三知识点整理 七上第三整式及其加减 1.字母表示数 1)字母表示运算律 2)字母表示计算公式 字母可以表示任何数 2.代数式 1)概念:像4+3(x-1),x+x+(x+1),a+b,ab,2(+n),s/t 等式子都是代数式,单独一个数或一个字母也是代数式,如-5,a,b等. 2)书写要求:①字母与字母相乘时,乘号通常简写作“ ”或省略不写;数字与字母相乘时,数字在前;带分数与字母相乘时,应先把带分数化成假分数后再与字母相乘;数字与数字相乘仍用“×”. ②除法一般写成分数形式 ③如果代数式是积或商的形式,单位直接写在后面;如果是和或差的形式,必须先把代数式用括号括起再写单位。

3.整式 1)单项式:表示数字和字母的积,单独的一个数或一个字母也是单项式. ①系数:单项式中的数字因数(包括其前面的符号) ②次数:单项式中,所有字母的指数的和;单独的数字是0次单项式. 注意:(1)单项式中数与字母之间都是乘积关系,凡字母出现在分母中的式子一定不是单项式,如1/x不是单项式;(2)单项式中不含加减运算;(3)π是常数,在单项式中相当于数字因数;(4)定义中的“数”可以是小数,也可以是分数、整数. 2)多项式:几个单项式的和;在多项式中,每个单项式叫做多项式的项,不含字母的项叫常数项;一个多项式含有几项,就叫几项式; 次数:多项式里,次数最高项的次数,是多项式的次数; 注意:(1)确定多项式的项时,不要忽略它的符号;(2)关于某个字母的n次项式,要求是合并同类项后的最简多项式. 3) 整式:单项式和多项式统称为整式. 4)同类项:①概念:所含字母相同,并且相同字母的指数也相同的项;与它们的系数大小无关,与字母顺序无关;几个常数也是同类项. ②合并同类项法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变. 4.整式的加减: 1)整式加减是求几个整式的和或差的运算,其实质是去括号,合并同类项 2)法则:几个整式相加减,用括号把每一个整式括起,再用加减号连接,然后去括号,合并同类项. 3)化简求值:一是相加减化简,二是用具体数值代替整式中的字母,三是按式子的运算关系计算,计算其结果. 5.探索与表达规律:图形中的规律、数字中的规律、算式中的规律.。

