紫外分光光度法测定蛋白质含量

合集下载

常用紫外分光光度法测定蛋白质含量

常用紫外分光光度法测定蛋白质含量

6种方法测定蛋白质含量一、微量凯氏(kjeldahl)定氮法样品与浓硫酸共热。

含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。

经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。

若以甘氨酸为例,其反应式如下:nh2ch2cooh+3h2so4——2co2+3so2+4h2o+nh3 (1)2nh3+h2so4——(nh4)2so4 (2)(nh4)2so4+2naoh——2h2o+na2so4+2nh3 (3)反应(1)、(2)在凯氏瓶内完成,反应(3)在凯氏蒸馏装置中进行。

为了加速消化,可以加入cuso4作催化剂,k2so4以提高溶液的沸点。

收集氨可用硼酸溶液,滴定则用强酸。

实验和计算方法这里从略。

计算所得结果为样品总氮量,如欲求得样品中蛋白含量,应将总氮量减去非蛋白氮即得。

如欲进一步求得样品中蛋白质的含量,即用样品中蛋白氮乘以6.25即得。

二、双缩脲法(biuret法)(一)实验原理双缩脲(nh3conhconh3)是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。

在强碱性溶液中,双缩脲与cuso4形成紫色络合物,称为双缩脲反应。

凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。

紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。

测定范围为1-10mg蛋白质。

干扰这一测定的物质主要有:硫酸铵、tris缓冲液和某些氨基酸等。

此法的优点是较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。

主要的缺点是灵敏度差。

因此双缩脲法常用于需要快速,但并不需要十分精确的蛋白质测定。

(二)试剂与器材1. 试剂:(1)标准蛋白质溶液:用标准的结晶牛血清清蛋白(bsa)或标准酪蛋白,配制成10mg/ml的标准蛋白溶液,可用bsa浓度1mg/ml的a280为0.66来校正其纯度。

常用紫外分光光度法测定蛋白质含量

常用紫外分光光度法测定蛋白质含量

6种方法测定蛋白质含量一、微量凯氏(kjeldahl )定氮法样品与浓硫酸共热。

含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。

经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。

若以甘氨酸为例,其反应式如下:nh2ch2cooh+3h2so---- 2co2+3so2+4h2o+nh3 ⑴2nh3+h2so4 --- (n h4)2so4 (2)(nh4)2so4+2nao- 2h2o+na2so4+2 nh3 ⑶反应(1)、(2)在凯氏瓶完成,反应(3)在凯氏蒸馏装置中进行。

为了加速消化,可以加入cuso4作催化剂,k2so4以提高溶液的沸点。

收集氨可用硼酸溶液,滴定则用强酸。

实验和计算方法这里从略。

计算所得结果为样品总氮量,如欲求得样品中蛋白含量,应将总氮量减去非蛋白氮即得。

如欲进一步求得样品中蛋白质的含量,即用样品中蛋白氮乘以6.25 即得。

二、双缩脲法(biuret法)(一)实验原理双缩脲(nh3conhconh3)是两个分子脲经180°C左右加热,放出一个分子氨后得到的产物。

在强碱性溶液中,双缩脲与cuso4形成紫色络合物,称为双缩脲反应。

凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。

紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。

测定围为1-10mg蛋白质。

干扰这一测定的物质主要有:硫酸铵、tris缓冲液和某些氨基酸等。

此法的优点是较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。

主要的缺点是灵敏度差。

因此双缩脲法常用于需要快速,但并不需要十分精确的蛋白质测定。

(二)试剂与器材1•试剂:(1)标准蛋白质溶液:用标准的结晶牛血清清蛋白(bsa)或标准酪蛋白,配制成10mg/ml的标准蛋白溶液,可用bsa浓度1mg/ml的a280为0.66来校正其纯度。

