射频电路中无源器件特性

合集下载

微波无源器件简介8

微波无源器件简介8

3dB电桥图片 3dB电桥图片
Copyright 2009 Potevio Corporation, All Rights Reserved
3dB电桥在系统中的应用 3dB电桥在系统中的应用
Copyright 2009 Potevio Corporation, All Rights Reserved
Copyright 2009 Potevio Corporation, All Rights Reserved
耦合器室内覆盖应用
耦合器 功 分 器 耦合器
耦合器
直放站
耦合器
耦合器
Hale Waihona Puke 干线放大器耦合器Copyright 2009 Potevio Corporation, All Rights Reserved
Copyright 2009 Potevio Corporation, All Rights Reserved
销售过程中产品技术指标的解答和说明
1.耦合器 指标里一般会提到频率范围、耦合度、耦合平坦度、插 入损耗、回波损耗(驻波比) 、隔离度、功率容量、温 度范围,湿度,接口形式,外形尺寸,喷漆颜色,安装方 式,贴牌要求等.其中必须知道的是:频率范围、耦合度 、耦合平坦度、插入损耗、回波损耗(驻波比) 、隔离 度.耦合度与插入损耗的关系是耦合数值越大(弱耦合) 插损越小,耦合数值越小(强耦合)插损越大. 2.功分器 如果是带线或微带结构一般会提到频率范围、插入损 耗、回波损耗(驻波比) 、隔离度、功率容量、温度范 围,湿度,接口形式,外形尺寸,喷漆颜色,安装方式, 贴牌要求等. 而如果是同轴线结构则指标里不会出现隔离度的要求 ,其余同带线或微带功分器指标一样.
四频合路器 三频合路器 三频合路器

射频基础知识及其主要指标

射频基础知识及其主要指标

1000~100千米 (km) 100~10千米 10~1千米 1000~100米 100~10米 10~1米 10~1分米
微波
(km) (km) (m) (m) (m) (dm) (cm) (mm) (dmm)
300~3000千赫 (kHz) 3~30兆赫 (MHz)
甚高频(VHF) 特高频(UHF) 超高频(SHF) 极高频(EHF) 至高频
Rb
:接收基带输出端单位比特能噪比。 其中前三项由射频通道性能所决定,是线性的, 后二项由解码特性所决定,取决于信道速率等因素。
N0
Eb
Comba Telecom Systems
干扰协调
最大干扰容限
在最大干扰容限的仿真模拟测试中,有关主管部门提出的一个标 准是以接收机灵敏度(射频线性部分)恶比 0.8dB 为标准,这相当于 在被干扰信号上迭加了一个比它低 6.9dB( 以下计算以 7dB 计)( dBm) SI SR 6.9 的干扰信号。
-132 -126 -123 -122 -116 -111.3
PHS
-119 -113 -110 -110 -104 -99.3
WCDMA
-119 -113 -110 -109 -103 -98.3
CDMA2000 -124 -118
-115 -114 -108 -103.3
TDSCDMA -124 -118
接收机的热噪声功率电平(底噪)
任何一个无线通信接收机能否正常工作,不仅取决于所能获得的输入 信号的大小,而且也与其内部噪声以及外部噪声和干扰的大小有关。 接收机内部噪声也称为热噪声,它是由电子运动所产生的,其定义是 指当温度为290°K(17°C)时,由接收机通带(通常由接收机中频带 宽所决定)所截获的热噪声功率电平。这个热噪声功率电平也称为接收 机的底噪,是计算接收机噪声的基本参数。 No= KT B(W) B: 接收机(中频)带宽 T: 绝对温度值 290° -23 K: 玻尔兹曼常量 1.37×10 如用dBW表示,可写为 No(dBw)= -204 dBW + 10lgB 或 = -174 dBm + 10lgB 对于G网,B = 200KHz,10lgB=53dBHz,No = -121dBm

