《数学概率论》PPT课件
合集下载
人教版九年级上册数学《概率》概率初步PPT教学课件(第2课时)

P(没有中奖).
(1).
练习巩固
练习3 已知:在一个不透明的口袋中装有仅颜色不同的红、白 两种小球,其中红球3个,白球n个,若从袋中任取一个球,摸出白 球的概率为四分之三,求n 的值.
解:P(摸出白球).
根据题意得n=9.
经检验,n=9是原分式方程的解.
做一做
小明和小刚想通过抽取扑克牌的方式来决定谁去看电影, 现有一副扑克牌,请你设计对小明和小刚都公平的抽签方案.
解:(1)指向红色有1种结果, P(指向红色) =.
变式训练
例1变式 如图,是一个转盘,转盘被分成两个扇形,颜色分为红 黄两种,红色扇形的圆心角为120度,指针固定,转动转盘后任其自由 停止,指针会指向某个扇形,(指针指向交线时当作指向右边的扇形 )求下列事件的概率:(1)指向红色;(2)指向黄色.
各边相等的圆内接多边形是正多边形吗?
以四边形为例
A
已知:如图, O 中内接四边形
ABCD ,
AB=BC=CD=DA .
B
求证:四边形ABCD是正方形.
D O
C
思考
已知:如图, O 中内接四边形ABCDE,
AB=BC=CD=DA .
A
D
求证:四边形ABCD是正方形.
证明: AB BC CD DA ,
你能设计出几种方案?
课堂小结
(1)在计算简单随机事件的概率时需要满足两个前 提条件:
每一次试验中,可能出现的结果只有有限个; 每一次试验中,各种结果出现的可能性相等. (2)通过对概率知识的实际应用,体现了数学知识 在现实生活中的运用,体现了数学学科的基础性.
作业
1.一个质地均匀的小正方体,六个面分别标有数字 “1”“1”“2”“4”“5”“5”.掷小正方体后, 观察朝上一面的数字.
(1).
练习巩固
练习3 已知:在一个不透明的口袋中装有仅颜色不同的红、白 两种小球,其中红球3个,白球n个,若从袋中任取一个球,摸出白 球的概率为四分之三,求n 的值.
解:P(摸出白球).
根据题意得n=9.
经检验,n=9是原分式方程的解.
做一做
小明和小刚想通过抽取扑克牌的方式来决定谁去看电影, 现有一副扑克牌,请你设计对小明和小刚都公平的抽签方案.
解:(1)指向红色有1种结果, P(指向红色) =.
变式训练
例1变式 如图,是一个转盘,转盘被分成两个扇形,颜色分为红 黄两种,红色扇形的圆心角为120度,指针固定,转动转盘后任其自由 停止,指针会指向某个扇形,(指针指向交线时当作指向右边的扇形 )求下列事件的概率:(1)指向红色;(2)指向黄色.
各边相等的圆内接多边形是正多边形吗?
以四边形为例
A
已知:如图, O 中内接四边形
ABCD ,
AB=BC=CD=DA .
B
求证:四边形ABCD是正方形.
D O
C
思考
已知:如图, O 中内接四边形ABCDE,
AB=BC=CD=DA .
A
D
求证:四边形ABCD是正方形.
证明: AB BC CD DA ,
你能设计出几种方案?
课堂小结
(1)在计算简单随机事件的概率时需要满足两个前 提条件:
每一次试验中,可能出现的结果只有有限个; 每一次试验中,各种结果出现的可能性相等. (2)通过对概率知识的实际应用,体现了数学知识 在现实生活中的运用,体现了数学学科的基础性.
作业
1.一个质地均匀的小正方体,六个面分别标有数字 “1”“1”“2”“4”“5”“5”.掷小正方体后, 观察朝上一面的数字.
概率论绪论PPT课件

也可以按某种标准把支出分为高、 中、低三档. 这时,样本点有(高,高), (高,中),…,(低,低)等9种,样本空 间就由这9个样本点构成 .
引入样本空间后,事件便可以表示为 样本空间的子集 .
例如,掷一颗骰子,观察出现的点数
样本空间:
Ω = { i :i=1,2,3,4,5,6}
B = {1,3,5}
计学是概率论的一种应用. 但是它们是两个并列 的数学分支学科,并无从属关系.
概率论是一门研究客观世界随机现象数量 规律的 数学分支学科. —— 其起源与博弈问题 有关.
16世纪意大利学者开始研究掷骰子等赌博 中的一些问题;17世纪中叶,法国数学家B. 帕 斯卡、荷兰数学家C. 惠更斯 基于排列组合的方 法,研究了较复杂 的赌博问题, 解决了“ 合理 分配赌注问题” ( 即得分问题 ).
