拉曼光谱

合集下载

拉曼光谱的原理及应用

拉曼光谱的原理及应用

拉曼光谱的原理及应用拉曼光谱是将激发的样品通过分析散射光的频率而得到的一种光谱技术。

它是基于拉曼散射效应,即光与物质相互作用后,光的频率发生变化而产生散射光谱。

拉曼光谱的原理及应用如下。

原理:拉曼散射是指当物质被激发后,光通过与物质分子或晶体相互作用而发生频率改变的现象。

当光与物质相互作用后,其中一部分光的频率会发生变化,其频率的差值与物质分子或晶体的振动和转动能级有关。

这种频率发生变化的光被称为拉曼光,而拉曼光谱则是分析和记录这种光的技术和结果。

应用:1.化学分析:拉曼光谱可以用于分析化学物质的成分、结构和浓度。

不同化学物质的分子结构和振动能级不同,因此它们与光相互作用后会产生不同的拉曼光谱。

通过对比样品的拉曼光谱与数据库中已知物质的拉曼光谱,可以确定样品的成分和结构。

2.材料科学:拉曼光谱在材料科学中有广泛的应用。

例如,可以通过拉曼光谱来分析材料中的应变、晶格缺陷、晶体结构及化学组成等。

由于拉曼光谱对物质的表面敏感性较强,因此它在研究纳米材料和杂质掺杂材料的结构和性质方面特别有用。

3.生物医学:拉曼光谱在生物医学领域有多种应用。

例如,可以使用拉曼光谱来识别肿瘤组织与正常组织的差异,从而在肿瘤诊断和治疗中发挥重要作用。

此外,拉曼光谱还可以用于分析生物分子的结构变化和相互作用,以及研究细胞功能和代谢过程。

4.环境分析:拉曼光谱可以用于环境样品的分析和监测,例如水质、大气污染物、土壤和废物中的化学物质。

通过拉曼光谱技术,可以对这些环境样品中的有机和无机成分进行定性和定量分析,从而提供可靠的环境数据。

5.药品质量检测:拉曼光谱可用于对药物的质量进行快速和准确的检测。

通过对药物样品的拉曼光谱进行分析,可以确定药物的成分、结构和纯度,以保证药物的质量和疗效。

总结:拉曼光谱技术以其非破坏性、快速、准确的特点在各个领域得到广泛应用。

基于拉曼散射现象,拉曼光谱能够提供关于样品成分、结构和相互作用的信息。

它已成为化学、材料科学、生物医学、环境分析和药品质量检测等领域中不可或缺的分析工具,为科研和工业应用提供了重要支持。

拉曼光谱

拉曼光谱

• 拉曼光谱在化学研究中的应用
拉曼光谱在有机化学方面主要是用作结构鉴定和分 子相互作用的手段,它与红外光谱互为补充,可以鉴别特 殊的结构特征或特征基团。拉曼位移的大小、强度及拉曼 峰形状是鉴定化学键、官能团的重要依据。利用偏振特性, 拉曼光谱还可以作为分子异构体判断的依据。在无机化合 物中金属离子和配位体间的共价键常具有拉曼活性,由此 拉曼光谱可提供有关配位化合物的组成、结构和稳定性等 信息。另外,许多无机化合物具有多种晶型结构,它们具 有不同的拉曼活性,因此用拉曼光谱能测定和鉴别红外光 谱无法完成的无机化合物的晶型结构。
