12.4互斥事件的概率的加法公式.ppt
合集下载
高中数学课件-互斥事件

在上面的问题中,“从盒中摸出1个球,得到红球或绿球” 是一个事件,当摸出的是红球或绿球时,表示这个事件 发生,我们把这个事件记作A+B。
思考:事件A+B的概率是多少?
如果事件A,B互斥,那么事件A+B发生(即A, B中有一个发生)的概率,等于事件A,B分别 发生的概率的和.
即:P(A+B)=P(A)+P(B)
注意:事件A与B不可能同时发生.
1.互斥事件的定义
❖不可能同时发生的两个事件叫做互斥事件.
❖对于上面的事件A、B、C,其中任何两个都是互斥 事件,这时我们说事件A、B、C彼此互斥.
❖一般地,若事件A1,A2,…,An中的任何两个都是
互斥事件,那么就说事件A1,A2,…,An彼此互斥.
❖从集合的角度看,几个事件彼此互斥,是指由各个事 件所含的结果组成的集合彼此互不相交,
()
①将一枚硬币抛两次,设事件A为”两次出现正面”,
事件B为”只有一次出现反面”,则事件A与B是对立事
件;
②若事件A与B为对立事件,则事件A与B为互斥事件
③若事件A 与B为互斥事件,则事件A与B为对立事件;
④若事件A与B为对立事件,则事件A+B为必然事件.
A.1
B. 2 C.3 D.4
4.甲,乙两人下棋,甲获胜的概率为40%,甲不输的概率为90
互斥事件与对立事件的判断
一个射手进行一次射击,记“命中的环数大于8” 为事件A,“命中的环数大于5”为事件B,“命中的环数 小于4”为事件C,“命中的环数小于6”为事件D.那么A、 B、C、D中有多少对互斥事件?是否有对立事件?
【解析】A 与 C,A 与 D,B 与 C 是互斥事件,但不是对立事件.因 为此三组中的任意两个事件都是不可能同时发生的,所以是互斥事 件.同时,不能保证其中一个一定发生,故二者不是对立事件.B 与 D 既是互斥事件,又是对立事件.
思考:事件A+B的概率是多少?
如果事件A,B互斥,那么事件A+B发生(即A, B中有一个发生)的概率,等于事件A,B分别 发生的概率的和.
即:P(A+B)=P(A)+P(B)
注意:事件A与B不可能同时发生.
1.互斥事件的定义
❖不可能同时发生的两个事件叫做互斥事件.
❖对于上面的事件A、B、C,其中任何两个都是互斥 事件,这时我们说事件A、B、C彼此互斥.
❖一般地,若事件A1,A2,…,An中的任何两个都是
互斥事件,那么就说事件A1,A2,…,An彼此互斥.
❖从集合的角度看,几个事件彼此互斥,是指由各个事 件所含的结果组成的集合彼此互不相交,
()
①将一枚硬币抛两次,设事件A为”两次出现正面”,
事件B为”只有一次出现反面”,则事件A与B是对立事
件;
②若事件A与B为对立事件,则事件A与B为互斥事件
③若事件A 与B为互斥事件,则事件A与B为对立事件;
④若事件A与B为对立事件,则事件A+B为必然事件.
A.1
B. 2 C.3 D.4
4.甲,乙两人下棋,甲获胜的概率为40%,甲不输的概率为90
互斥事件与对立事件的判断
一个射手进行一次射击,记“命中的环数大于8” 为事件A,“命中的环数大于5”为事件B,“命中的环数 小于4”为事件C,“命中的环数小于6”为事件D.那么A、 B、C、D中有多少对互斥事件?是否有对立事件?
【解析】A 与 C,A 与 D,B 与 C 是互斥事件,但不是对立事件.因 为此三组中的任意两个事件都是不可能同时发生的,所以是互斥事 件.同时,不能保证其中一个一定发生,故二者不是对立事件.B 与 D 既是互斥事件,又是对立事件.
新教材高中数学第七章概率2古典概型第2课时互斥事件概率的求法课件北师大版必修第一册

3
P(D)=1-P()=1-27
8
不完全相同”的概率为9.
பைடு நூலகம்
=
8
.
9
规律方法 较复杂的古典概型问题的转化策略
(1)设法把一个复杂事件分拆为几个互斥事件,然后求出各事件的概率,用
加法公式得出结果.
(2)当直接计算复合条件的事件的概率比较麻烦时,可间接地计算出其对立
事件的概率,再用对立事件的概率公式求解.