A1, A2,..., An 构成一个完备事件组.
举例
例1:掷一颗骰子的试验,观察其出现的点 数:事件A表示{出现奇数点};事件B表示 {出现点数小于5};事件C表示{出现小于5 的偶数点}。用列举法表_示_ 事件:
Ω ,A+B,A-B,B-A,AB,AC, A B
例2:设A、B、C为三个随机事件,表示下列 事件:
序论
第二次世界大战军事上的需要以及大工业 与管理的复杂化产生了运筹学、系统论、信息 论、控制论与数理统计学等学科.
数理统计学是一门研究怎样去有效地收集、 整理和分析带有随机性的数据,以对所考察的 问题作出推断或预测,直至为采取一定的决策 和行动提供依据和建议的 数学分支学科.
统计方法的数学理论要用到很多近代数学 知识,如函数论、拓扑学、矩阵代数、组合数 学等等,但关系最密切的是概率论,故可以这 样说:《概率论》是数理统计学的基础,数理统
引入样本空间后,事件便可以表示为 样本空间的子集 .
例如,掷一颗骰子,观察出现的点数
样本空间:
Ω = { i :i=1,2,3,4,5,6}
B = {1,3,5}
计学是概率论的一种应用. 但是它们是两个并列 的数学分支学科,并无从属关系.
概率论是一门研究客观世界随机现象数量 规律的 数学分支学科. —— 其起源与博弈问题 有关.
16世纪意大利学者开始研究掷骰子等赌博 中的一些问题;17世纪中叶,法国数学家B. 帕 斯卡、荷兰数学家C. 惠更斯 基于排列组合的方 法,研究了较复杂 的赌博问题, 解决了“ 合理 分配赌注问题” ( 即得分问题 ).
A1, A2,..., An 构成一个完备事件组.
举例
例1:掷一颗骰子的试验,观察其出现的点 数:事件A表示{出现奇数点};事件B表示 {出现点数小于5};事件C表示{出现小于5 的偶数点}。用列举法表_示_ 事件:
Ω ,A+B,A-B,B-A,AB,AC, A B
例2:设A、B、C为三个随机事件,表示下列 事件:
序论
第二次世界大战军事上的需要以及大工业 与管理的复杂化产生了运筹学、系统论、信息 论、控制论与数理统计学等学科.
数理统计学是一门研究怎样去有效地收集、 整理和分析带有随机性的数据,以对所考察的 问题作出推断或预测,直至为采取一定的决策 和行动提供依据和建议的 数学分支学科.
统计方法的数学理论要用到很多近代数学 知识,如函数论、拓扑学、矩阵代数、组合数 学等等,但关系最密切的是概率论,故可以这 样说:《概率论》是数理统计学的基础,数理统
第五章 大数定律与中心极限定理 《概率论》PPT课件

概率论与数理统计
§5.2 中心极限定理
2)中 心极限 定理表明,若 随 机 变 量 序 列
X 1 , X 2 , , X n 独立同分布,且它们的数学期
望及方差存在,则当n充分大时,其和的分布,
n
即 X k 都近似服从正态分布. (注意:不一定是 k 1
标准正态分布)
3)中心定理还表明:无论每一个随机变量 X k ,
概率论与数理统计
§5.1 大数定律
定理1(Chebyshev切比雪夫大数定律)
假设{ Xn}是两两不相关的随机
变量序列,EXn , DXn , n 1,2, 存在,
其方差一致有界,即 D(Xi) ≤L,
i=1,2, …, 则对任意的ε>0,
lim P{|
n
1 n
n i1
Xi
1 n
n i1
E(Xi ) | } 1.
概率论与数理统计
§5.2 中心极限定理
现在我们就来研究独立随机变量之和所 特有的规律性问题.
在概率论中,习惯于把和的分布 收敛于正态分布这一类定理都叫做中心 极限定理.
下面给出的独立同分布随机变量序 列的中心极限定理, 也称列维——林德 伯格(Levy-Lindberg)定理.