发展前景
• 激光技术 现在国际上推出的从事非线性光谱研究的超快(飞秒或皮 秒)激光器,技术上已经达到比较成熟地步,可以成套购 买,也较稳定。非线性拉曼光谱技术已经在生命科学领域 研究中发挥它的独特和重要作用。例如,美国哈佛大学的 谢晓亮教授在开拓并运用相干反斯托克斯拉曼光谱显微学 (CARS Microscopy)研究活细胞内部三维结构方面取得 一系列重要成果。高质量的超快激光器还推动了另一个极 具前途的表面光谱技术,就是合频(SFG)技术的发展, 它作为具有独特的界面选择性的非线性光谱方法,已经在 界面和表面科学、材料乃至生命领域研究中发挥着越来越 重要的作用。
拉曼光谱
• 拉曼光谱(Raman spectra),是一种散射 光谱。拉曼光谱分析法是基于印度科学家 C.V.拉曼(Raman)所发现的拉曼散射效 应,对与入射光频率不同的散射光谱进行 分析以得到分子振动、转动方面信息,并 应用于分子结构研究的一种分析方法。最 常用的红外及拉曼光谱区域波长是 2.5~25μm。(中红外区)
拉曼光谱的应用 • 拉曼光谱技术以其信息丰富,制样简单,水的干 扰小等独特的优点,在化学、材料、物理、高分 子、生物、医药、地质等领域有广泛的应用。 • 通过对拉曼光谱的分析可以知道物质的振动转动 能级情况,从而可以鉴别物质,分析物质的性质. 例如:天然鸡血石和仿造鸡血石的拉曼光谱有本 质的区别,前者主要是地开石和辰砂的拉曼光谱,后 者主要是有机物的拉曼光谱,利用拉曼光谱可以区 别二者;鉴别毒品;利用拉曼光谱可以监测物质 的制备;监测水果表面残留的农药。 • 激光拉曼光谱法的应用有以下几种:在有机化学 上的应用,在高聚物上的应用,在生物方面上的 应用,在表面和薄膜方子对光子的一种非弹性散射效应。当用一定 频率的激发光照射分子时,一部分散射光的频率和入射光 的频率相等。这种散射是分子对光子的一种弹性散射。只 有分子和光子间的碰撞为弹性碰撞,没有能量交换时,才 会出现这种散射。该散射称为瑞利散射。还有一部分散射 光的频率和激发光的频率不等,这种散射成为拉曼散射。 Raman散射的几率极小,最强的Raman散射也仅占整个 散射光的千分之几,而最弱的甚至小于万分之一。 • 处于振动基态的分子在光子的作用下,激发到较高的、不 稳定的能态(称为虚态),当分子离开不稳定的能态,回 到较低能量的振动激发态时,散射光的能量等于激发光的 能量减去两振动能级的能量差。