北师大版七年级上册第三章-整式及其加减知识点题型总结

北师大版七年级上册第三章-整式及其加减知识点题型总结

第三章:整式及其加减3.1 字母表示数1. 淘气的存款是x 元,笑笑的存款是淘气的一半多2元,则笑笑的存款是( )元A .21(x-2)B .21(x+2)C .(21x+2)D .(21x-2)元2. 长方形的周长为a cm ,长为b cm ,则长方形的宽为( )A .(a -2b ) cmB .(a 2-2b ) cm C.a -b 2 cm D.a -2b 2 cm3. 用代数式表示出b a 、的平方和的2倍,正确的是( )A.2)(2b a +B.2)22(b a +C.222b a +D.)(222b a +4. 如果甲数为x ,乙数比甲数多4倍,则乙数为( )A .4xB .5x C.14x D.15x5. a 是三位数,b 是一位数,如果把b 放在a 的左边,那么所组成的四位数应该表示为( )A.baB.100b+aC.10b+aD.1000b+a6. 一个两位数x ,还有一个两位数y ,若把两位数x 放在y 前面,组成一个四位数,则这个四位数为() A. 10x +y B. xy C. 100x +y D. 1000x +y7. 七年级1班有女生m 人,女生占全班人数的40%,则全班人数______8. 某品牌的彩电降价30%以后,每台售价为a 元,则该品牌彩电每台原价为( ).A. 0.7a 元B.0.3a 元C. 3.0a 元 D 7.0a 元9. 今年学校运动会参加的人数是m 人,比去年增加10%,那么去年运动会参加的人数为()人.A .(1+10%)mB .(1-10%)m C.m 1+10% D.m1-10%10.如图,圆环的面积为( )A.R2-r2 B.π(R2-r2) C.πR2-r2 D.πr2-πR211. 如图,在边长为4的正方形ABCD中,先以点A为圆心,AD的长为半径画弧,再以AB边的中点为圆心,AB长的一半为半径画弧,则阴影部分面积是____.(结果保留π)12 用字母表示下列图①,②中阴影部分的面积.3.2:代数式知识点1:认识代数式1.下列属于代数式的是( )A.s=ab B.a2-b2=(a+b)(a-b)C.2a+3 D.S=πr22.下列代数式中符合书写格式的是( )A.a-cb B.512ab2C.ab÷c D.m·33. 下列代数式中符合书写要求的是()A. ab4B. 413m C. x÷y D. −52a4. 在0,π,3,2πr,ab3,a-b中,代数式有()知识点2:代数式所表示的意义1.代数式3x2-5表示的意义是( ) A.x的平方的3倍与5的差B.x的3倍的平方与5的差C.3x的平方与5的差D.3x与5的差的平方2.实验中学九年级12个班总共有团员a人,则a12表示的实际意义是____________________.3.体育委员小金带了500元钱去买体育用品,已知一个足球x元,一个篮球y元,则代数式500-3x -2y表示的实际意义是___________________________________________.知识点3:列代数式1.“x的2倍与5的和”用代数式表示为_________.2.“比a的2倍大1的数”用代数式表示是( )A.2(a+1) B.2(a-1)C.2a+1 D.2a-13.用代数式表示:(1)x与y的差的平方的2倍;(2)x的2倍乘以y加7的积;(3)a,b两数的平方和除以5的商;(4)比a,b两数的平方差的2倍小c的数.4.A,B两地相距150千米,李明驾驶汽车以v千米/小时的速度从A地驶往B地,请你用代数式表示:(1)李明从A地到B地需要的时间;(2)如果汽车每小时多行驶10千米,李明从A地到B地需要多长时间?知识点4:代数式求值1. 当3,2=-=y x 时,代数式2324y x -的值为( )A.14B.–50C. –14D. 502. 当4,2=-=b a 时,代数式))((22b ab a b a ++-的值是( )A.56B.48C.–72D.72 3. 已知,则代数式的值是_____. 4. 如果,那么代数式的值是_____.5. 已知x +y =1,求代数式3x −2y +1+3y −2x −5的值.6. 如果a ,b 互为倒数,c ,d 互为相反数,且m 的绝对值是1,求代数式2ab −(c +d)+m 的值.3.3:单项式、多项式、整式知识点1:单项式3. 下面说法中正确的是( )A .一个代数式不是单项式,就是多项式B .单项式是整式C .整式是单项式D .以上说法都不对2.-a 2b 的系数是________,次数是________;26x 3y 2的系数是________,次数是________;-3m 2n 5的系数是________,次数是________.3.-4a 2b 的次数是( )A .3B .2C .4D .-44.下列说法正确的是( )A .单项式m 的次数是0B .-12πa 的系数是-12C .2πr 2的次数是3D.-a 2b 3的系数为-13,次数为35.下列说法正确的是( )A .单项式x 的系数和次数都是0B .单项式x 的系数和2的系数一样都是1C .5πR 2的系数为5D .0是单项式知识点2:多项式1. 下列式子:2a 2b ,3xy -2y 2,a +b 2,4,-m ,x +yz 2x ,ab -c π,其中多项式有( )A .2个B .3个C .4个D .5个2. 多项式4x 2-3x -2是________次________项式,它的项分别是________.-53a 2b 2+a 3-34ab +1是________次________项式,它的二次项的系数是________. 3. 多项式1+2xy -3xy 2的次数及最高次项的系数分别是( )A .3,-3B .2,-3C .5,-3D .2,34. 下列各多项式中,是二次三项式的是( )A .a 2+b 2C .5-x -y 2D .x 2-y 2+x -3x 25. 下列说法错误的是( )A.2a +b 是一次二项式B .x 6-1是六次二项式C .3x 4-5x 2y 2-6y 3+2是四次四项式D.1x 2+2x +1不是多项式知识点3:整式1. 在代数式x 2+5,-1,-3x +2,π,5x ,x 2+1x +1,5x 中,整式有( ) A .3个 B .4个C .5个D .6个2. 下列式子中:①mn +a ;②ax 2+bx +c ;③-6ab ;④x +y 2;⑤a -b x ;⑥5+7x.整式有________.(填序号) 3. 若2215(1)34mx y m y -+-是三次三项式,则常数m=( ) A .1 B .﹣1 C .±1 D .以上都不对4. 若n mx y -是关于x ,y 的一个单项式,且其系数为-3,次数为4,则mn 的值为( ) A .9 B .-9 C .12 D .-125. (3m -2)x 2y n +1是关于x ,y 的五次单项式,且系数为1,则m ,n 的值分别是( )A .1,4B .1,2C .0,5D .1,16. 如果整式x n -2-5x +2是关于x 的三次三项式,那么n 等于( )A .3B .4C .5D .67. 单项式23x 2y m 与多项式x 2y 2+12x 3y 4+13的次数相同,求m 的值;8. 已知:①-4x 2y 3;②-5.8ab 3;③6m ;④a 2-ab -2b 2;⑤x +z y ;⑥4m 2n -n +12;⑦a ; (1)其中哪些是单项式?分别指出它们的系数和次数;(2)其中哪些是多项式?分别指出它们的项和次数;。

