激光拉曼散射光谱知识
激光拉曼光谱基本原理

当单色光通过物质时,其散射的光有部分频率和能量发生变化,
也就是说散射光频率与入射光频率发生了偏移,此时产生拉曼 (Raman)散射。这种频率的偏移与分子的振动和转动有关,记录 偏移情况,即可得到拉曼光谱。
Raman光谱的基本原理
激发虚态 E1 + h0 h0 E1 E0 + h0 h0 h0 V=1 V=0
STOKES Rayleig h ANTI-STOKES
Raman位移
0 -
0
0+
Raman光谱的基本原理
例:
我们一般 以Raman位移(波数) 为横坐标;强度为纵坐标,而把 激发光的波数作为零(频率位移 的标准,即v0)写在光谱的最右 边,并略去反Stokes谱带,便得 到类似于红外光谱的Raman光谱 图。
Raman光谱的基本原理
激发虚态 h0 E1 E0 E1 + h0 E0 + h0 h0 h 0 V=1 V=0 h(0 - )
h0 +
Raman散射h
Rayleigh散射 而Ra Nhomakorabeaan散射是光子与物质分子产生非弹性碰撞,他
们之间产生能量的交换,光子不但发生了方向上的改变, 而且能量会减少或增加。如上图所示,受激到激发态的 分子不是按照相应得返回到受激前的能级,这就会使入 射频率与散射光频率不同,产生一个能量差。
STOK ES
Raman散射光强度取决于分子的极化率、光 源的强度、活性基团的浓度等多种因素。极 化率越高,分子中电子云相对于骨架的移动 越大, Raman散射越强。在不考虑吸收的情 况下,其强度与入射光频率的4次方成正比 0 -
0
0+
Raman光谱的基本原理
激光拉曼光谱法

激光拉曼光谱法激光拉曼光谱法(LaserRamanSpectroscopy,LRS)是一项非常重要的光谱技术,它是利用比较强的激光光束来测定物质的结构和化学性质。
技术的基本原理是利用激光照射被检测物质,使其中的原子能量升高,从而产生拉曼散射,通过测量散射光,可以获得有关物质结构和化学性质的信息。
简而言之,激光拉曼光谱法是利用激光光束使物质发射出拉曼散射,从而获得物质的结构和化学属性的一种光谱技术。
激光拉曼光谱法的优点主要有四:首先,它是一种非破坏性的检测方法,可以测量微量样品;其次,它具有良好的空间分辨率,可以对多种材料进行非破坏性检测;再次,它具有较强的抗噪声能力,并且测量精度高;最后,它可以用来测量几乎所有物质,涵盖了生物、化学和物理学等多个领域。
激光拉曼光谱法的应用非常广泛,它可以用来测量有机物、无机物、晶体以及液体的物理性质、结构和化学性质,同时可以用于对分子的排序和重组、纳米结构的测量以及蛋白质的结构分析,等等。
例如,激光拉曼光谱法可以用来分析有机材料、无机材料以及半导体材料,也可以用来测量液体、固体、粉体等材料的某些特性。
激光拉曼光谱法的精度取决于多种因素,主要有激光束能量、激光束精度、样品大小、样品分布和测量环境等。
因此,在实际使用时,必须按照规定的标准来选择合适的激光束、样品大小以及测量环境,以确保能够获得准确的测量结果。
除此之外,在使用激光拉曼光谱法测量样品时,为了避免环境温度和湿度等外界因素的影响,最好在封闭空间中进行测量。
总之,激光拉曼光谱法是一种非常实用的光谱技术,它可以用来检测有机物、无机物、晶体以及液体的物理性质、结构和化学性质,为分析物质的组成和结构提供了一种简洁、准确的方法。