拉曼光谱

拉曼光谱
设散射物分子原来处于基电子态,振动能级如图所示。当受到入射光照射时,激发光与此分子的作用引起的极化可以看作为虚的吸收,表述为电子跃迁到虚态(Virtual state),虚能级上的电子立即跃迁到下能级而发光,即为散射光。设仍回到初始的电子态,则有如图所示的三种情况。因而散射光中既有与入射光频率相同的谱线,也有与入射光频率不同的谱线,前者称为瑞利线,后者称为拉曼线。在拉曼线中,又把频率小于入射光频率的谱线称为斯托克斯线,而把频率大于入射光频率的谱线称为反斯托克斯线。
拉曼光谱(Raman spectra),是一种散射光谱。光照射到物质上发生弹性散射和非弹性散射.弹性散射的散射光是与激发光波长相同的成分,非弹性散射的散射光有比激发光波长长的和短的成分,统称为拉曼效应。拉曼效应是光子与光学支声子相互作用的结果。
拉曼光谱-原理 拉曼效应起源于分子振动(和点阵振动)与转动,因此从拉曼光谱中可以得到分子振动能级(点阵振动能级)与转动能级结构的知识。用虚的上能级概念可以说明了拉曼效应:
c.一般情况下,斯托克斯线比反斯托克斯线的强度大。这是由于Boltzmann分布,处于振动基态上的粒子数远大于处于振动激发态上的粒子数。
.24H-SiC
图4为橙色区域(纵切片上边缘的三角形区域)SiC晶体的显微拉曼光谱图。分析得到各拉曼峰对应的声子模及其简约波矢、对称性分别为:205.8cm-1(FTA,x=0.5,E2),267.1cm-1(FTA,x=1,E1);612.0cm-1(FLA,x=1,A1);778.8cm-1(FTO,x=0.5,E2),796.3cm-1(FTO,x=0,E1);970.0cm-1(LOPC模)。4H-SiC的六方百分比为0.5。简约波矢x=0.5的FTA模(205.8cm-1)和FTO模(778.8cm-1)的强度分别大于其它简约波矢的FTA和FTO模的强度,且其它拉曼峰也与4H-SiC的文献报道值[5]相符,可以判断橙色区域为4H-SiC。值得注意的是,拉曼光谱中出现了187.5cm-1的拉曼峰,这是由于4H-SiC简约波矢x=0.5的FTA模峰形展宽造成的,说明4H-SiC的结晶质量一般[5]。实验测得橙色区域4H-SiC的导电类型也为n-型,说明载流子主要为自由电子。970.0cm-1的拉曼峰为4H-SiC的LOPC模,与本征4H-SiC的FLO模(964.0cm-1,x=0,A1)[Байду номын сангаас]相比较,其拉曼位移值仅仅增大了6.0cm-1;且LOPC模的强度仍可与778.8cm-1(FTO,x=0.5)的强度相比拟,这说明橙色区域4H-SiC晶体中的载流子(主要为自由电子)浓度不高[8]。这说明在掺氮6H-SiC单晶的生长条件下,4H-SiC与6H-SiC的掺氮效应存在明显差异。

拉曼光谱

拉曼光谱

24
拉曼光谱的应用

同种分子的非极性键S-S,C=C,N=N,C≡C产生强 拉曼谱带,随单键→双键→三键谱带强度增加。 红外光谱中,由C≡N,C=S,S-H伸缩振动产生的谱 带一般较弱或强度可变,而在拉曼光谱中则是强谱 带。


环状化合物的对称呼吸振动常常是最强的拉曼谱带。
25
拉曼光谱的应用

21
拉曼光谱仪使用注意事项

测量前要按照先开硬件再开软件的原则开机,以免 造成开机后的软件报错; 开机完成后,测量前需先进行单晶硅的测量,从而 对仪器进行矫正; 测量聚焦过程中要防止样品碰到物镜,以免造成物 镜损坏或污染; 测量完成后关机,关机顺序与开机相反,为先软件 后硬件的原则。同时务必保证激光器的关闭,以免 影响激光器寿命或发生火灾。
34
拉曼光谱在高分子中的应用

Liem等利用共焦显微拉曼光谱和极化拉曼光谱研究 了聚苯乙烯(PS)薄膜(50~180nm)的玻璃化转 变温度,研究表明当PS薄膜越薄,其玻璃化转变温 度越低,当厚度超过90nm时,其玻璃化转变温度与 本体聚合物相一致,这一测量结果与布里渊散射法 和椭圆偏光仪法一致.
32
拉曼光谱在高分子中的应用

研究聚合物链的构象结构; 研究聚合物的玻璃化转变和结晶; 研究聚合物的扩散界面; 研究聚合物共混体系的相态结构及其高分子多相体 系的相容性。 研究聚合物溶液的相转变。




33
拉曼光谱在高分子中的应用

高分子聚合物可以分为两大类———非晶聚合物和 结晶聚合物。对于非晶聚合物,玻璃化转变是一种 普遍现象,在高聚物发生玻璃化转变时,许多物理 性能发生急剧变化。如作为塑料使用的高聚物,当 温度升高至发生玻璃化转变温度以上时,便丧失了 塑料原有的坚固性,变成了橡胶;而作为橡胶使用 的材料,当温度降低至玻璃化转变温度以下时,便 失去橡胶的高弹性,变成硬而脆的塑料。