射频基础知识

射频基础知识

输入/输出驻波比( 输入 输出驻波比(Input/Output VSWR) 输出驻波比 / ) 传输线上的电压波或电流波通常都是由入射波和反射波叠 加而成的,当它们相位相同时,该处的电压波或电流波的 振幅最大,称波腹点;当它们的相位相差π时,该处的电 压波或电流波的振幅最小,称波节点。传输线上电压波 (或电流波)最大值与最小值之比称为驻波比,又称为驻 波系数。在输入、输出端测得的驻波比分别成为输入、输 出驻波比。
AMPS
SMR
IDEN (800)
CDMA2000 1X EVDO
CDMA2000 MX
CDMA2000的过渡路径 CDMA2000的过渡路径
标准 IS-95A IS-95A IS-95B IS-95B CDMA2000第 CDMA2000第1阶段 9600 bit/s或14.4kbit/s bit/s或14. 主要是前向链路上的话音和数据,改进的切换以及64/56 kbit/s 主要是前向链路上的话音和数据,改进的切换以及64/ SR1(1.2288Mchip/s) SR1 2288Mchip/s) 话音和数据(经由孤立信道的分组数据) 128Walsh码 128Walsh码 具有2倍的IS-95容量 具有2倍的IS-95容量 达到144kbit/s(使用SR1T 1XRTT方式) 达到144kbit/s(使用SR1T 1XRTT方式) CDMA2000第 CDMA2000第2阶段 SR3(3.6864Mchip/s) SR3 6864Mchip/s) 定向于分组数据 具有更高的数据率 达到144kbit/s:移动车载用户 达到144kbit/s:移动车载用户 384kbit/s:移动步行用户 384kbit/s:移动步行用户 2Mbit/s:固定的用户 2Mbit/s:固定的用户 256Walsh码 256Walsh码 突出要求

03 射频信号的三大要素

03 射频信号的三大要素

三、阻抗要素
50Ω和75Ω阻抗 在射频信号进入自由空间之前,会在导体或器件内振荡。每个器件都有一个 入口或出口,或两者都有。如果射频信号从一个器件穿过一个导体进入另外 一个器件,导体和器件之间要有连接。为了方便,工程师将连接标准化,这 样,一个公司生产的器件就可以和另一个公司生产的器件匹配工作,只有很 小的信号损失。阻抗的度量单位是欧姆。 至于为什么是50Ω,这只是一个巧合,第二次世界大战期间,军队需要连接 一些碰巧是50Ω阻抗的天线,于是,他们开发了一些50Ω的电缆(后来称为 RG-58)并大量使用,其它所需要连接的设备都只能是适从50Ω了。 50Ω是最佳的吗?答案是否定的。以射频电缆为例,75Ω的性能更佳(即衰 减更小)。它是近期开发的,75Ω是用于有线电视中的阻抗。相应地,现在 有两种阻抗标准:通信射频用50Ω和电视射频用75Ω。
其实C/N和C/I对于通信的影响是归一的,都是衡量有用信号(载波)和 无用信号(噪声、干扰)的关系。C/N和C/I的好坏,在数字通信系统中 直接关系到误码率的高低。
三、功率要素
功率 有用信号
C/N
C/I
干扰信号 噪声
频率
三、功率要素
有关射频/微波信号功率的基本电路 衰减器:衰减器是指控制射频/微波信号功率的大小的器件,通常根据衰 减量分为固定衰减器和可变衰减器两种。 功率分配器/合路器:功率分配器是将一路射频/微波信号分成若干路的 器件,一般是等分的。例如二功分器、三功分器。功分器也可以作为合 路器使用,在各个支路口接不同频率的信号,在主路合路输出。 定向耦合器:定向耦合器是一种有方向性的无源射频和微波功率分配器 件。定向耦合器通常是耦合主路的一小部分功率到耦合端,用以检测主 路信号的工作状态是否正常;在移动通信天线覆盖系统里,传输信号耦 合一部分信号至天线,实现信号覆盖。耦合度通常可分为:5dB、6dB、 7dB、10dB、15dB、20dB、30dB、50dB等。 放大器:射频/微波放大器是提高射频/微波信号电平的有源电路。