试验三紫外分光光度法测定蛋白质

试验三紫外分光光度法测定蛋白质

实验三 紫外分光光度法测定蛋白质一、原理由于蛋白质中酪氨酸和色氨酸残基的苯环含有共轭双键,因此蛋白质具有吸收紫外光的性质,吸收高峰在280nm 。

在此波长范围内,蛋白质溶液的光吸收值与其含量呈正比关系,可用作定量测定。

利用紫外吸收法测定蛋白质含量准确度较差,这是由于:(1)对于测定那些与标准蛋白质中酪氨酸和色氨酸含量差异较大的蛋白质,有一定的误差。

故该法适于测定与标准蛋白质氨基酸组成相似的蛋白质。

(2)若样品中含有嘌呤、嘧啶等吸收紫外光的物质,会出现较大干扰。

核酸强烈吸收波长为280nm 的紫外光,它对260nm 紫外光的吸收更强。

但是蛋白质恰恰相反,在280nm 的紫外吸收值大于260nm 的紫外吸收值。

利用这些性质,通过计算可以适当校正核酸对于测定蛋白质含量的干扰作用。

但是,因为不同的蛋白质和核酸的紫外吸收是不同的,虽然经过校正,测定结果还存在着一定的误差。

在测定工作中,可利用在280nm 及260nm 下的吸收差求出蛋白质的浓度。

蛋白质浓度(mg/ml)=1.45A280nm —0.74A260nm ,式中:A280nm 是蛋白质溶液在280nm 下测得的光吸收值;A260nm 是蛋白质溶液在260nm 下测得的光吸收值。

Warburg 和Christian 用结晶的酵母烯醇化酶和纯的酵母核酸作为标准,对有核酸存在时所造成的误差作了评价,并作出了一个校正表(如下)。

紫外吸收法测定蛋白质含量的校正因子F0.6565.500.8461.1160.001.750.6320.6070.5850.5650.5450.5080.4780.4220.3770.3220.2786.006.507.007.508.009.0010.0012.0014.0017.0020.000.8220.8040.7840.7670.7530.7300.7050.6710.6440.6150.5951.0811.0541.0230.9940.9700.9440.8990.8520.8140.7760.7430.6820.250.500.781.001.251.502.002.503.003.504.005.001.631.521.401.361.301.251.161.091.030.9790.9390.874校正因子核酸%A 280nm /A 260nm校正因子核酸%A 280nm /A 260nm注:一般纯蛋白质的A280nm/A260nm 值为约1.8,而纯核酸的A280nm/A260nm 值为约0.5。

紫外分光光度法测定蛋白质含量_百度文库(精)

紫外分光光度法测定蛋白质含量_百度文库(精)

教材1 紫外分光光度法测定蛋白质含量一、实验目的学习紫外分光光度法测定蛋白质含量的原理;掌握紫外分光光度法测定蛋白质含量的实验技术;掌握TU-1901紫外-可见分光光度计的使用方法并了解此仪器的主要构造。

二、实验原理紫外-可见吸收光谱法又称紫外-可见分光光度法, 它是研究分子吸收190nm ~750nm 波长范围内的吸收光谱,是以溶液中物质分子对光的选择性吸收为基础而建立起来的一类分析方法。

紫外-可见吸收光谱的产生是由于分子的外层价电子跃迁的结果,其吸收光谱为分子光谱,是带光谱。

进行定性:利用紫外-可见吸收光谱法进行定性分析一般采用光谱比较法。

即将未知纯化合物的吸收光谱特征,如吸收峰的数目、位置、相对强度以及吸收峰的形状与已知纯化合物的吸收光谱进行比较。

定量分析: 紫外-可见吸收光谱法进行定量分析的依据是朗伯-比尔定律:A=lgI0/I=εbc ,当入射光波长λ及光程b 一定时,在一定浓度范围内,有色物质的吸光度A 与该物质的浓度c 成正比,即物质在一定波长处的吸光度与它的浓度成线形关系。