当然,要想获得准确的测量结果,就必须根据测量样品的特性,选择合适的激光束、样品大小以及测量环境,严格按照规定的标准来进行测量。
激光拉曼光谱仪原理

激光拉曼光谱仪原理
激光拉曼光谱仪是一种基于拉曼散射原理的仪器,用于研究和分析样品的分子结构。
它利用激光光源照射样品,将激光光子与样品分子相互作用的结果,通过光学系统收集、分析和解读后,得到样品的拉曼散射光谱。
激光拉曼光谱仪的工作原理如下:
1. 激光源:使用可调谐激光源,通常是单色激光器,产生具有特定波长的单色激光光源。
常用的激光波长包括532 nm和
785 nm。
2. 光学系统:激光光源经过准直、聚焦等光学元件,使光线在样品上聚焦成一个细小的光斑点。
同时,收集样品上产生的拉曼散射光。
3. 样品与激光相互作用:激光光斑照射在样品上,激发样品分子的振动、转动等运动。
一部分激光能量被样品吸收,剩余的能量以散射光的形式发出。
激光散射光中,有一部分与样品分子的振动、转动等运动信息相关,称为拉曼散射光。
4. 光谱分析:拉曼散射光由光学系统收集后,经过分光装置进行波长分离,最后通过光电探测器转化为电信号。
通过记录和分析这些电信号,可以得到样品的拉曼光谱。
激光拉曼光谱仪的优点是非常灵敏、无需样品处理,能够在非破坏性条件下对样品进行分析。
它广泛应用于化学、材料科学、生物分析等领域,可以用于表征样品的组分、结构、反应动力学等信息。
激光拉曼光谱

激光拉曼光谱激光拉曼光谱(Laser-RamanSpectroscopy,简称LRS)是一种利用激光来分析物质结构的一种光谱技术,它利用一个发射激光光束,并用它强烈聚焦在分析物的表面上,使之发射出一个与激光光束频率不同的被称为拉曼散射的光束,从而得到拉曼光谱,从而分析和判断物质的分子结构、晶体结构等。
激光拉曼光谱技术由Laser Raman Spectroscopy隐含在其中,是一种把激光光束投影到物体表面,并对物体表面反射出的光线进行分析、测定其频率特征来达到分析物体结构的一种技术。
激光拉曼光谱有着广泛的研究应用,它既可以用于分析固体,也可以用于分析液体,还可以用于分析气体,用于研究物体的结构,用于研究物体的性能以及用于研究物体的分子组成或结构的研究。
激光拉曼光谱的基本原理是利用激光对物体表面发射的光线进行发射分析,因此拉曼光谱仪是一种采用双光路,一个使用激光发射光束,另一个使用拉曼散射分析激光发射光束反射回来的信号,从而分析该物体的光谱特性的仪器。
通过概率分析拉曼散射信号,可以推断出分子或晶体结构特性,从而获得其结构信息,进而研究物体的性能。
例如,在材料科学领域,可以通过激光拉曼光谱技术分析出晶体的结构信息,从而了解晶体的性质和物理特性,并获得晶体的分子结构参数,进而研究其特性。
激光拉曼光谱技术具有品质检测简便、快速、稳定、可靠、耗能低等优点,已经广泛应用在航天、航空、军事、制造业、生物、化学、电子等诸多领域。
此外,激光拉曼光谱技术的应用涉及的领域还不断扩大,例如,在汽车制造业和医疗领域,激光拉曼光谱技术应用也越来越广泛。
激光拉曼光谱技术具有很高的研究和应用价值,它是一种测定物体结构的有效方法。
但是,激光拉曼光谱技术仍然有一定的局限性,因为其分析效率低,容易受到环境噪声的干扰,还可能因为激光发射时的频率不够均匀而影响分析结果。
激光拉曼光谱技术是一种重要的光谱技术,正得到越来越多的研究与应用,也应得到相应的重视。
激光拉曼散射光谱知识