拉曼光谱

拉曼光谱

拉曼光谱(RAMAN SPECTRA)的原理(续)
Mid IR Stokes Raman Rayleigh Anti-Stokes Raman Fluorescence
红外 斯托克斯拉曼
瑞利散射 反斯托克斯拉曼
荧光
Real States 真实能级
Virtual State 虚能级
Vibrational States 振动能级 i
的研究员充满吸引力。
拉曼光谱仪的主要厂商及相关仪器
美国PerkinElmer公司的RamanStation 400系列拉曼光 谱仪
全球唯一的运用中阶梯光栅及二维面阵CCD 检测器组合成的二维色散型拉曼光谱仪,集 中了宽波段,高分辨率及检测速度快等特点, 摒弃了传统的获取高分辨率图谱所惯用的多 次测量不同谱带再进行拼接的方法,可在一 秒钟内获取覆盖整个波段的高分辨率拉曼图 谱。 分光系统采用中阶梯光栅技术,不含任何可 移动元件,保证系统的高度稳定性 高灵敏度二维CCD检测器,使得整个波段的 数据同时获取,避免了光谱失真 采用超稳定785nm的激光光源,减弱了荧光 背景的产生。
拉曼光谱(RAMAN SPECTRA)的原理(续)
设散射物分子原来处于基电子态,振动能级如图所示。 当受到入射光照射时,激发光与此分子的作用引起的 极化可以看作为虚的吸收,表述为电子跃迁到虚态 (Virtual state),虚能级上的电子立即跃迁到下能级而 发光,即为散射光。设仍回到初始的电子态,则有如 图所示的三种情况。因而散射光中既有与入射光频率 相同的谱线,也有与入射光频率不同的谱线,前者称 为瑞利线,后者称为拉曼线。在拉曼线中,又把频率 小于入射光频率的谱线称为斯托克斯线,而把频率大 于入射光频率的谱线称为反斯托克斯线。

--拉曼光谱简介

--拉曼光谱简介
hv0
反斯托克斯线 h(v0+v1)
(v0+v1)
v=1 hv1
v=0
3
拉曼光谱的基本原理
Raman spectrum of CCl4
处于基态的分子总是占绝大多数,所以斯托克斯线强度远远高于反斯托克斯线 强度。斯托克斯线与反斯托克斯线的强度比可用这样一个式子表示:
I反斯托克斯
/ I斯托克斯
(0 (0
Raman Intensity
Over-The-Counter Tablet, 785 laser
0
3000
2500
2000
1500
1000
500
Raman shift (cm-1)
31
Highly fluorescent sample:Poly(9-vinylcarbazole)
32
镜头的选择
FT-IR Transmission Spectrum
80 60 40 20
4 Raman Spectrum
3 2 1
4000
3000
2000
1000
9
项目
红外光谱
拉曼光谱
分子结构与光 谱活性
分子结构测定 范围
测试对象与品 种
极性分子及基团通常是红 非极性分子及基团通常是
外活性的
拉曼活性的
适于分子端基的测定
50 0 -0
Hale Waihona Puke 1 4001 200
1 000 cm-1
8 00
6 00
30 25 20 15 10 5 0
24
10 micron depth
Raman Intensity
17 micron depth