则
5
4
2
1
P(A1)= ,P(A2)= ,P(A3)= ,P(A4)= .
12
12
12
12
根据题意知,事件A1,A2,A3,A4彼此互斥,
由互斥事件的概率加法公式,得
(1)取出的 1 球为红球或黑球的概率为
5
4
P(A1∪A2)=P(A1)+P(A2)=12 + 12
(2)取出的 1 球为红球或黑球或白球的概率为 P(A1∪A2∪
1
∴P(B+C+D)=1-P(A)=1-3
=
2
.
3
∵B 与 C+D 互斥,B+C 与 D 互斥,
2
5
∴P(B)=P(B+C+D)-P(C+D)=3 − 12
=
2
5
P(D)=P(B+C+D)-P(B+C)=3 − 12
1
,
4
=
1
,
4
1
1
1
5
P(C)=1-P(A+B+D)=1-(P(A)+P(B)+P(D))=1-( + + )=13
《概率的计算公式》课件

定义
适用于长度、面积、体积等几何量度的等可能概率计算。
应用场景
$P(A) = frac{有利于A的几何量度}{全部可能的几何量度}$
计算公式
应用场景
适用于事件之间存在条件关系的情况,如事件A和B同时发生或连续发生。
定义
条件概率是指在某一事件B已经发生的情况下,另一事件A发生的概率。
计算公式
$P(A|B) = frac{P(A cap B)}{P(B)}$,其中 $P(A cap B)$ 是事件A和事件B同时发生的概率,$P(B)$ 是事件B发生的概率。
概率具有非负性、规范性、可加性和有限可加性等基本性质。
03
02
01
概率的取值范围反映了随机事件发生的可能性大小,其中0表示事件不可能发生,1表示事件一定会发生。
概率的取值范围是概率论中一个重要的概念,是描述随机事件发生可能性大小的数值量度。
概率的取值范围是0到1之间,包括0和1。
概率的计算方法
《概率的计算公式》ppt课件
目录
CONTENTS
概率的基本概念概率的计算方法概率的加法公式概率的乘法公式概率的连续性公式概率在实际生活中的应用
概率的基本概念
表示随机事件发生的可能性大小的数值。
概率的定义
概率的取值范围
概率的基本性质
概率的取值范围是0到1之间,其中0表示事件不可能发生,1表示事件一定会发生。
贝叶斯公式定义
在事件B已经发生的情况下,事件A发生的概率,记作P(A|B)=P(B|A)×P(A)/P(B)。
应用场景
贝叶斯公式常用于更新一个事件的概率,当已经知道另一个相关事件的概率时。例如,在机器学习和统计推断中,贝叶斯公式用于估计未知参数的后验概率分布。
适用于长度、面积、体积等几何量度的等可能概率计算。
应用场景
$P(A) = frac{有利于A的几何量度}{全部可能的几何量度}$
计算公式
应用场景
适用于事件之间存在条件关系的情况,如事件A和B同时发生或连续发生。
定义
条件概率是指在某一事件B已经发生的情况下,另一事件A发生的概率。
计算公式
$P(A|B) = frac{P(A cap B)}{P(B)}$,其中 $P(A cap B)$ 是事件A和事件B同时发生的概率,$P(B)$ 是事件B发生的概率。
概率具有非负性、规范性、可加性和有限可加性等基本性质。
03
02
01
概率的取值范围反映了随机事件发生的可能性大小,其中0表示事件不可能发生,1表示事件一定会发生。
概率的取值范围是概率论中一个重要的概念,是描述随机事件发生可能性大小的数值量度。
概率的取值范围是0到1之间,包括0和1。
概率的计算方法
《概率的计算公式》ppt课件
目录
CONTENTS
概率的基本概念概率的计算方法概率的加法公式概率的乘法公式概率的连续性公式概率在实际生活中的应用
概率的基本概念
表示随机事件发生的可能性大小的数值。
概率的定义
概率的取值范围
概率的基本性质
概率的取值范围是0到1之间,其中0表示事件不可能发生,1表示事件一定会发生。
贝叶斯公式定义
在事件B已经发生的情况下,事件A发生的概率,记作P(A|B)=P(B|A)×P(A)/P(B)。
应用场景