因此,通过测定溶液对一定波长入射光的吸光度,就可求出溶液中物质浓度和含量。

由于最大吸收波长λmax 处的摩尔吸收系数最大,通常都是测量λmax 的吸光度,以获得最大灵敏度。

光度分析时,分别将空白溶液和待测溶液装入厚度为b 的两个吸收池中,让一束一定波长的平行单色光非别照射空白和待测溶液,以通过空白溶液的透光强度为I 0,通过待测溶液的透光强度为I ,根据上式,由仪器直接给出I 0与I 之比的对数值即吸光度。

紫外-可见分光光度计:紫外-可见吸收光谱法所采用的仪器称为分光光度计,它的主要部件有五个部分组成,即由光源发出的复合光经过单色器分光后即可获得任一所需波长的平行单色光, 该单色光通过样品池静样品溶液吸收后,通过光照到光电管或光电倍增管等检测器上产生光电流,产生的光电流由信号显示器直接读出吸光度A 。

可见光区采用钨灯光源、玻璃吸收池; 紫外光区采用氘灯光源、石英吸收池。

蛋白质测定常用的几种方法

蛋白质测定常用的几种方法

I. 紫外分光光度法测定蛋白质的含量一、实验目的掌握紫外分光光度法测定蛋白质的含量的方法。

二、实验原理蛋白质分子中存在含有共轭双键的酪氨酸和色氨酸,使蛋白质对280nm的光波具有最大吸收值,在一定的范围内,蛋白质溶液的吸光值与其浓度成正比,可作定量测定。

该法操作简单、快捷,并且测定的样品可以回收,低浓度盐类不干扰测定,故在蛋白质和酶的生化制备中广泛被采用。

但此方法存在以下缺点:1.当待测的蛋白质中酪氨酸和色氨酸残基含量差别较大是会产生一定的误差,故该法适用于测定与标准蛋白质氨基酸组成相似的样品。

2.若样品中含有其他在280nm吸收的物质如核酸等化合物,就会出现较大的干扰。

但核酸的吸收高峰在260nm,因此分别测定280nm和260nm两处的光吸收值,通过计算可以适当的消除核酸对于测定蛋白质浓度的干扰作用。

但因为不同的蛋白质和核酸的紫外吸收是不同的,虽经校正,测定结果还存在着一定的误差。

三、实验器材1.紫外分光光度计2.移液管3.试管及试管架4.石英比色皿四、材料与试剂1.标准蛋白质溶液:准确称取经凯氏定氮校正的牛血清清蛋白,配制成浓度为1mg/mL的溶液。

2.待测蛋白溶液:酪蛋白稀释溶液,使其浓度在标准曲线范围内。

五、操作方法1.标准曲线的制作按表1加入试剂。

表1 标准曲线的制作度为横坐标,吸光度为纵坐标,绘制出血清蛋白的标准曲线。

2.未知样品的测定取待测蛋白质溶液1mL,加入3mL蒸馏水,在280nm下测定其吸光度值。

并从标准曲线上查出待测蛋白质的浓度。

II. Bradford法测定蛋白质的含量一、实验目的学习考马斯亮蓝G-250染色法测定蛋白质的原理和方法。

二、实验原理1976年Bradford建立了用考马斯亮蓝G-250与蛋白质结合的原理,迅速而准确的定量蛋白质的方法。

染料与蛋白质结合后引起染料最大吸收光的改变,从465nm变为595nm。

蛋白质-染料复合物具有高的消光系数,因此大大提高了蛋白质测定的灵敏度(最低检出量为1μg)。

蛋白质类药物含量测定的方法

蛋白质类药物含量测定的方法

蛋白质类药物含量测定的方法
蛋白质类药物含量测定有多种方法,以下是其中几种常用的方法:
1. 紫外分光光度法:蛋白质分子中含有酪氨酸和色氨酸,它们在紫外光
280nm处有最大吸收峰。