拉曼光谱的原理

拉曼光谱的原理

拉曼光谱的原理
拉曼光谱是一种分析技术,基于拉曼散射现象来研究物质的结构和成分。

拉曼散射是当光线通过物质时,部分光子与物质中分子的振动能级相互作用后发生频率变化而散射的现象。

在拉曼光谱实验中,使用一束单色光照射样品,样品会散射出经过物质的频率改变而产生的拉曼散射光。

拉曼散射光中既包含与入射光具有相同频率的斯托克斯线,也包含频率降低的反斯托克斯线。

这些拉曼光经过光谱仪分离成光谱,然后通过光电倍增管转化成电信号,最后通过信号采集与处理得到拉曼光谱。

拉曼光谱中的拉曼峰对应着样品中不同的化学成分或者结构,可以通过测量峰的位置、强度和宽度等参数来对样品进行分析和确定物质的结构。

拉曼光谱具有非常高的灵敏度和选择性,能够分析无机物、有机物,甚至水、气体等不同形态的物质。

拉曼光谱的应用非常广泛,例如在化学、生物、材料、环境等领域都有重要的应用。

它可以用于材料表征、药物分析、生物分子结构研究、环境污染监测等方面。

同时,由于拉曼光谱无需特殊处理样品,且可实现无损分析,因此在实际应用中具有很大的优势。

综上所述,拉曼光谱是一种基于拉曼散射现象的分析技术,通过测量样品中散射光的频率变化来研究物质的结构和成分。

其原理简单而灵敏,广泛应用于各个领域。

拉 曼 光 谱

拉 曼 光 谱

拉曼光谱1.1 引言拉曼光谱和红外光谱都反映了分子振动的信息,但其原理却有很大差别:红外光谱是吸收光谱,而拉曼光谱是散射光谱。

红外光谱的信息是从分子对入射电磁波的吸收得到的,而拉曼光谱的信息是从入射光与散射光频率的差别得到的。

拉曼光谱的突出优点是可以很容易地测量含水的样品,而且拉曼散射光可以在紫外和可见光波段量测。

由于紫外光和可见光能量很强,因此其量测比红外波段要容易和优越得多。

拉曼光谱得名于印度物理学家拉曼(Raman)。

1928年,拉曼首先从实验观察到单色的入射光投射到物质中后产生的散射,通过对散射光进行谱分析,首先发现散射光除了含有与入射光相同频率的光外,还包含有与入射光频率不同的光。

以后人们将这种散射光与入射光频率不同的现象称为拉曼散射。

拉曼因此获得诺贝尔奖。

当一束入射光通过样品时,在各个方向上都发生散射。

拉曼光谱仪收集和检测与入射光成直角的散射光。

由于收集和检测的散射光强度非常低,因此拉曼光谱的应用和发展受到很大限制。

六十年代激光开始广泛应用,拉曼光谱仪以激光作光源,光的单色性和强度都大大提高,拉曼散射仪的信号强度因而大大提高,拉曼光谱技术得以迅速发展,应用领域遍及物理,材料,化学,生物等学科,并已成为光谱学的一个分支−拉曼光谱学。

2.1拉曼光谱原理2.1.1光的散射入射光通过样品后,除了被吸收的光之外,大部分沿入射方向穿过样品,一小部分光则改变方向,发生散射。

一部分散射光的波长与入射光波长相同,这种散射称为瑞利散射(Rayleigh scattering)。

1899年,瑞利从实验中得出结论:晴天时天空呈兰色的原因是大气分子对阳光的散射。

瑞利还证实:散射光的强度与波长的四次方成反比。

这就是瑞利散射定律。

由于组成白光的各种颜色的光中,兰光的波长最短,因而散射光强度最大。

天空因而呈现兰色。

瑞利当时并没有考虑到散射光的频率变化。

他认为散射光与入射光的频率是相同的。

所以后来把与入射光波长相同的散射称为瑞利散射,而把波长与入射光不同的散射称为拉曼散射。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

拉曼光谱1.1引言拉曼光谱和红外光谱都反映了分子振动的信息,但其原理却有很大差别:红外光谱是吸收光谱,而拉曼光谱是散射光谱。

红外光谱的信息是从分子对入射电磁波的吸收得到的,而拉曼光谱的信息是从入射光与散射光频率的差别得到的。

拉曼光谱的突出优点是可以很容易地测量含水的样品, 而且拉曼散射光可以在紫外和可见光波段量测。

由于紫外光和可见光能量很强,因此其量测比红外波段要容易和优越得多。

拉曼光谱得名于印度物理学家拉曼(R a m a n)。

1928年, 拉曼首先从实验观察到单色的入射光投射到物质中后产生的散射,通过对散射光进行谱分析,首先发现散射光除了含有与入射光相同频率的光外,还包含有与入射光频率不同的光。