新北师大版七年级(上)数学【第三章-整式及其加减】详细 讲义

新北师大版七年级(上)数学【第三章-整式及其加减】详细 讲义

第一节 字母表示数(1)【学习目标】1.理解字母可以表示任何数,在不同的问题中,根据具体情况字母限定为一些特殊的数。

2.用字母表示以前学过的运算律和计算公式。

3.探索规律并用字母表示规律。

【学习重难点】分析理解字母在哪些问题中可以表示任何数,在哪些问题中只能表示限定的数。

【学习过程】模块一 预习反馈 一.学习准备1.字母可以表示任何数如字母a 可以代表0或-3或2,只要是学习过的数, 都可以表示. 2.字母可表示公式和法则 如:(1)在行程问题中,路程=时间×速度.如果用s 表示路程,v 表示速度,t 表示时间,那么这个路程公式就可写成: (2)如果用a 表示长方形的长,b 表示长方形的宽,S 表示长方形的面积,l 表示长方形的周长,那么 ,它的周长 .(3)如果用r 表示圆的半径,S 表示圆的面积,l 表示圆的周长,那么 , (4)如果用S 表示面积,用a 表示三角形的底,用h 表示三角形的高,那么三角形的面积公式可以表示为 3、用字母表示运算律如果用a 、b 、c 分别表示有理数,那么加法交换律可以表示成: ; 加法结合律可以表示成: ; 乘法交换律可以表示成: ; 乘法结合律可以表示成: ; 乘法分配律可以表示成: . 联想发散:用字母还可以简明地表示一些数学规律,如“互为相反数的两数之和等于0”可表示为a+(-a )=0;用字母还可简明地表达未知数以及问题中的数量关系. 4、阅读教材:第一节《字母表示数》二、教材精读5、理解字母可以表示任何数如图,搭一个正方形需要4根火柴棒,按图中方式,动手做一做,完成下表:…………?4火柴棒根数…100…10321正方形个数想一想:如果用x 来表示所搭正方形的个数,那么搭x 个这样的正方形需要多少根火柴棒?与同伴交流你的做法。

归纳:字母可以表示任何数.用字母表示数可以简明地表达问题中的数量关系,也可以表达数字规律和公式.这样给我们研究问题带来很大方便. 实践练习:(1)明明步行上学,速度为vm/s;亮亮骑自行车上学,速度是明明的 3倍,则亮亮的速度可以表示为( )m/s.(2)今年李华m 岁,去年李华( )岁,5年后李华( )岁。