凡是具有对称中心 的分子,它们的红外吸 收光谱与拉曼散射光谱 没有频率相同的谱带一 一互相排斥定则由于拉 曼与红外光谱具有互补 性,因而二者结合使用 能够得到更丰富的信息。
高分子的红外二向色性及拉曼去偏振度
在聚酰胺-6的红外光谱中,某些谱带显示了 明显的二向色性特性。
它们是NH伸缩振动(3300cm-1)、CH2伸缩振动 (3000-2800cm-1)、酰胺I(1640cm-1)及配胺 Ⅱ(1550cm-1)吸收和酰胺Ⅲ(1260cm-1和1201cm- 1)吸收谱带。
对于一般红外及拉曼 光谱,可用以下几个 经验规则判断:
1、互相排斥规则
凡有对称中心的分子, 若有拉曼活性,则红 外是非活性的;若有 红外活性,则拉曼是 非活性的;
2、互相允许规则
凡无对称中心的分子,除属于点 群D5h, D2h和O的分子外.都有 一些既能在拉曼散射中出现,又 能在红外吸收中出现的跃迁。若 分子无任何对称性,则它的红外 和拉曼光谱就非常相似。
拉曼光谱中,完全自由取向的分子所散
射的光也可能是偏振的,因此一般在拉曼光 谱中用退偏振比(或称去偏振度)ρ表征分子 对称性振动模式的高低。
= I
I
ρ<3/4的谱带称为偏振谱带, 表示分子有较高的对称振动 模式;ρ=3/4的谱带称为退 偏振谱带,表示分子的对称 振动模式较低。
式中I∥和I┴——分别代 表与激光电矢量相垂直 和相平行的谱线的强度
◆ 分子对称骨架振 动的红外信息很少 见到。故拉曼光谱 和红外光谱虽产生 的机理不同,但它 们能相互补充,较 完整地获得分子振 动能级跃迁的信息。
拉曼光谱仪
便携式拉曼光谱仪
1.激光器功率: 150 - 200 mW 或 300 - 400 mW* 通过调整可以获得高能量输出 2.光谱范围: 300 - 3900 cm-1 3.像素: 14 µ m x 200 µ m (2048 像素) 4.分辨率: < 6 cm-1 5.光谱覆盖 ~ 200 cm-1 ~2400 cm-1 (785 nm /808 nm激发
激光拉曼光谱

激光拉曼光谱激光拉曼光谱技术是一种基于激光和拉曼散射原理的光谱分析技术,它通过测量拉曼光谱,研究物质的化学结构、成分信息、物性参数等,以及拉曼光谱和分子结构的关系,为物理、化学和材料科学领域提供了广泛的研究和应用机会。
激光拉曼光谱的研究方法包括电子及共振光谱技术,它可以用来探测物质的结构和性质,也可以识别和分析物质的成分。
激光拉曼光谱的技术依赖的理论基础可以分为普通的拉曼原理、共振拉曼原理和复合拉曼原理。
拉曼原理是由拉曼散射测量分析物质中元素振动或颗粒所产生的拉曼散射现象,这种现象所产生的拉曼光谱容易识别物质的成分和结构。
共振拉曼散射是由物质的外电子云或共价键的频率相关的电磁场的组合而观测到的,它可以获得元素在物质中的分子结构,从而获得物质的化学结构信息。
复合拉曼散射是指拉曼散射和共振拉曼散射结合在一起使用,可以获得更多的信息。
激光拉曼光谱技术是一种灵敏、高分辨率的分析技术,可以应用于多种物质,如生物、材料、环境等,它可以用来检测机理、探索结构、计算反应率,在广泛应用于物理化学研究和机械工程制造领域。
激光拉曼光谱技术的优点可归纳为:(1)精确可靠,它可以测量到物质结构的非常小的变化,而不会受到其他因素的影响;(2)灵敏度高,可以探测到痕量物质;(3)可以获得高分辨率的全光谱信息;(4)可以检测物质的多种特性;(5)对物质的测量不受环境的影响;(6)快速测量,可以快速分析多种物质。