贝叶斯公式常用于更新一个事件的概率,当已经知道另一个相关事件的概率时。例如,在机器学习和统计推断中,贝叶斯公式用于估计未知参数的后验概率分布。
概率的加法公式

在上面的例题中,若令 在上面的例题中,若令A=“小明考试及 小明考试及 小明考试不及格” 格”,则A=“小明考试不及格” 则 小明考试不及格 如果求小明考试不及格的概率, 如果求小明考试不及格的概率,则由公 式得 P(A)=1-P(A)=1-0.93=0.07. - - 即小明考试不及格的概率是0.07. 即小明考试不及格的概率是
解:(1)是互斥事件,不是对立事件; :( )是互斥事件,不是对立事件; (2)既是互斥事件,又是对立事件; )既是互斥事件,又是对立事件; (3)不是互斥事件,当然不可能是对立 )不是互斥事件, 事件; 事件; 所以对立事件一定是互斥事件, 所以对立事件一定是互斥事件,而互 斥事件不一定是对立 分以上, 解: 分别记小明的成绩在 分以上,在 80~89分,在70~79分,在60~69分为事件 , 分为事件B, 分 分 分为事件 C,D,E,这四个事件是彼此互斥的 , , ,这四个事件是彼此互斥的. 根据概率的加法公式, 根据概率的加法公式,小明的考试成 绩在80分以上的概率是 绩在 分以上的概率是 P(B∪C)=P(B)+P(C)=0.18+0.51=0.69. ∪ 小明考试及格的概率为 P(B∪C∪D∪E)=P(B)+P(C)+ P(D)+P(E) ∪ ∪ ∪ = 0.18+0.51+0.15+0.09=0.93.
解:(1)“取出红球或黑球”的概率为 :( ) 取出红球或黑球”
3 P(A∪B)=P(A)+P(B)= ; ∪ 4
(2)“取出红或黑或白球”的概率为 ) 取出红或黑或白球”
11 P(A∪B∪C)=P(A)+P(B)+P(C)= 。 ∪ ∪ 12
的对立事件为D, 又(2)A∪B∪C的对立事件为 , ) ∪ ∪ 的对立事件为
高三数学互斥事件概率

card (U ) card (U )
二、重点难点 :
互斥事件的概念和互斥事件的概率加法公 式是重点;互斥事件、对立事件的概念及 二者的联系与区别及应用是难点。
三、思维方式 :
在求某些稍复杂的事件的概率时通常有两 种方法:一是将所求事件的概率分化成一 些彼此互斥的事件的概率的和;二是先求 出此事件的对立事件的概率,即用逆向思 维法。正难则反的思想。
(1)三个组各有一个亚洲队的概率; (2)至少有两个亚洲队分在同一组的 概率。
五、例题:
思维点拨:要能正确熟练地掌握排列、 组合的有关计算。
五、例题:
例5、从一副52张的扑克牌中任取4张,求 其中至少有两张牌的花色相同的概率。
思维点拨:直接计算符合条件的事件个数 较繁时,可间接地先计算对立事件的个数, 求得对立事件的概率,再求出符合条件的 事件的概率。
第二节 互斥事件 有一个发生的概率
一、基本知识概要:
1、互斥事件:如果事件A与B不能同时发生 (即A发生B必不发生或者B发生A必不发 生),那么称事件A,B为互斥事件(或称 互不相容事件)。如果事件A1,A2,… An 中任何两个都是互斥事件,那么称事件A1, A2,…An彼此互斥。
一、基本知识概要:
六、课堂小结
1.互斥事件不一定是对立事件、对立事件 一定是互斥事件。在求用“至少”表达的 事件的概率时,先求其对立事件的概率往 往比较简便。
2.把一个复杂事件分解成几个彼此互斥的 事件时,要做到不重复不遗漏。
六、课堂小结
3.互斥事件的概率加法公式
利用互斥事件的概率加法公式来求概率, 首先要确定事件彼此互斥,然后求出事件 分别发生的概率,再求其和。在具体计算 中,利用 P(A) 1 P(A)或 P(A) 1 P( A)常可 使概率的计算简化。
二、重点难点 :
互斥事件的概念和互斥事件的概率加法公 式是重点;互斥事件、对立事件的概念及 二者的联系与区别及应用是难点。
三、思维方式 :
在求某些稍复杂的事件的概率时通常有两 种方法:一是将所求事件的概率分化成一 些彼此互斥的事件的概率的和;二是先求 出此事件的对立事件的概率,即用逆向思 维法。正难则反的思想。