在一定浓度范围内,蛋白质溶液的吸光度值与其
浓度成正比,可以用于定量测定。

此方法操作简单、快捷,且样品可回收。

然而,此方法不适用于酪氨酸和色氨酸含量差异大的蛋白质,且易受其他在280nm有吸收的物质(如核酸)干扰。

2. Bradford法:该法基于染料与蛋白质结合后改变最大吸收光,从465nm 变为595nm。

蛋白质-染料复合物具有高消光系数,提高了蛋白质测定的灵敏度(最低检出量为1μg)。

染料与蛋白质结合迅速,颜色在1小时内稳定。

一些阳离子、(NH4)2SO4、乙醇等物质不干扰测定,但大量去污剂如TritonX-100、SDS等会严重干扰测定。

3. 双缩脲法:具有两个或两个以上肽键的化合物都有双缩脲反应,蛋白质在碱性溶液中能与Cu2+络合呈紫红色,颜色深浅与蛋白质浓度成正比,故可用比色法进行测定,根据标准曲线进行计算可以确定蛋白质浓度。

除上述方法外,还有酚试剂法、考马斯亮蓝法、免疫分析法等测定蛋白质含量的方法。

在实际操作中,应根据具体药物选择合适的测定方法。

实验3 紫外分光光度法测定蛋白质含量

实验3 紫外分光光度法测定蛋白质含量

本法适用于微量蛋白质浓度测定, 本法适用于微量蛋白质浓度测定,对盐类混杂的情 况比较合适,为简便起见,对混合蛋白质溶液, 况比较合适,为简便起见,对混合蛋白质溶液,可用 A280×0.75来表示蛋白质大概浓度 来表示蛋白质大概浓度。 A280×0.75来表示蛋白质大概浓度。 注意事项】 【注意事项】 由于各种蛋白质的酪氨酸和苯丙氨酸含量不同, 由于各种蛋白质的酪氨酸和苯丙氨酸含量不同, 显色深浅随不同蛋白质改变, 显色深浅随不同蛋白质改变,因而本法只适用于蛋白 质相对浓度的测定,核酸对结果也有影响, 质相对浓度的测定,核酸对结果也有影响,尽管进行 了公式校正,但是不同样品干扰成分差异较大, 了公式校正,但是不同样品干扰成分差异较大,致使 280nm紫外吸收法检测的准确性较差 紫外吸收法检测的准确性较差。 280nm紫外吸收法检测的准确性较差。 思考题】 【思考题】 紫外分光光度法测定蛋白质浓度的原理是什么? 1. 紫外分光光度法测定蛋白质浓度的原理是什么? 影响紫外分光光度法测定准确性的因素有那些? 2. 影响紫外分光光度法测定准确性的因素有那些?
【实验步骤】 实验步骤】 1、标准曲线法 标准曲线的制作: 只试管按表2 加入试剂, (1)标准曲线的制作:取8只试管按表2-5加入试剂,摇 选择光程1cm 石英比色皿, 280nm波长测定A280, 波长测定A280 匀。选择光程1cm 石英比色皿,在280nm波长测定A280, A280值为纵坐标 蛋白质浓度为横坐标,绘制标准曲线。 值为纵坐标, 以A280值为纵坐标,蛋白质浓度为横坐标,绘制标准曲线。
6 2.5 1.5 0.62 5
7 3.0 定: 样品测定: 配制待测蛋白质溶液1ml 加入蒸馏水3ml 1ml, 3ml, 配制待测蛋白质溶液1ml,加入蒸馏水3ml,摇 匀,测定A280,从标准曲线中查出蛋白质浓度。 测定A280,从标准曲线中查出蛋白质浓度。 A280 2. 直接测定法 在紫外分光光度计上, 在紫外分光光度计上,将待测蛋白质溶液加入 比色皿,以生理盐水为对照,测定280nm 280nm和 比色皿,以生理盐水为对照,测定280nm和260nm 波长吸光度。按一下公式计算蛋白质浓度: 波长吸光度。按一下公式计算蛋白质浓度: 蛋白质浓度(mg/mL)=1.45A280蛋白质浓度(mg/mL)=1.45A280-0.74A260 (C为蛋白质浓度,mg/ml,A280和A260分别为 (C为蛋白质浓度,mg/ml,A280和A260分别为 为蛋白质浓度 蛋白质溶液在280nm 260nm处测得的吸光度值 280nm和 处测得的吸光度值) 蛋白质溶液在280nm和260nm处测得的吸光度值)。