射频电路设计原理与应用

射频电路设计原理与应用

【连载】射频电路设计——原理与应用相关搜索:射频电路, 原理, 连载, 应用, 设计随着通信技术的发展,通信设备所用频率日益提高,射频(RF)和微波(MW)电路在通信系统中广泛应用,高频电路设计领域得到了工业界的特别关注,新型半导体器件更使得高速数字系统和高频模拟系统不断扩张。

微波射频识别系统(RFID)的载波频率在915MHz和2450MHz频率范围内;全球定位系统(GPS)载波频率在1227.60MHz和1575.42MHz的频率范围内;个人通信系统中的射频电路工作在1.9GHz,并且可以集成于体积日益变小的个人通信终端上;在C波段卫星广播通信系统中包括4GHz的上行通信链路和6GHz的下行通信链路。

通常这些电路的工作频率都在1GHz以上,并且随着通信技术的发展,这种趋势会继续下去。

但是,处理这种频率很高的电路,不仅需要特别的设备和装置,而且需要直流和低频电路中没有用到的理论知识和实际经验。

下面的内容主要是结合我从事射频电路设计方向研究4年来的体会,讲述在射频电路设计中必须具备的基础理论知识,以及我个人在研究和工作中累积的一些实际经验。

作者介绍ChrisHao,北京航空航天大学电子信息工程学院学士、博士生;研究方向为通信系统中的射频电路设计;负责或参与的项目包括:主动式射频识别系统设计、雷达信号模拟器射频前端电路设计、集成运算放大器芯片设计,兼容型GNSS接收机射频前端设计,等。

第1章射频电路概述本章首先给出了明确的频谱分段以及各段频谱的特点,接着通过一个典型射频电路系统以及其中的单元举例说明了射频通信系统的主要特点。

第1节频谱及其应用第2节射频电路概述第2章射频电路理论基础本章将介绍电容、电阻和电感的高频特性,它们在高频电路中大量使用,主要用于:(1)阻抗匹配或转换(2)抵消寄生元件的影响(扩展带宽)(3)提高频率选择性(谐振、滤波、调谐)(4)移相网络、负载等第1节品质因数第2节无源器件特性第3章传输线工作频率的提高意味着波长的减小,当频率提高到UHF时,相应的波长范围为10-100cm,当频率继续提高时,波长将与电路元件的尺寸相当,电压和电流不再保持空间不变,必须用波的特性来分析它们。