新北师大版七年级(上)数学【第三章-整式及其加减】详细 讲义

新北师大版七年级(上)数学【第三章-整式及其加减】详细 讲义

第一节 字母表示数(1)【学习目标】1.理解字母可以表示任何数,在不同的问题中,根据具体情况字母限定为一些特殊的数。

2.用字母表示以前学过的运算律和计算公式。

3.探索规律并用字母表示规律。

【学习重难点】分析理解字母在哪些问题中可以表示任何数,在哪些问题中只能表示限定的数。

【学习过程】模块一 预习反馈 一.学习准备1.字母可以表示任何数如字母a 可以代表0或-3或2,只要是学习过的数, 都可以表示. 2.字母可表示公式和法则 如:(1)在行程问题中,路程=时间×速度.如果用s 表示路程,v 表示速度,t 表示时间,那么这个路程公式就可写成: (2)如果用a 表示长方形的长,b 表示长方形的宽,S 表示长方形的面积,l 表示长方形的周长,那么 ,它的周长 .(3)如果用r 表示圆的半径,S 表示圆的面积,l 表示圆的周长,那么 , (4)如果用S 表示面积,用a 表示三角形的底,用h 表示三角形的高,那么三角形的面积公式可以表示为 3、用字母表示运算律如果用a 、b 、c 分别表示有理数,那么加法交换律可以表示成: ; 加法结合律可以表示成: ; 乘法交换律可以表示成: ; 乘法结合律可以表示成: ; 乘法分配律可以表示成: . 联想发散:用字母还可以简明地表示一些数学规律,如“互为相反数的两数之和等于0”可表示为a+(-a )=0;用字母还可简明地表达未知数以及问题中的数量关系. 4、阅读教材:第一节《字母表示数》二、教材精读5、理解字母可以表示任何数如图,搭一个正方形需要4根火柴棒,按图中方式,动手做一做,完成下表:…………?4火柴棒根数…100…10321正方形个数想一想:如果用x 来表示所搭正方形的个数,那么搭x 个这样的正方形需要多少根火柴棒?与同伴交流你的做法。

归纳:字母可以表示任何数.用字母表示数可以简明地表达问题中的数量关系,也可以表达数字规律和公式.这样给我们研究问题带来很大方便. 实践练习:(1)明明步行上学,速度为vm/s;亮亮骑自行车上学,速度是明明的 3倍,则亮亮的速度可以表示为( )m/s.(2)今年李华m 岁,去年李华( )岁,5年后李华( )岁。