概率论与数理统计
§5.2 中心极限定理
大量的随机现象平均结果的稳定性
大量抛掷硬币 正面出现频率
生产过程中的 字母使用频率 废品率
概率论与数理统计
§5.1 大数定律
一、大数定律
阐明大量的随机现象平均结果的稳定性的一系
列定理统称为大数定律。
定义1 如果对于任意 0, 当n趋向无穷时,事件
" Xn X " 的概率收敛到1,即
概率论高等院校概率论课件

应用场景
强大数定律在统计学中用于 估计极端事件发生的概率和 风险,在决策理论中用于评 估最优策略和期望收益,在 可靠性工程中用于分析系统 的可靠性和寿命。
注意事项
强大数定律的应用有一定的 限制条件,例如随机序列必 须是独立同分布的。此外, 强大数定律并不能保证每个 随机事件的绝对正确性,而 只是给出了最大值分布的稳 定性。
连续随机过程
如布朗运动,每一步都是连续 的,每一步的状态都是连续的
。
随机游走与布朗运动
随机游走
一个随机过程,其中每一步都是随机的,通 常用来描述粒子的无规则运动。
布朗运动
一种连续随机过程,由大量微小粒子在流体 中无规则运动产生,通常用来描述微观粒子 的运动。
马尔科夫链与马尔科夫过程
马尔科夫链
一个随机过程,其中下一个状态只依赖于当前状态,与过去状态 无关。
注意事项
大数定律的前提是试验次数必须足够多,并且随 机事件之间必须是独立的。此外,大数定律并不 能保证每个随机事件的绝对正确性,而只是给出 了频率趋于概率的稳定性。
强大数定律
总结词
强大数定律是概率论中的重 要定理之一,它描述了随机 序列中最大值的分布性质。
详细描述
强大数定律指出,对于任意 给定的正整数序列$a_n$和 $b_n$,有$lim_{n to infty} frac{a_n}{b_n} = 1$的概率 为1。这个定理说明了随机 序列中最大值的分布具有很 强的稳定性。
随机变量的性质
随机变量具有可测性、可加性和有限 可加性。
离散型随机变量及其分布
离散型随机变量的定义
离散型随机变量是在样本空间中取有 限个或可数个值的随机变量。
离散型随机变量的分布
人教版高中数学必修三概率论-古典概型ppt课件

推广1. n个元素分成 ( r1 rk n) k组,每组有 rk 个元素, n! rk r1 r2 分法有 C n 种 C n r1 C rk r1 ! rk !
2. n个元素有2类,每类分别有m , ( n m )个,每
r1 r2 类分别取r1 , r2个, 取法有C m Cn m种
3. n个元素有k类,每类分别有n1 ,, nk 个,每类
rk r1 r2 分别取r1 , , rk 个, 取法有C n C C n2 nk 种 1
例1 袋中有外形相同的5个白球,3个黑球,一次任取两个, 求取出两个都是白球的概率
解 设A {取出两个都是白球}
2 n C8 2 0 m C5 C3
基本计数原理
3.基本计数原理: (1) 加法原理 设完成一件事有m种方式, 第一种方式有n1种方法, 则完成这件事总共有 第二种方式有n2种方法, …, n1 + n2 + … + nm 种方法 . 第m种方式有nm种方法, 无论通过哪种方法都可以完成这件事,
(2) 乘法原理 设完成一件事有m个步骤, 第一个步骤有n1种方法, 第二个步骤有n2种方法, n
6 A6 例5 6人排成一排,有多少种排法? 6! 若某人必须排在排尾 ( 排除法 ) 5! (捆绑法 ) 5! 2! 若甲乙必须在一起 2 若甲乙必须不在一起 ( 插空法 ) 4! A5 6! 若甲乙必须从左到右排 ( 去序法 ) 2! (去序) 5.组合: 从n个不同元素取 r 个组成一组 ( 从n个不同元素一次取 r 个) r A n! r n 不同取法有 C n 种 r! r !( n r )! (相当于将n个元素分成两组 )
解 设Ak {抽到k件一等品 } k 0,1,2 2 2 k k 59 n C100 C 40 m C 60 1 1 0 2 2 165 C C C 60 C 40 C 26 60 40 16 60 P ( A ) P ( A ) P ( A0 ) 1 2 2 2 2 165 33 C100 C100 C100 例3 若上例改为依次抽取2件,求抽到2件等级相同的产品的概率 排列 解 设A {2件等级相同} (1)不放回( 不重复抽样) 5 2 2 2 2 n P100 100 99 m A60 A30 A10 P ( A) 11 ( 2)有放回(重复抽样) n 1002 m 602 302 102
人教版九年级数学上册《概率》概率初步PPT优质课件

13
13
4 1.
求简单随机事件的概
率
练习
把一副普通扑克牌中的 13 张梅花牌洗匀后正面向下
3
放在桌子上,从中随机抽取一张,求下列事件的概
11 抽出的牌是梅花 6;
率:
21 抽出的牌带有人像;
31 抽出的牌上的数小于 5;
41 抽出的牌的花色是梅花.
1
3
4
1
; 2
; 3
;
13
13
13
4 1.