激光拉曼光谱技术的应用十分广泛,它可以应用于工业领域的控制及检测,如分析精细化学品;也可以应用于表面分析,如金属和多层膜结构的探索;可以应用于生命科学领域,如生物分子和生物大分子的结构和物性参数的检测;还可以应用于环境领域,如分析气体、水体中的痕量化学物;还可以应用于材料工程领域,如分析材料的结构和组成,以及晶体内部的分析等。
总之,激光拉曼光谱技术在物理、化学、材料工程、环境等多个领域中都有着广泛的应用,它拥有良好的准确性、灵敏性以及全光谱信息分析能力,而且操作简单便捷,是一种重要的分析技术。
激光拉曼光谱的基本原理和应用

激光拉曼光谱的基本原理和应用概述激光拉曼光谱是一种分析化学技术,通过激光与物质相互作用产生拉曼散射,来研究物质的结构、组成和分子间相互作用。
它具有非破坏性、无需样品准备和实时性等优点,逐渐成为了化学、材料科学、生物科学等领域的重要工具。
基本原理1.激光激发:使用单色激光激发样品,激光光源通常采用连续激光或脉冲激光。
2.拉曼散射:激光与物质相互作用时,部分光子会发生能量改变,产生拉曼散射。
拉曼散射分为斯托克斯拉曼散射和反斯托克斯拉曼散射两种类型。
3.能量转移:拉曼散射中发生的能量转移可以反映样品的各种信息,包括化学成分、结构、晶格振动、分子动力学等。
4.光谱测量:将拉曼散射的频率和强度进行测量,得到拉曼光谱。
拉曼光谱可以通过光谱解析获得样品的详细信息。
应用领域1. 分析化学•定性分析:通过比对拉曼光谱数据库,可以鉴定物质的组成和结构,例如鉴别药品中的成分、研究有机化合物的结构等。
•定量分析:利用拉曼光谱与物质的浓度之间的关系,可以进行定量分析,例如测定食品中的添加剂含量、检测环境中的污染物等。
•微生物检测:拉曼光谱可以用于微生物的快速检测与鉴别,例如检测食品中的细菌、水质中的藻类等。
2. 材料科学•表征材料:激光拉曼光谱可以用于表征各种材料,包括无机材料、有机材料和生物材料等,例如研究催化剂的表面性质、分析聚合物的分子结构等。
•动态研究:拉曼光谱可以实时监测样品的变化过程,例如观察材料的相变、溶液的反应动力学等。
•薄膜制备:通过拉曼光谱的组成分析,可以优化薄膜的制备过程,提高其性能。
3. 生物科学•细胞研究:利用激光拉曼光谱,可以对细胞的化学成分进行非破坏性分析,例如观察细胞的代谢活性、鉴别癌细胞等。
•药物研发:拉曼光谱可以用于药物的研发过程中,以评估其结构、稳定性和溶解度等。
•生物分子结构解析:通过拉曼光谱,可以研究生物分子的结构和相互作用,例如蛋白质的折叠状态、核酸的结构等。
研究进展•激光技术的进步:随着激光技术的不断发展,激光拉曼光谱的应用范围和灵敏度得到了显著提高。
激光拉曼光谱法

二、 拉曼光谱的谱图特征
由拉曼光谱可以获得有机化合物的各种结构信息:
1)同种原子非极性键S—S,C=C,N=N,C≡C, 强拉曼谱带, 随单键双键三键谱带强度增加。
2)红外光谱中,由C≡N,C=S,S—H伸缩振动的谱 带较弱或强度可变,而拉曼光谱中则是强谱带。
6)C—C伸缩振动谱带在拉曼光谱中强,红外光谱中 弱。
7)醇和烷烃的拉曼光谱是相似的。 I. C—O键与C—C键的力常数或键的强度没有很大差 别。 II. 羟基和甲基的质量仅相差2单位。 III.与C—H和N—H谱带比较,O—H拉曼谱带较弱。
红外与拉曼谱图对比
红外光谱:基团; 拉曼光谱:分子骨架测定。
测量共振拉曼效应时的注意点:
1.多谱线输出的激光器(或可调谐的激光器)。 2.试样的浓度必须很低