第三章整式及其加减讲义 2024—2025学年北师大版数学七年级上册

第三章整式及其加减讲义  2024—2025学年北师大版数学七年级上册

北师大版七上第三章整式及其加减讲义知识点一.代数式1.下列各式中,符合代数式书写规则的是()A.B.C.D.2y÷z2.在式子n﹣3,a2b3,m+s<2,1+80%t,﹣xy,S=ab中,代数式的个数有()A.1个B.2个C.3个D.4个3.下列各式符合代数式书写规范的是()A.B.a×3C.3x﹣1个D.4.下列各式中,代数式有()个(1)a+b=b+a(2)1(3)2x﹣1(4)(5)s=πr2(6)A.2B.3C.4D.55.三个连续的自然数,中间的一个为n,则第一个为,第三个为.知识点二.列代数式6.下面四个整式中,不能表示图中阴影部分面积的是()A.x2+5x B.x(x+3)+6C.3(x+2)+x2D.(x+3)(x+2)﹣2x7.某种品牌的彩电降价30%以后,每台售价为a元,则该品牌彩电每台原价为()A.0.7a元B.0.3a元C.元D.元8.如图,下列四个式子中,不能表示阴影部分面积的是()A.3(x+2)+x2B.x(x+3)+6C.x2+5D.(x+3)(x+2)﹣2x9.某服装店新开张,第一天销售服装a件,第二天比第一天多销售12件,第三天的销售量是第二天的2倍少10件,则第三天销售了()A.(2a+2)件B.(2a+24)件C.(2a+10)件D.(2a+14)件10.某公司今年2月份的利润为x万元,3月份比2月份减少8%,4月份比3月份增加了10%,则该公司4月份的利润为(单位:万元)()A.(x﹣8%)(x+10%)B.(x﹣8%+10%)C.(1﹣8%+10%)x D.(1﹣8%)(1+10%)x11.如图,正方形ABCD的面积比正方形CEFC的面积小6,则阴影部分的面积是.12.某小区一块长方形绿地的造型如图所示,其中三个扇形表示绿地,右侧两扇形半径相同,其余部分需要铺五彩石,那么需铺五彩石的面积为(用含a、b的式子表示).13.一个两位数,十位数字为a,个位数字为b,这个两位数可以表示为.14.如图,将长为20厘米、宽为10厘米的长方形白纸粘合起来,粘合部分的宽是2厘米.若x张白纸粘合后的总长度是y厘米,则y与x之间的关系为.15.滴滴快车是一种便捷的出行工具,计价规则如下表:(1)若小东乘坐滴滴快车,行车里程为5公里,行车时间为10分钟,则需付车费多少元;(2)若小明乘坐滴滴快车,行车里程为a公里,行车时间为b分钟,则小明应付车费多少元?(用含a、b的代数式表示,并化简)(3)小王与小张各自乘坐滴滴快车,行车里程分别为9.5公里与14.5公里,并且小王的行车时间比小张的行车时间多24分钟,请计算说明两人下车时所付车费有何关系?知识点三.代数式求值16.按照如图所示的运算程序,下列输入的数据中,能使输出的结果为9的是()A.a=2,b=4B.a=4,b=2C.a=3,b=4D.a=4,b=317.已知代数式x+2y的值是3,则代数式2x+4y+1的值是.18.如果代数式4x2﹣2x+3的值为11,那么代数式2x2﹣x﹣7的值等于.19.如图所示是一个长方形.(1)根据图中尺寸大小,用含x的代数式表示阴影部分的面积S;(2)若x=3,求S的值.20.某游泳馆普通票价20元/张,暑假期间新推出两种优惠卡:A.金卡售价600元/张,每次游泳凭卡不再收费;B.银卡售价150元/张,每次游泳凭卡另收10元.已知小王同学暑假期间到游泳馆游泳x次.(1)求小王选择办理两种卡分别需要的费用;(2)若x=50,选择哪种优惠卡更合算.21.如图是一个运算程序:(1)若x=﹣4,y=5,求m的值;(2)若x=﹣3,输出结果m的值是输入y的值的两倍,求y的值.知识点四.同类项22.已知单项式与﹣3x2n﹣3y8是同类项,则3m﹣5n的值为.23.