工程师必须要掌握的常用天线无源器件原理及功能

工程师必须要掌握的常用天线无源器件原理及功能

工程师必须要掌握的常用天线无源器件原理及功能工程师在无线通信系统的设计和维护中,需要了解天线和无源器件的原理和功能。

天线是将电磁能量从导线传输到自由空间的装置,而无源器件是在电路中不需要供电的元器件。

下面是工程师必须要掌握的常用天线和无源器件的原理和功能的介绍。

一、常用天线的原理和功能:1.简单天线:如半波长偶极子天线和单极天线。

原理是电流通过导线会在空间产生辐射,仿佛天线是一个辐射源。

常见于Wi-Fi路由器和收音机。

2. 方向性天线:如小型喇叭天线和Yagi天线。

原理是通过设计天线的形状和构造来实现特定的辐射方向性。

常见于通信基站和无线电测量设备。

3. 宽频带天线:如Vivaldi天线和螺旋天线。

原理是通过特殊的天线结构和构造实现宽频带的传输和接收功能。

常见于雷达和宽带通信系统。

4.衍射天线:如带状天线和光纤天线。

原理是利用天线和介质的交互作用,实现辐射和接收无线信号。

常见于射频传输和微波通信系统。

5.平面天线:如微带天线和贴片天线。

原理是将导体片固定在平面表面上,实现辐射和接收电磁波的功能。

常见于移动通信设备和卫星通信终端。

6.捕捉天线:如磁环天线和弹性天线。

原理是通过改变天线的物理位置或形状,实现对特定频段的信号捕捉和过滤。

常见于无线电接收器和RFID读写器。

二、常用无源器件的原理和功能:1.电阻器:原理是通过电阻材料的电阻值限制电流的流动,用于电路的调节和阻抗匹配。

2.电容器:原理是利用电场作用储存电荷,用于能量存储和电路的频率响应调节。

3.电感器:原理是利用电磁感应作用储存磁能,用于滤波和电路的频率响应调节。

4.变压器:原理是通过线圈的磁场耦合实现输入和输出电压的变化,用于电压转换和隔离。

5.二极管:原理是利用半导体的PN结实现单向电流导通,用于电流控制和电路开关。

6.晶体管:原理是利用半导体材料的输运特性实现电流放大,用于信号放大和电路控制。

7.三极管:原理是在晶体管的基础上添加了一个控制接口,实现电流的放大和控制功能。

13 无源元件的射频特性.

13  无源元件的射频特性.

图1.3.9 二端陶瓷元件的等效电路
图1.3.10 二端陶瓷元件等效阻抗的频率特性


3.三端陶瓷元件 三端陶瓷元件的结构与符号如图1.3.11所示,由两片 陶瓷片A和B用导电胶粘合起来,由粘合面引出的端子 作为公共端,而由另两面引出的端子分别作为输入端 和输出端, 输入信号u加在A片上,它将电能转换成机械能,并产 生机械振动。机械振动通过粘合面传到B片上,又将机 械能转换成电能,输出给外接负载RL。同样,当信号 频率与陶瓷片固有的机械振动频率相等时,形成共振。 共振状态可形成强的电流,提供最大的电流到外部电 路。在共振的条件下,输出和输入信号间可能是同相 位,也可能有180°的相位差,与A、B陶瓷片的粘合 面有关。


石英晶体谐振器的等效电路如图1.3.7(a)所示,石英 晶体谐振器的符号如图1.3.7(b)所示。 图中,Lq为动态电感(等效电感);Cq为动态电容;rq 为动态电阻;C0为晶片与金属极板构成的静态电容。
图1.3.7 石பைடு நூலகம்晶体谐振器的等效电路和符号

石英晶体谐振器的等效电感Lq非常大,而Cq和rq都非常 小,所以石英晶体谐振器具有非常高的Q值,其Q值为
1 j C0 1 j C0
Lq (1 1/ 2 Lq Cq )
Cq C0 Lq 1 1/ Lq Cq C0 2 s2 p 1 2 1 2
(1.3.5)
图1.3.8 石英晶体谐振器的阻抗特性
1.3.5 压电陶瓷元件的射频特性



采用压电陶瓷材料(如铁钛酸铅)构成的压电陶瓷元 件有压电陶瓷谐振器、压电陶瓷滤波器等。它们在射 频电路的振荡槽路、选频网络、滤波等电路中应用, 具有频率稳定性好,选频特性尖锐和调试简单等优点。 通常将压电陶瓷材料做成片状,在其两面涂以银层, 作为电极,构成压电陶瓷元件。 1.压电陶瓷元件的压电效应 压电陶瓷材料具有压电效应,即能将机械的作用力转 换成电效应,也能将电的作用转换成机械效应。

1 什么是无源互调( PIM )? 无源互调与有源互调

1 什么是无源互调( PIM )? 无源互调与有源互调

1.什么是无源互调(PIM)?无源互调与有源互调相类似,只是无源互调是无源器件产生的。

只要在一个射频导体中同时存在两个或两个以上RF信号,就会产生互调。

当器件中存在一个以上的频率时,任何无源器件都会产生无源互调产物。

由于不同材料的连接处的具有非线性,信号会在结点混合。

典型地,其奇数阶互调产物(如IM3=2*F1-F2)会落在基站的上行或接收频段内,成为干扰接收机工作的信号。

它会造成独立于接收机随机底噪的接收机减敏现象。

2.产生PIM的典型原因?在射频器件(天线、电缆、滤波器等)中,有三个典型的成因:1.射频通道中不良的机械结点2.射频器件的材料具有磁滞现象(如不锈钢)3.射频通道中的表面或接触面受到污染。