紫外分光光度法测定蛋白质含量

紫外分光光度法测定蛋白质含量

紫外分光光度法测定蛋白质含量实验目的1、学习紫外光度法测定蛋白质含量的原理。

2、掌握紫外分光光度法测定蛋白质含量的实验技术。

实验原理本实验采用紫外分光光度法测定蛋白质含量。

蛋白质中酪氨酸和色氨酸残基的苯环含有共轭双键,因此蛋白质具有吸收紫外光的性质,其最大吸收峰位于280nm 附近(不同蛋白质的吸收波长略有差别)。

在最大吸收波长处,吸光度与蛋白质溶液浓度的关系服从朗伯—比尔定律。

利用紫外吸收法测定蛋白质含量准确度较差,其主要原因有两个:其一,测定的蛋白质与标准蛋白质中色氨酸、酪氨酸的含量不同,会造成一定的误差,故该法适用于测定与标准蛋白质氨基酸组成相近的蛋白质;其二,若样品中含有嘌呤、嘧啶(核酸)等吸收紫外光的物质,会产生较大的干扰。

核酸强烈吸收波长为280nm的紫外光,对260nm 波长的紫外光吸收更强,其与蛋白质不同,蛋白质在280nm处的吸收大于260nm 的吸收,故可利用这一性质,通过计算适当校正核酸对于测定蛋白质含量的干扰作用。

由于不同的蛋白质与核酸的紫外吸收不同,故测定的结果还是会产生一定的误差。

在测定工作中,可利用在280nm及260nm下的吸收差求出蛋白质的浓度。

蛋白质浓度(mg·mL-1)=1.45A280—0.74A260其中A280、A260分别为蛋白质溶液在280nm与260nm 处测得的吸光度值。

Warburg 和 Chirstian 用结晶的酵母烯醇化酶和纯的酵母核酸作为标准,对于有核算存在时所造成误差做出了评价,并作出校正表。

A280与A260的比值为校正因子F,可从校正表中查出,同时可查出该样品溶液中混杂核酸的百分含量,将F值代入,再由经验公式直接计算该溶液的蛋白质浓度。

蛋白质浓度(mg·mL-1)=F * 1/d * A280* D其中d为石英比色池的厚度;D为溶液的稀释倍数。

紫外吸收法在蛋白质含量为20~100μg·mL-1范围内服从比尔定律,氯化钠、硫酸铵以及0.1mol·L-1磷酸、硼酸和Tris 等缓冲溶液都无显著干扰,但是,0.1mol·L-1乙酸、琥珀酸、邻苯二甲酸以及巴比妥等缓冲溶液在215nm 下的吸收较大不能应用,必须降至0.005mol·L-1才无显著影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

紫外分光光度法测定蛋白质含量
一、实验目的
1、学习紫外分光光度法测定蛋白质含量的原理;
2、掌握紫外分光光度法测定蛋白质含量的实验技术;
3、掌握TU-1901紫外-可见分光光度计的使用方法并了解此仪器的主要构造。

二、实验原理
紫外-可见吸收光谱法又称紫外-可见分光光度法,它是研究分子吸收190nm~750nm波长范围内的吸收光谱,是以溶液中物质分子对光的选择性吸收为基础而建立起来的一类分析方法。