若16x m y5和x2y n+1是同类项,那么2m+n的值是.24.如果单项式﹣xy b+1与单项式是同类项,那么代数式(a﹣b)2023=.知识点五.合并同类项25.若代数式mx2+5y2﹣7x2+3的值与字母x的取值无关,则m的值是.26.已知与2a m+6b6的和仍然是一个单项式,则m n=.27.若整式﹣3a x b4与整式2a3b2﹣y的和是单项式,则y x=.知识点六.去括号与添括号28.如果多项式4x3+2x2﹣(kx2+17x﹣6)中不含x2的项,则k的值为.29.当1≤m<3时,化简|m﹣1|﹣|m﹣3|=.30.=3x2﹣2x+5.知识点七.整式31.下列说法中,不正确的是()A.﹣ab2c的系数是﹣1,次数是4B.﹣1是整式C.6x2﹣3x+1的项是6x2、﹣3x,1D.2πR+πR2是三次二项式32.下列各式:,m,8,,x2+2x+6,,,,其中整式有()A.3个B.4个C.5个D.6个33.在代数式﹣x2,,2xy,2x+y,3,6x2﹣y2+1中,整式有()A.2个B.3个C.4个D.5个34.一列式子:①﹣a2b;②;③;④﹣5,其中是整式的有.知识点八.单项式35.已知一个单项式的系数是2,次数是3,则这个单项式可以是()A.﹣2xy2B.3x2C.2xy3D.2x336.单项式﹣2πx3yz的系数和次数分别是()A.﹣2,6B.﹣2π,5C.﹣2,7D.﹣2π,637.单项式的系数是,次数是.38.单项式的系数是.39.若x a+2y4与﹣2x3y2b和仍为一个单项式,则(a﹣b)2022的值是.40.若与﹣3ab3﹣n的和为单项式,则m+n=.41.若单项式﹣x2m﹣1y2的次数是5,则m的值是.42.已知x、y互为相反数,m、n互为倒数,a是单项式﹣3bc的系数,求a2﹣4(x+y+2mn)的值.43.已知|3﹣a|+|5+b|=0,c是单项式4xy2z的次数,求(a+b)c的值.44.已知a、b互为相反数,c、d互为倒数,m是单项式﹣3xy3的次数,求5(a+b)+3cd﹣m的值.45.已知单项式是一个四次单项式,求2a+b﹣3的值.知识点九.多项式46.在下列式子,,ab2+b+1,x2+x3+6中,多项式有()A.2个B.3个C.4个D.1个47.下列说法中,正确的是()A.﹣的系数是﹣2B.﹣的系数是C.的常数项为﹣2D.﹣2x2y+x2﹣24是四次三项式48.下列说法中,正确的是()A.1不是单项式B.﹣的系数是﹣5C.﹣x2y是3次单项式D.2x2+3xy﹣1是四次三项式49.若关于x、y的多项式x5﹣m+5y2﹣2x2+3的次数是3,则式子m2﹣3m的值为.50.多项式﹣﹣(m﹣2)x﹣7是关于x的二次三项式,则m=.51.把多项式2x2+3x3﹣x+5x4﹣1按字母x降幂排列是.52.多项式2x5﹣3x3y﹣x3y3+4x4y的次数是a,b是最高次项系数的绝对值,c是四次项的系数,则ab﹣c2的值为.53.若多项式5x2y|m|﹣(m+1)y2﹣3是三次三项式,则m=.54.已知多项式是六次四项式,单项式的次数与这个多项式的次数相同.(1)求m,n的值;(2)求多项式的各项的系数和.55.已知单项式的次数与多项式a2+8a m+1b+a2b2的次数相同,求m的值.知识点十.整式的加减56.7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足.57.多项式3a2﹣2b2减去一个多项式得4a2+2b2,则减去的多项式是.58.有理数a,b,c在数轴上的位置如图所示:则代数式|a+c|﹣2|a﹣b|+|b﹣c|化简后的结果为.知识点十一.整式的加减—化简求值59.已知2x2﹣x﹣5=0,则4x4﹣x3+x2的值为.60.若单项式3x a y2与﹣2xy b是同类项,则5a2b3﹣[6a3b2﹣3(a2b3+2a3b2)]的值为。