求简单随机事件的概
活动 2:掷骰子
在上节课的问题 2 中,掷一枚六个面上分别刻有 1 到 6
的点数的骰子,向上一面出现的点数有几种可能?每种点数
出现的可能性大小又是多少?
有 6 种可能,即 1,2,3,4,5,6.
1
6
我们用 表示每一个点数出现的可能性大小.
如何求概率
活动 3
掷一枚硬币,落地后:
1 会出现几种可能的结果? 两种
8
5
(摸出黄球 ) =_________
8
.
求简单随机事件的概
率
练习2 有 7 张纸签,分别标有数字 1,1,2,2,3,4,5,
从中随机地抽出一张,求:
11 抽出标有数字 3 的纸签的概率;
2
(2)抽出标有数字
1 的纸签的概率;
3
(3)抽出标有数字为奇数的纸签的概率.
1
: (数字 3) = 7;
生的概率,记为 ().
认识概率
活动 1:抽纸团
在上节课的问题 1 中,从分别写有数字 1,2,3,4,
5 的五个纸团中随机抽取一个,这个纸团里的数字有几种可
能?每个数字被抽到的可能性大小是多少?
13
4 1.
求简单随机事件的概
率
练习
把一副普通扑克牌中的 13 张梅花牌洗匀后正面向下
3
放在桌子上,从中随机抽取一张,求下列事件的概
11 抽出的牌是梅花 6;
率:
21 抽出的牌带有人像;
31 抽出的牌上的数小于 5;
41 抽出的牌的花色是梅花.
1
3
4
1
; 2
; 3
;
13
13
13
4 1.
求简单随机事件的概
活动 2:掷骰子
在上节课的问题 2 中,掷一枚六个面上分别刻有 1 到 6
的点数的骰子,向上一面出现的点数有几种可能?每种点数
出现的可能性大小又是多少?
有 6 种可能,即 1,2,3,4,5,6.
1
6
我们用 表示每一个点数出现的可能性大小.
如何求概率
活动 3
掷一枚硬币,落地后:
1 会出现几种可能的结果? 两种
8
5
(摸出黄球 ) =_________
8
.
求简单随机事件的概
率
练习2 有 7 张纸签,分别标有数字 1,1,2,2,3,4,5,
从中随机地抽出一张,求:
11 抽出标有数字 3 的纸签的概率;
2
(2)抽出标有数字
1 的纸签的概率;
3
(3)抽出标有数字为奇数的纸签的概率.
1
: (数字 3) = 7;
生的概率,记为 ().
认识概率
活动 1:抽纸团
在上节课的问题 1 中,从分别写有数字 1,2,3,4,
5 的五个纸团中随机抽取一个,这个纸团里的数字有几种可
能?每个数字被抽到的可能性大小是多少?
精品课程《概率论》ppt课件(全)

第一章 概率论的基本概念
前言
1. 确定性现象和不确定性现象.
2. 随机现象: 在个别试验中其结果呈现出 不确定性,在大量重复试验中其结果又 具有统计规律性.
3. 概率与数理统计的广泛应用.
§1.随机试验
举例: E1: 抛一枚硬币,观察正(H)反(T)面的情况.
E2: 将一枚硬币抛两次,观察正反面出现的情况.
成 为 数学 分支
1713年<<猜 度术>> 2
棣莫佛(1667-1754): <<分析杂论>>
中心极限定理(CLT)(1901 年), 乘法原理,正态分布等。
蒲丰(1707-1788):蒲丰问题
几何概率
拉普拉斯(1749-1827):1812《概率分析理论》
概率的古典定义
泊松(1781-1840):推广了大数定理,提出了Poisson分布等.
A的对立事件A记 ,A也 为称A 为不发.生
若A与B互为对立事件,A则 B记 ,或为
BA.
B
A
BA
S
(1)若A, B二事件互为对立事件, 则A,B必互不相容, 但反之不真.
(2)必然事件与不可能事件互为对立事件,
S或S.
(3)ABABAAB
7.事件的运算律:
交换律: A B B A ; A B B A
P(B| A
)nnA ABnnA AB nn
P(AB P(A)
)
1. 定义: 设A, B是两个事件, 且P(A)>0, 称
P(B| A) P(AB ) P(A)
为在事件A发生的条件下事件B发生的条件概率.
2. 性质: 条件概率符合概率定义中的三个条件,即
高中数学概率论复习(全)PPT

(2)有界性:对任意实数 x ,有 0 F(x) 1,且
F() lim F(x) 0 x
F() lim F(x) 1 x
(3)右连续性:F(x) 是右连续的函数,即对任
意实数 x ,有 F(x 0) F(x) . (4)对任意实数 x1, x2 (x1 x2 ) ,有 P{x1 X x2} P{X x2} P{X x1}
F (x2 ) F (x1)
【注】满足单调性、有界性和右连续性这三个性质的 函数,一定可以作为某个随机变量的分布函数.