避免产生热分解作用,通常在10-8 mol·L-1左右。 共振拉曼散射的强度较普通拉曼谱带的强度增加104~ 106倍,需要的试样浓度很低,故在研究具有发色基团的 样品和低浓度的生物样品有很大应用。
内容选择
10.5.1 激光拉曼光谱法概述
Rayleigh散射: 弹性碰撞:
激发虚态 E1 + h0
h(0 - )
无能量交换,仅
改变方向。
h0
Raman散射:
E0 + h0 h0 h0
h0 +
非弹性碰撞: E1
υ=1
方向改变且有能 量交换。
E0
υ=0
Rayleigh散射
h
Raman散射
E0基态, E1振动激发态; E0 + h0 , E1 + h0 激发虚态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拉曼光谱中,完全自由取向的分子所散
射的光也可能是偏振的,因此一般在拉曼光 谱中用退偏振比(或称去偏振度)ρ表征分子 对称性振动模式的高低。
= I
I
ρ<3/4的谱带称为偏振谱带, 表示分子有较高的对称振动 模式;ρ=3/4的谱带称为退 偏振谱带,表示分子的对称 振动模式较低。
式中I∥和I┴——分别代 表与激光电矢量相垂直 和相平行的谱线的强度
处于基态的分子与光子发生 非弹性碰撞,获得能量到激 发态可得到斯托克斯线,反 之,如果分子处于激发.与 光子非弹性碰撞就会释放能 量而回到基态,得到反斯托 斯线。
斯托克斯线或反斯托克斯线与入射光频率之 差称为拉曼位移。
拉曼位移的大小和分子的跃迁能级差一样。 因此,对应于同一分子能级,斯托克斯线与反斯 托克斯线的拉曼位移应该相等,而且跃迁的几率 也应相等。但在正常情况下,由于分子大多数是 处于基态,测量到的斯托克斯线强度比反斯托克 斯线强得多,所以在一般拉曼光谱分析中,都采 用斯托克斯线研究拉曼位移。
极化度是指分子改变其电子云分布的难易
程度,因此只有分子极化度发生变化的振动 才能与入射光的电场E相互作用,产生诱导 偶极矩μ:
μ=aE
与红外吸收光谱相 似,拉曼散射谱线的强 度与诱导偶极矩成正比。
在多数的吸收光谱中,只具有二个基本参数:
★频率
★强度
但在激光拉曼光谱中还有—个重要的参数 即
★退偏振比(也可称为去偏振度)。
激光拉曼光谱 与红外光谱比较
◆拉曼效应产生于入射光子与分子振动能级的能量 交换。在许多情况下,拉曼频率位移的程度正好相当于红 外吸收频率。因此红外测量能够得到的信息同样也出现在 拉曼光谱中,红外光谱解析中的定性三要素(即吸收频率、 强度和峰形)对拉曼光谱解析也适用。
◆分子的对称性愈高,红外与拉曼光谱的区别就愈 大,非极性官能团的拉曼散射谱带较为强烈,极性官能 团的红外谱带较为强烈。例如,许多情况下C=C伸缩振动 的拉曼谱带比相应的红外谱带较为强烈,而C=O的伸缩振 动的红外谱带比相应的拉曼谱带更为显著。对于链状聚 合物来说,碳链上的取代基用红外光谱较易检测出来, 而碳链的振动用拉曼光谱表征更为方便。
凡是具有对称中心 的分子,它们的红外吸 收光谱与拉曼散射光谱 没有频率相同的谱带一 一互相排斥定则由于拉 曼与红外光谱具有互补 性,因而二者结合使用 能够得到更丰富的信息。
高分子的红外二向色性及拉曼去偏振度
在聚酰胺-6的红外光谱中,某些谱带显示了 明显的二向色性特性。