紫外-可见吸收光谱的产生是由于分子的外层价电子跃迁的结果,其吸收光谱为分子光谱,是带光谱。

进行定性:利用紫外-可见吸收光谱法进行定性分析一般采用光谱比较法。

即将未知纯化合物的吸收光谱特征,如吸收峰的数目、位置、相对强度以及吸收峰的形状与已知纯化合物的吸收光谱进行比较。

定量分析: 紫外-可见吸收光谱法进行定量分析的依据是朗伯-比尔定律:A=lgI0/I=εbc,当入射光波长λ及光程b一定时,在一定浓度范围内,有色物质的吸光度A与该物质的浓度c成正比,即物质在一定波长处的吸光度与它的浓度成线形关系。

因此,通过测定溶液对一定波长入射光的吸光度,就可求出溶液中物质浓度和含量。

由于最大吸收波长λmax处的摩尔吸收系数最大,通常都是测量λmax
的吸光度,以获得最大灵敏度。

光度分析时,分别将空白溶液和待测溶液装入厚度为b的两个吸收池中,让一束一定波长的平行单色光非别照射空白和待测溶液,以通过空白溶液的透光强度为I0,通过待测溶液的透光强度为I,根据上式,由仪器直接给出I0与I之比的对数值即吸光度。

紫外-可见分光光度计:紫外-可见吸收光谱法所采用的仪器称为分光光度计,它的主要部件有五个部分组成,即
由光源发出的复合光经过单色器分光后即可获得任一所需波长的平行单色光,该单色光通过样品池静样品溶液吸收后,通过光照到光电管或光电倍增管等检测器上产生光电流,产生的光电流由信号显示器直接读出吸光度A。

可见光区采用钨灯光源、玻璃吸收池;紫外光区采用氘灯光源、石英吸收池。

本实验采用紫外分光光度法测定蛋白质含量的实验原理:
(1)蛋白质可作定量分析的原因:蛋白质中酪氨酸和色氨酸残基的苯环含有共轭双键,所以蛋白质溶液在275 280nm具有一个吸收紫外吸收高峰。

在一定浓度范围内,蛋白质溶液在最大吸收波长处的吸光度与其浓度成正比,服从朗伯-比耳定律,因此可作定量分析。

该法测定蛋白质的浓度范围为0.1—1.0mg/mL。

(2)此种方法测量的准确度差一点的原因:由于不同蛋白质中酪氨酸和色氨酸的含量不同,所处的微环境也不同,所以不同蛋白质溶液在280nm的光吸收职也不同。

据初步统计,浓度为1.0 mg/mL的1800
种蛋白质及蛋白质亚基在280nm的吸光度在0.3—3.0之间,平均值为1.25+/-0.51。

所以此种方法测量的准确度差一点。

(3)有嘌呤、嘧啶等核酸类干扰时的经验公式:若样品中含有嘌呤、嘧啶等核酸类吸收紫外光的物质,在280nm处来测量蛋白质含量时,会有较大的干扰。

核酸在260nm处的光吸收比280nm更强,但蛋白质却恰恰相反,因此可利用280nm及260nm的吸收差来计算蛋白质的含量。

常用下列经验公式计算:
蛋白质浓度(mg/mL)=1.45A280-0.74A260
(A280和A260分别为蛋白质溶液在280nm和260nm处测得的吸光度值)
还可以通过下述经验公式直接计算出溶液中的蛋白质的含量:
蛋白质浓度(mg/mL)=F* A280*D*1/d
其中A280为蛋白质溶液在280nm处测得的吸光度值;d为石英比色皿的厚度(cm);D为溶液的稀释倍数;F为校正因子
(4)稀溶液中蛋白质浓度测定的经验公式:蛋白质的肽键在200—250nm有强的紫外吸收。

其光吸收强度在一定范围与浓度成正比,其波长越短,光吸收越强。

若选用215nm可减少干扰及光散射,用215nm 和225nm光吸收差值与单一波长测定相比,可减少非蛋白质成分引起的误差,因此,对稀溶液中蛋白质浓度测定,可选用215nm和225nm 光吸收差法。