以后人们将这种散射光与入射光频率不同的现象称为拉曼散射。

拉曼因此获得诺贝尔奖。

当一束入射光通过样品时,在各个方向上都发生散射。

拉曼光谱仪收集和检测与入射光成直角的散射光。

由于收集和检测的散射光强度非常低,因此拉曼光谱的应用和发展受到很大限制。

六十年代激光开始广泛应用,拉曼光谱仪以激光作光源, 光的单色性和强度都大大提高,拉曼散射仪的信号强度因而大大提高,拉曼光谱技术得以迅速发展,应用领域遍及物理,材料,化学,生物等学科,并已成为光谱学的一个分支 拉曼光谱学。

2.1拉曼光谱原理2.1.1光的散射入射光通过样品后,除了被吸收的光之外,大部分沿入射方向穿过样品, 一小部分光则改变方向,发生散射。

一部分散射光的波长与入射光波长相同, 这种散射称为瑞利散射(R a y l e i g h s c a t t e r i n g)。

1899年,瑞利从实验中得出结论:晴天时天空呈兰色的原因是大气分子对阳光的散射。

瑞利还证实:散射光的强度与波长的四次方成反比。

这就是瑞利散射定律。

由于组成白光的各种颜色的光中,兰光的波长最短,因而散射光强度最大。

天空因而呈现兰色。

瑞利当时并没有考虑到散射光的频率变化。

他认为散射光与入射光的频率是相同的。

所以后来把与入射光波长相同的散射称为瑞利散射,而把波长与入射光不同的散射称为拉曼散射。

2.1.2拉曼散射的产生2.1.2.1机械力学的解释光由光子组成,这是光的微粒性。

光子与样品分子间的相互作用, 可以用光子与样品分子之间的碰撞来解释。

光照射样品时,光子和样品分子之间发生碰撞。

如果碰撞时只是运动方向改变而未发生能量交换即发生了弹性碰撞,则光子的能量不变。

由E=hν,能量不变频率也就不变。

这就是瑞利散射产生的原因。

如果光子和样品分子间发生非弹性碰撞, 即光子除改变运动方向外还有能量的改变,一部分能量碰撞时在光子和样品之间发生交换,光子的能量有所增减,则光的频率发生改变。

2.1.2.2从能级之间的跃迁来分析光子和样品分子之间的作用也可以从能级之间的跃迁来分析。

样品分子处于电子能级和振动能级的基态,入射光子的能量远大于振动能级跃迁所需要的能量,但又不足以将分子激发到电子能级激发态。

这样,样品分子吸收光子后到达一种准激发状态,又称为虚能态。

样品分子在准激发态时是不稳定的,它将回到电子能级的基态。

若分子回到电子能级基态中的振动能级基态,则光子的能量未发生改变,发生瑞利散射。

如果样品分子回到电子能级基态中的较高振动能级即某些振动激发态,则散射的光子能量小于入射光子的能量,其波长大于入射光。

这时散射光谱的瑞利散射谱线较低频率侧将出现一根拉曼散射光的谱线,称为S t o k e s线。

如果样品分子在与入射光子作用前的瞬间不是处于电子能级基态的最低振动能级,而是处于电子能级基态中的某个振动能级激发态,则入射光光子作用使之跃迁到准激发态后,该分子退激回到电子能级基态的振动能级基态,这样散射光能量大于入射光子能量,其谱线位于瑞利谱线的高频侧,称为a n t i-S t o k e s线。