(1)三个组各有一个亚洲队的概率; (2)至少有两个亚洲队分在同一组的 概率。
五、例题:
思维点拨:要能正确熟练地掌握排列、 组合的有关计算。
五、例题:
例5、从一副52张的扑克牌中任取4张,求 其中至少有两张牌的花色相同的概率。
思维点拨:直接计算符合条件的事件个数 较繁时,可间接地先计算对立事件的个数, 求得对立事件的概率,再求出符合条件的 事件的概率。
第二节 互斥事件 有一个发生的概率
一、基本知识概要:
1、互斥事件:如果事件A与B不能同时发生 (即A发生B必不发生或者B发生A必不发 生),那么称事件A,B为互斥事件(或称 互不相容事件)。如果事件A1,A2,… An 中任何两个都是互斥事件,那么称事件A1, A2,…An彼此互斥。
一、基本知识概要:
六、课堂小结
1.互斥事件不一定是对立事件、对立事件 一定是互斥事件。在求用“至少”表达的 事件的概率时,先求其对立事件的概率往 往比较简便。
2.把一个复杂事件分解成几个彼此互斥的 事件时,要做到不重复不遗漏。
六、课堂小结
3.互斥事件的概率加法公式
利用互斥事件的概率加法公式来求概率, 首先要确定事件彼此互斥,然后求出事件 分别发生的概率,再求其和。在具体计算 中,利用 P(A) 1 P(A)或 P(A) 1 P( A)常可 使概率的计算简化。
互斥事件的概率公式PPT课件

在上面5×4种结果中,同时摸出白球的结 果有3×2种.因此,从两个坛子里分别摸出1
个球,都是白球的概率是
PA B 3 2
54
另一方面,从甲坛子里摸出1个球,得到
白球的概率:
PA 3
5
从乙坛子里摸出1个球,得到白球的概率:
PB 2
4
由 3 2 3 2 ,我们看到: 54 5 4
PA B PA PB
从甲坛子里摸出1个球得到黑球与从乙坛子里摸出1个球得到白球同时发生的概率从甲坛子里摸出1个球得到白球与从乙坛子里摸出1个球得到黑球同时发生的概率从两个坛子里分别摸出1个球恰得到一个白球的概率为从两个坛子里分别摸出1个球至少得到一个黑球的概率是什么
各位领导、老师、同学们
大家好!
2006.05.26
复习提问
1 3 1 5 10 2
“从两个坛子里分别摸出1个球,至少
得到一个黑球”的概率是什么?
这就是求至少有一个黑球的概率
P(A·)B +P(A·)+BP( ·B)A
1 3 1 7 5 10 5 10
例题讲解
[例1]甲、乙2人各进行1次射击,如果2 人击中目标的概率都是0.6,计算: (1)2人都击中目标的概率; (2)其中恰有1人击中目标的概率; (3)至少有1人击中ห้องสมุดไป่ตู้标的概率.
(3)解法一:“2人各射击1次,至少有1人击 中目标”即为“2人都击中目标”与“恰有1人击中 目标”有一发生则事件发生,因此其概率
P=P(A·B)+[P(A·B)+P(A ·B)]
=0.36+0.48=0.84
解法二:“2人各射击1次,至少有1人击中目标” 与“2人都未击中目标”互为对立事件. 而P(A·B)=P(A)·P(B ) =(1-0.6)×(1-0.6)=0.4×0.4=0.16 因此,至少有1人击中目标的概率 P=1-P(A ·B)=1-0.16=0.84.
第三章学案3 概率的加法公式-28页PPT资料

【分析】考查互斥事件的概率.
返回目录
【解析】(1)因为“恰有1名男生”与“恰有两名男生” 不可能同时发生,所以它们是互斥事件;当恰有两名女生时 它们都不发生,所以它们不是对立事件.
(2)因为恰有两名男生时“至少有1名男生”与“全是 男生”同时发生,所以它们不是互斥事件.
(3)因为“至少有1名男生”与“全是女生”不可能同 时发生,所以它们互斥;由于它们必有一个发生,所以它们 对立.
(2)求复杂的互斥事件的概率一般有两种方法:一是 直接求方法,将所求事件的概率分解为一些彼此互斥的事 件的概率的和,运用互斥事件的求和公式计算.二是间接求 法,先求此事件的对立事件的概率,再用公式P(A)=1-P
( A ),即运用逆向思维(正难则反),特别是“至
多”“至少”型题目,用间接求法就显得较简便.
P1=P(A)+P(B) 5 4 3 .