七年级数学上册 第三章 整式及其加减 4 整式的加减要点梳理素材 (新版)北师大版

七年级数学上册 第三章 整式及其加减 4 整式的加减要点梳理素材 (新版)北师大版

《整式的加减》要点梳理1.同类项:所含的字母相同,并且相同字母的指数也分别相同的项叫做同类项. 注意:同类项与其系数及字母的排列顺序无关. 例如:232a b 与323b a -是同类项;而232a b 与325a b 却不是同类项,因为相同的字母的指数不同.2.合并同类项(1)概念:把多项式中相同的项合并成一项叫做合并同类项.注意:①合并同类项时,只能把同类项合并成一项,不是同类项的不能合并,如235a b ab +=显然不正确;②不能合并的项,在每步运算中不要漏掉.(2)法则:合并同类项就是把同类项的系数相加,所得的结果作为系数,字母和字母的指数保持不变.注意:①合并同类项,只是系数上的变化,字母与字母的指数不变,不能将字母的指数相加;②合并同类项的依据是加法交换律、结合律及乘法分配律;③两个同类项合并后的结果与原来的两个单项式仍是同类项或者是0.3.去括号与填括号(1)去括号法则:括号前面是“+”,把括号和它前面的“+”去掉,括号内的各项都不变号;括号前面是“-”,把括号和它前面的“-”去掉,括号内的各项都改变符号.注意:①去括号的依据是乘法分配律,当括号前面有数字因数时,应先利用分配律计算,切勿漏乘;②明确法则中的“都”字,变符号时,各项都变;若不变符号,各项都不变. 例如:()();a b c a b c a b c a b c +-=+---=-+;③当出现多层括号时,一般由里向外逐层去括号,如遇特殊情况,为了简便运算也可由外向内逐层去括号.(2)填括号法则:所添括号前面是“+”号,添到括号内的各项都不变号;所添括号前面是“-”号,添到括号内的各项都改变符号.注意:①添括号是添上括号和括号前面的“+”或“-”,它不是原来多项式的某一项的符号“移”出来的;②添括号和去括号的过程正好相反,添括号是否正确,可用去括号来检验. 例如:()();.a b c a b c a b c a b c +-=+--+=--4.整式的加减整式的加减实质上是去括号和合并同类项,其一般步骤是:(1)如果有括号,那么先去括号;(2)如果有同类项,再合并同类项.注意:整式运算的结果仍是整式.2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版七年级数学上册第三章知识点整

七上第三章整式及其加减
字母表示数
)字母表示运算律2)字母表示计算公式
字母可以表示任何数
代数式
)概念:像4+3,x+x+,a+b,ab,2,s/t等式子都是代数式,单独一个数或一个字母也是代数式,如-5,a,b等.
)书写要求:①字母与字母相乘时,乘号通常简写作“”或省略不写;数字与字母相乘时,数字在前;带分数与字母
相乘时,应先把带分数化成假分数后再与字母相乘;数字与
数字相乘仍用“×”.
②除法一般写成分数形式
③如果代数式是积或商的形式,单位直接写在后面;如
果是和或差的形式,必须先把代数式用括号括起来再写单
位。

整式
)单项式:表示数字和字母的积,单独的一个数或一个
字母也是单项式.
①系数:单项式中的数字因数
②次数:单项式中,所有字母的指数的和;单独的数字
是0次单项式.
注意:单项式中数与字母之间都是乘积关系,凡字母出
现在分母中的式子一定不是单项式,如1/x不是单项式;单项式中不含加减运算;π是常数,在单项式中相当于数字因数;定义中的“数”可以是小数,也可以是分数、整数.
)多项式:几个单项式的和;在多项式中,每个单项式
叫做多项式的项,不含字母的项叫常数项;一个多项式含有
几项,就叫几项式;
次数:多项式里,次数最高项的次数,是多项式的次数;
注意:确定多项式的项时,不要忽略它的符号;关于某
个字母的n次项式,要求是合并同类项后的最简多项式.
)整式:单项式和多项式统称为整式.
)同类项:①概念:所含字母相同,并且相同字母的指
数也相同的项;与它们的系数大小无关,与字母顺序无关;
几个常数也是同类项.
②合并同类项法则:同类项的系数相加,所得结果作为
系数,字母和字母的指数不变.
整式的加减:
)整式加减是求几个整式的和或差的运算,其实质是去
括号,合并同类项
)法则:几个整式相加减,用括号把每一个整式括起来,
再用加减号连接,然后去括号,合并同类项.
)化简求值:一是相加减化简,二是用具体数值代替整式中的字母,三是按式子的运算关系计算,计算其结果.
探索与表达规律:图形中的规律、数字中的规律、算式中的规律.。

相关文档
最新文档