S t o k e s线和a n t i-S t o k e s线位于瑞利谱线两侧,间距相等,如图9.1所示。

S t o k e s线和a n t i-S t o k e s线统称为拉曼谱线。

由于振动能级间距还是比较大的,因此,根据波尔兹曼定律,在室温下,分子绝大多数处于振动能级基态,所以S t o k e s线的强度远远强于a n t i-S t o k e s线。

拉曼光谱仪一般记录的都只是S t o k e s线。

2.1.3拉曼散射的选择定则外加交变电磁场作用于分子内的原子核和核外电子,可以使分子电荷分布的形状发生畸变,产生诱导偶极矩。

极化率是分子在外加交变电磁场作用下产生诱导偶极矩大小的一种度量。

极化率高,表明分子电荷分布容易发生变化。

µ=αE如果分子的振动过程中分子极化率也发生变化,则分子能对电磁波产生拉曼散射,称分子有拉曼活性。

有红外活性的分子振动过程中有偶极矩的变化,而有拉曼活性的分子振动时伴随着分子极化率的改变。

因此,具有固有偶极矩的极化基团,一般有明显的红外活性,而非极化基团没有明显的红外活性。

拉曼光谱恰恰与红外光谱具有互补性。

凡是具有对称中心的分子或基团,如果有红外活性,则没有拉曼活性;反之,如果没有红外活性,则拉曼活性比较明显。

一般分子或基团多数是没有对称中心的,因而很多基团常常同时具有红外和拉曼活性。

当然,具体到某个基团的某个振动,红外活性和拉曼活性强弱可能有所不同。

有的基团如乙烯分子的扭曲振动,则既无红外活性又无拉曼活性。

由于散射效率大约为10-6~10-7,所以通常使用激光器作为光源,通过滤片和聚焦镜投射到样品上。

这时光向各个方向散射。

散射光包括瑞利散射(弹性散射)和拉曼散射(非弹性散射)。

弹性光散射强度比拉曼散射高出103以上,所以色散系统必须精心设计,消除种种杂散光。

为了达到高分辨率,一般采用双联或三联单色仪作为分光系统。

一般在与入射光成90度的方向上接收散射光,采用光电倍增管作为接收器,然后经过信号处理电子系统和计算机,从显示屏或记录仪输出。

输出参数为各个波数上的散射光绝对值,散射光波数的绝对值和拉曼波数(即入射光与散射光的波数差),可以直接显示在屏幕上。

2.1.4谱峰(谱线)位置峰位是样品分子电子能级基态的振动态性质的一种反映。

它是用入射光与散射光的波数差来表示的。

峰位的移动与激发光的频率无关。

拉曼散射强度与产生谱线的特定物质的浓度有关,成正比例关系。

而在红外谱中,谱的强度与样品浓度成指数关系。

)样品分子量也与拉曼散射有关,样品分子量增加,拉曼散射强度一般也会增加。

对于一定的样品,强度I与入射光强度I0、散射光频率νs、分子极化率α有如下关系:I=C I0νs4α2这里C是一个常数。

在共振拉曼谱中,谱的加强是由于极化率α的增加引起的。

当入射光引起分子中电荷的平移时,则发生散射。

电荷的平移通过分子极化率反映出来。

散射的强度与极化率的平方成正比。

当激发光的频率接近且小于两个电子能级之间的频率差时,则产生所谓的p r e r e s o n a n c e,当激发光的频率等于两个电子能级之间的频率差时,则会发生共振,这时产生很大的电子电荷频移或分子变形的概率很高,这时就会产生对光的吸收。