常用下列经验公式:
蛋白质浓度(mg/mL)=0.144(A215-A225)
(A215和A225分别为蛋白质溶液在215nm和225nm处测得的吸光度
值)
三、仪器与试剂
仪器:TU-1901紫外-可见分光光度计,比色管(10ml的5个),吸量管。

试剂:标准蛋白质溶液:3.00 mg/mL溶液、0.9% NaCl溶液,待测蛋白质溶液。

四、实验步骤
〈一〉准备工作
1.启动计算机,打开主机电源开关,启动工作站并初始化仪器。

2. 在工作界面上选择测量项目(光谱扫描,光度测量),本实验选择光度测量,设置测量条件(测量波长等)。

3. 将空白放入测量池中,点击START扫描空白,点击ZERO校零。

4. 标准曲线的制作。

〈二〉测量工作
1.吸收曲线的绘制:用吸量管吸取2mL3.00mg/mL标准蛋白质溶液于10mL比色管中,用0.9% NaCl
溶液稀释至刻度,摇匀。

用1cm石英比色皿,以0.9% NaCl溶液为参比,在190 nm~400nm区间,测量吸光度。

2.标准曲线的制作:用吸量管分别吸取1.0、1.5、2.0、2.5、
3.0mL
3.00 mg.mL-1标准蛋白质溶液于5只10 mL比色管中,用0.9% NaCl 溶液稀释至刻度,摇匀。

用1 cm石英比色皿,以0.9%NaCl溶液为参
比,在280 nm处分别测定各标准溶液的吸光度A278 记录所得读数。

3.样品测定:取适量浓度的待测蛋白质溶液3 mL,用0.9% NaCl溶液稀释至刻度,摇匀,按上述方法测定278nm处的吸光度。

平行测定三份。

五、数据处理:
1.以波长为横坐标,吸光度为纵坐标,绘制吸收曲线,找出最大吸收波长。

由吸收曲线可得最大吸收波长λmax=278nm
2.以标准蛋白质溶液浓度为横坐标,吸光度为纵坐标绘制标准曲线。

待测蛋白质的吸光度
序号吸光度浓度C(mg/mL)
1 0.416 0.64864
2 0.41
3 0.644109
3 0.40
4 0.630514
平均浓度=0.641088 mg/mL
SD= 0.009434
RSD= 1.4715%
当置信度为P=95%时,f=2,t0.95,2=4.3
置信区间μ==0.641088 4.30.009434/√3=(0.6410880.0234209) mg/mL
在误差允许的范围内,蛋白质的含量为0.641088mg/mL
六、思考题
紫外分光光度法测定蛋白质含量的方法有何优缺点?受哪些因素的影响和限制?
答:优点:方法操作简便、迅速、不需要复杂和昂贵的设备,不消耗样品,测定后仍能回收利用,低浓度的盐和大多数缓冲溶液不干扰测定。

缺点:准确度和灵敏度差一点。

干扰物质多;对于测定那些与标准蛋白质中铬氨酸和色氨酸含量差异较大的蛋白质,有一定的误差。

若样品中含有嘌呤、嘧啶等吸收紫外光的物质,会产生较大干扰。

干扰因素:主要受溶剂的影响。

七,实验总结与反思。

相比于上一个邻二氮菲分光光度法测定微量铁的实验来说,这个实验的操作步骤是相当的简单,出错的几率也小。

最后测出样品的吸光度要比另一组的大的原因,我想可能是标准蛋白质溶液的问题,我们两个小组用的不是一个容量瓶中的标准蛋白质溶液,他们组使用的是新配置的,我们小组使用的是之前遗留下来的,而且只剩下一点点,但是足够我们做这次实验的量,我想很有可能是蛋白质沉积在了底部,每次使用前没有轻轻的混合均匀,导致底部浓度偏大,最后就影响到了我们待测溶液的浓度的测定。

相关文档
最新文档