它们是NH伸缩振动(3300cm-1)、CH2伸缩振动 (3000-2800cm-1)、酰胺I(1640cm-1)及配胺 Ⅱ(1550cm-1)吸收和酰胺Ⅲ(1260cm-1和1201cm- 1)吸收谱带。
He-Ne激光器是激光拉曼光谱仪中较好的 光源.比较稳定,其输出激光波长为6.328A, 功率在100mW以下。Ar+ 激光器是拉曼光谱仪 中另一个常用的光源。
样品的放置方法
拉曼光谱在聚合物 结构研究中的应用
拉曼光谱的选择定则与 高分子构象
由于拉曼与红外 光谱具有互补性,因 而二者结合使用能够 得到更丰富的信息
拉曼位移的大小与入射光的频 率无关,只与分子的能级结构有关, 其范围为25-4000cm-1,因此入 射光的能量应大于分子振动跃迁所 需能量,小于电子能级跃迁的能量。
红外吸收要服从一定的选择定则,即分 子振动时只有伴随分子偶极矩发生变化的振 动才能产生红外吸收。
同样,在拉曼光谱中,分子振动要产生 位移也要服从一定的选择定则,也就是说, 只有伴随分子极化度发生变化的分子振动模 式才能具有拉曼活性,产生拉曼散射。
斯托克斯(Stokes)线
在拉曼散射中.若光子 把一部分能量给样品分 子,得到的散射光能量 减少,在垂直方向测量 到的散射光中,可以检
测频率为( 0
E h
)的线。
如果它是红外活性的话,E h
的测量值与激发该振动 的红外频率一致。
反斯托克斯线
相反,若光子从样品分 子中获得能量,在大于 入射光频率处接收到散 射光线,则称为反斯托 克斯线。
★对于聚合物及其他分
子。拉曼散射的选样定则 的限制较小,因而可得到 更为丰富的谱带。S-S, C-C,C=C,N=N等红外 较弱的官能团,在拉曼光 谱中信号较为强烈。
拉曼散射光谱 与红外光谱
实验方法
仪器组成
激光拉曼光谱仪的基本组成有:
激光光源 样品室 单色器 检测记录系统 计算机
五大部分
拉曼光谱仪中最常用的是He-Ne气体激光 器。受激辐射时发生于Ne原子的两个能态之 间,He原子的作用是使Ne原子处于最低激发 态的粒子数与基态粒子数发生反转,这是粒子 发生受激辐射,发出激光的基本条件。
激光拉曼散射光谱 Raman Spectroscopy
激光拉曼散射光谱 Raman Spectroscopy
拉曼光谱是一种散射光谱。在20世纪30年代, 拉曼散射光谱曾是研究分子结构的主要手段。后来 随着实验内容的深入,由于拉曼效应太弱,所以随 着红外谱的迅速发展,拉曼光谱的地位随之下降。
自1960年激光问世,并将这种新型光源引入 拉曼光谱后,拉曼光谱出现了新的局面,已广泛 应用于有机、无机、高分子、生物、环保等各个 领域.成为重要的分析工具。
拉曼散射及拉曼位移
拉曼散射
当一束频率为ν0的入射 光照射到气体、液体 或透明晶体样品上时, 绝大部分可以透过, 大约有0.1%的入射光 与样品分子之间发生 非弹性碰撞,即在碰 撞时有能量交换,这 种光散射称为拉曼散 射。
拉曼光谱为散射光谱
瑞利散射
反之,若发生弹性碰 撞,即两者之间没有 能量交换.这种光散 射称为瑞利散射。
与红外光谱相比,拉曼 散射光谱具有下述优点
★拉曼光谱是一个散射过
程,因而任何尺寸、形状、 透明度的样品,只要能被 激光照射到.就可直接用 来测量。由于激光束的直 径较小,且可进—步聚焦, 因而极微量样品都可测量。
★玻璃的拉曼散射也较弱,
因而玻璃可作为理想的窗 口材料。
★水是极性很强的分子,
因而其红外吸收非常强烈。 但水的拉曼散射却极微弱, 因而水溶液样品可直接进 行测量,这对生物大分子 的研究非常有利。