12 12 4
(2)取出1球是红球或黑球或白球的概率为 P2=P(A)+P(B)+P(C)1521421221121 .(或P2=1P(D)= 1 1 11 .)
12 12
返回目录
【评析】(1)解决此类问题,首先应结合互斥事件和 对立事件的定义分析出是不是互斥事件或对立事件,再选 择概率公式进行计算.
(3)如果A,B是互斥事件,那么P(A∪B)=P(A)+P(B)
①.
(4)一般地,如果事件A1,A2,…,An两两互斥(彼此互
斥),
返回目录
那么事件“A1∪A2∪…∪An”发生(是指事件A1,A2,…,An中 至少有一个发生)的概率,等这于n个事件分别发生的概率和 , 即P(A1∪A2∪…∪An)=P(A1)+P(A2)+…+P(An)②.公式① 或公式②叫做互斥事件的概率加法公式.
返回目录
【解析】(1)因为“恰有1名男生”与“恰有两名男生” 不可能同时发生,所以它们是互斥事件;当恰有两名女生时 它们都不发生,所以它们不是对立事件.
(2)因为恰有两名男生时“至少有1名男生”与“全是 男生”同时发生,所以它们不是互斥事件.
(3)因为“至少有1名男生”与“全是女生”不可能同 时发生,所以它们互斥;由于它们必有一个发生,所以它们 对立.
(2)求复杂的互斥事件的概率一般有两种方法:一是 直接求方法,将所求事件的概率分解为一些彼此互斥的事 件的概率的和,运用互斥事件的求和公式计算.二是间接求 法,先求此事件的对立事件的概率,再用公式P(A)=1-P
( A ),即运用逆向思维(正难则反),特别是“至
多”“至少”型题目,用间接求法就显得较简便.
P1=P(A)+P(B) 5 4 3 .
12 12 4
(2)取出1球是红球或黑球或白球的概率为 P2=P(A)+P(B)+P(C)1521421221121 .(或P2=1P(D)= 1 1 11 .)
12 12
返回目录
【评析】(1)解决此类问题,首先应结合互斥事件和 对立事件的定义分析出是不是互斥事件或对立事件,再选 择概率公式进行计算.
(3)如果A,B是互斥事件,那么P(A∪B)=P(A)+P(B)
①.
(4)一般地,如果事件A1,A2,…,An两两互斥(彼此互
斥),
返回目录
那么事件“A1∪A2∪…∪An”发生(是指事件A1,A2,…,An中 至少有一个发生)的概率,等这于n个事件分别发生的概率和 , 即P(A1∪A2∪…∪An)=P(A1)+P(A2)+…+P(An)②.公式① 或公式②叫做互斥事件的概率加法公式.
《概率的加法公式》课件2-优质公开课-人教B版必修3精品

【解】
(1)是互斥事件,但不是对立事件.
理由:在所选的2名同学中,“恰有1名男生
”实质选出的是“1名男生和1名女生”,它
与“恰有2名男生”不可能同时发生,
所以是一对互斥事件,但它们不是对立 事件,由于还有可能选出2名女生.
(2)不是互斥事件.
理由:“至少有1名男生”包括“1名男
生、1名女生”和“2名都是男生”两种
图 示
①A,B互斥是指事件A与事件B在一次试验中不会
同时发生,即A与B两事件同时发生的概率为0.
②推广:如果事件A1,A2,„,An中的任何两个都 互斥,就称事件A1,A2,„,An彼此互斥. ③从集合的角度看,几个事件彼此互斥,是指由各 个事件所含结果的集合彼此互不相交.
(2)对立事件
定 义 记A={射中10环},B={射中9
环},C={射中8环},D={射中7环,}E= {射中7环以下},则A,B,C,D,E两两 互斥.(3分)
A、B、C、D、E两两互斥,勿必标明,否
则下面各步加法公式不能用.
(1)“射中10环或9环”是事件A∪B,所以 P(A∪B)=P(A)+P(B)=0.24+0.28=0.52,所
结果,这与“全是女生”不可能同时发
生,并且它们中必有1个发生.
【名师点评】
互斥事件是概率知识的
重要概念,必须正确理解. (1)互斥事件是对两个事件而言的,若有
A、B两事件,当事件A发生时,事件B就
不发生;当事件B发生时,事件A就不发生 (即事件A,B不可能同时发生),我们就 把这种不可能同时发生的两个事件叫做 互斥事件,否则就不是互斥事件.
(2)对立事件的概率公式
1-P(A) . ①对立事件的概率公式:P(- A )=_________