例如,焊料(会吸附其他污染物)和加工过程中的金属微粒。

在一个完整的基站中,大功率放大器和接收机滤波器之间的任何无源器件都会产生严重的无源互调信号。

铁塔(“生锈螺钉噪声”)或发射天线的直射波周围的金属物质也会产生无源互调信号。

3.什么是IM3和IM5?它一般用来说明我们所讨论的互调产物的阶数。

IM表示“互调(inter-modulation)”。

紧跟着的数字是产生互调产物的两个母信号的整数倍频之和。

通过下表,可以很好的理解这个概念:IM Calculation互调计算IM Order互调阶数2*F1±1*F2 = F IM3Third Order (2+1=IM3)3*F1±2*F2 = F IM5Fifth Order (3+2=IM5)4*F1±3*F2 = F IM7Seventh Order (4+3=IM7)5*F1±4*F2 = F IM9Ninth Order (5+4=IM9)一般来说,阶数越小能量越大。

尽管如此,在选频系统中,接收机中的五阶互调产物大于三阶互调产物也是有可能的。

4.如果定义“良好”的PIM值?一个给定的RF器件所要求达到的无源互调水平对于该器件所在的最终系统的性能来说,是非常重要的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无源器件特性
1.高频电阻
低频电子学中最普通的电路元件就是电阻,它的作用是通过将一些电能装化成热能来达到电压降低的目的。

电阻的高频等效电路如图所示,其中两个电感L模拟电阻两端的引线的寄生电感,同时还必须根据实际引线的结构考虑电容效应;用电容C模拟电荷分离效应。

电阻等效电路表示法
根据电阻的等效电路图,可以方便的计算出整个电阻的阻抗:
下图描绘了电阻的阻抗绝对值与频率的关系,正像看到的那样,低频时电阻的阻抗是R,然而当频率升高并超过一定值时,寄生电容的影响成为主要的,它引起电阻阻抗的下降。

当频率继续升高时,由于引线电感的影响,总的阻抗上升,引线电感在很高的频率下代表一个开路线或无限大阻抗。

一个典型的1KΩ电阻阻抗绝对值与频率的关系
2.高频电容
片状电容在射频电路中的应用十分广泛,它可以用于滤波器调频、匹配网络、晶体管的偏置等很多电路中,因此很有必要了解它们的高频特性。

电容的高频等效电路如图所示,其
中L为引线的寄生电感;描述引线导体损耗用一个串联的等效电阻R1;描述介质损耗用一个并联的电阻R2。

电容等效电路表示法
同样可以得到一个典型的电容器的阻抗绝对值与频率的关系。

如下图所示,由于存在介质损耗和有限长的引线,电容显示出与电阻同样的谐振特性。

一个典型的1pF电容阻抗绝对值与频率的关系
3.高频电感
电感的应用相对于电阻和电容来说较少,它主要用于晶体管的偏置网络或滤波器中。

电感通常由导线在圆导体柱上绕制而成,因此电感除了考虑本身的感性特征,还需要考虑导线的电阻以及相邻线圈之间的分布电容。

电感的等效电路模型如下图所示,寄生旁路电容C 和串联电阻R分别由分布电容和电阻带来的综合效应。

高频电感的等效电路
与电阻和电容相同,电感的高频特性同样与理想电感的预期特性不同,如下图所示:首
先,当频率接近谐振点时,高频电感的阻抗迅速提高;第二,当频率继续提高时,寄生电容C的影响成为主要的,线圈阻抗逐渐降低。

电感阻抗绝对值与频率的关系
总之,在高频电路中,导线连同基本的电阻、电容和电感这些基本的无源器件的性能明显与理想元件特征不同。

读者可以发现低频时恒定的电阻值,到高频时显示出具有谐振点的二阶系统相应;在高频时,电容中的电介质产生了损耗,造成电容起呈现的阻抗特征只有低频时才与频率成反比;在低频时电感的阻抗响应随频率的增加而线形增加,达到谐振点前开始偏离理想特征,最终变为电容性。

这些无源元件在高频的特性都可以通过前面提到的品质因数描述,对于电容和电感来说,为了调谐的目的,通常希望的到尽可能高的品质因数。

相关文档
最新文档