这也说明对于某些振动,当入射光接近或等于某个吸收跃迁频率时,极化率会变得比较大。

这种振动称为共振加强的(r e s o n a n c e e n h a n c e d)振动。

这种加强取决于电子跃迁的强度及振动的对称性。

如果只有一个单一的电子态,则振动加强必须是对称的。

即这种振动不能改变分子的对称性。

如果某个被激发的生色团有不止一个电子跃迁,则振动的对称性就不那么重要了。

共振拉曼谱典型的增强倍数是102~103,因此共振拉曼谱在10-4m o l⋅d m-3或更低的样品浓度下即可测得。

这样,共振拉曼谱就提供了一种以接近紫外光谱的灵敏度选择性地探测生色团振动频率的手段。

共振拉曼在研究生物大分子的结构和功能时很有用,多生物分子都含有能给出共振拉曼谱的基团,如类胡萝卜素、黄素、视紫红质、各种含铜与铁的化合物、叶绿素等。

共振拉曼谱仪的使用范围主要受到激光光源频率有限这一现实情况的限制。

和红外谱相比,拉曼光谱有以下优点:(1)一些在红外光谱中为弱吸收或强度变化的谱带,在拉曼光谱中可能成为强谱带,例如基团S-S、C=C、N=N、C≡C、C≡N、C=S、S-H、X=Y=Z、C=N=C、O=C=O等。

环状化合物对称伸缩振动具有很强的拉曼谱线,用拉曼光谱来研究比较方便。

(2)拉曼光谱在低波数方向的测量范围较宽,常规测量范围为40~4000c m-1,有利于重原子的振动信息研究。

在低波数范围内,红外光谱的测量有困难。

但拉曼光谱所测定的是∆ν,因此可以选择适当的激发光(ν')来把振动光谱移到便于测定的紫外、可见光区域。

(3)拉曼光谱样品大小形状可以多样,不必粉碎、研磨,不必透明。

而且样品池或样品杯也可以采用玻璃材料,因为玻璃是弱拉曼散射体。

(4)拉曼光谱比较适于测试生物样品。

生物样品一般含水,而水对红外光有很强的吸收,因此用红外光谱测试生物样品技术上要求较高。

但拉曼光谱中水的吸收比较弱,因此是含水生物样品的理想检测手段。

许多情况下,可以用拉曼光谱来检测活体中的生物物质。

只要样品对激光能量吸收不强,测量时就不至造成样品结构上的变化。

现在,一些拉曼谱仪上还有专门的显微附件,可以检测样品上微小区域内的物质组分和结构。

(5)拉曼光谱中没有倍频和组合频等红外谱中常见的干扰,因此拉曼光谱比红外光谱简单,容易分析。

(6)拉曼光谱的激发光和拉曼散射光在紫外-可见波段能量较红外光高,因此检测起来比红外光谱容易。

但拉曼光谱也有一些缺点:(1)有些样品本身的发光本底较强,这样就使得拉曼光谱的信噪比受到影响。

此外,样品分子量增加时拉曼光谱的信噪比也会降低。

(2)激光束焦点上能量集中,可能对样品造成损伤。

付力叶拉曼光谱仪的出现,在一定程度上克服了上述缺点,为拉曼光谱更广泛的应用提供了更有力的手段。

2.2拉曼光谱的应用2.2.1生物大分子结构与功能的研究拉曼光谱与红外谱的应用范围类似。

对于生物学的应用来说,拉曼光谱仪的主要优点是水峰干扰较小,特别是在200~2000c m-1这个范围,拉曼光谱在水和重水中都可以测。

在这个范围内,有一些低频的振动对构象变化很敏感。

例如胱氨酸二硫桥上的S-S伸缩振动,在675c m-1处有一个很强的拉曼峰。

又如C-S振动在510c m-1左右有一个峰,其它一些芳香侧链和核酸上也有若干振动。

这些基团都是高度可极化的,往往能给出很强的拉曼谱线。

i.用拉曼光谱识别氨基酸:利用拉曼光谱可以分析蛋白质的氨基酸组成。

R.C.L o r d和N.T.Y u首先测定了不同氨基酸在不同p H值下的拉曼光谱,然后把这些不同氨基酸的拉曼光谱按照已知的溶菌酶的氨基酸组成进行迭加,并与溶菌酶的水溶液进行比较,发现两者有相当程度的一致性。

相关文档
最新文档