离散型随机变量
离散型随机变量 X 的概率分布满足以下两个基本性质:
(1)非负性: pi 0 , i 1, 2, ;
(2)规范性: pi 1 . i 1
【注】满足非负性和规范性的数组 pi (i 1, 2, ) ,一 定是某个离散型随机变量的概率分布.
pij
( xi , y j )G
(4)
P{X xi} pij , i 1, 2, j 1
P{Y y j} pij , j 1, 2, i 1
二维连续型随机变量
(1)非负性 p(x, y) 0 ;
(2)规范性 p(x, y)dxdy F (, ) 1.
【注】若二元函数 p(x, y) 具有非负性和规范性,则 p(x, y) 一定是某个二维连续型随机变量的联合概率 密度函数.
定理 设随机变量 X 具有数学期望
E( X ) μ,方差 D( X ) σ 2,则对于任
(3)右连续性 F( x, y ) 分别对 x , y 右连续,即
F(x 0, y) lim F(x , y) F(x, y) 0
F(x, y 0) lim F(x, y ) F(x, y) 0
(4)非负性 对于任意的实数 x1 x2 , y1 y2 ,有
F() lim F(x) 0 x
F() lim F(x) 1 x
(3)右连续性:F(x) 是右连续的函数,即对任
意实数 x ,有 F(x 0) F(x) . (4)对任意实数 x1, x2 (x1 x2 ) ,有 P{x1 X x2} P{X x2} P{X x1}
F (x2 ) F (x1)
【注】满足单调性、有界性和右连续性这三个性质的 函数,一定可以作为某个随机变量的分布函数.
离散型随机变量
离散型随机变量 X 的概率分布满足以下两个基本性质:
(1)非负性: pi 0 , i 1, 2, ;
(2)规范性: pi 1 . i 1
【注】满足非负性和规范性的数组 pi (i 1, 2, ) ,一 定是某个离散型随机变量的概率分布.
pij
( xi , y j )G
(4)
P{X xi} pij , i 1, 2, j 1
P{Y y j} pij , j 1, 2, i 1
二维连续型随机变量
(1)非负性 p(x, y) 0 ;
(2)规范性 p(x, y)dxdy F (, ) 1.
【注】若二元函数 p(x, y) 具有非负性和规范性,则 p(x, y) 一定是某个二维连续型随机变量的联合概率 密度函数.
定理 设随机变量 X 具有数学期望
E( X ) μ,方差 D( X ) σ 2,则对于任
(3)右连续性 F( x, y ) 分别对 x , y 右连续,即
F(x 0, y) lim F(x , y) F(x, y) 0
F(x, y 0) lim F(x, y ) F(x, y) 0
(4)非负性 对于任意的实数 x1 x2 , y1 y2 ,有
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(X,Y)具有概率密度
1 , f ( x, y) A 0,
( x, y) G, 其它.
则称(X,Y)在域G上服从均匀分布. 例2 设(X,Y)在域 G: x2+y2 r2, y0上服从均匀 分布,求其边缘概率密度.
例2 设(X,Y)在域 G: x2+y2 r2, y0 上服从均匀分布, 求其边缘概率密度. y 解
f X ( x)
f ( x, y )dy,
x
同理,Y也是连续型随机变量,其概率密度为
fY ( y )
f ( x, y )dx,
y
分别称为(X,Y)关于X和关于Y的边缘概率密度.
二维常见分布
均匀分布:设 G为一面积为 A平面有界区域,若
X 1 2 3 4
1
2
3
4
1/4 1/8 1/12 1/16
0 1/8 1/12 1/16
0 0 1/12 1/16 7/48
0 0 0 1/16 1/16
1/4 1/4 1/4 1/4 1 返 回
25/48 13/48
例2 某产品8件,其中有2件次品.每次从中抽取一件, 不放回,抽取两次,分别以X、Y表示第一、二次取到 的次品件数, 试求(X,Y)的分布律. 解 (X,Y)的所有取值为(i, j), i,j=0,1 由乘法公式有
二维离散型随机变量:
(X,Y)的所有可能取值是可列队或可列无限多队.
二维离散(X,Y)的分布律(联合分布律):
(X,Y)的所有可能取值(xi , yj ), i, j=1, 2…,
P{ X xi ,Y y j } ˆ pij , ( i , j 1,2,)
满 足
1 0 pij 1,
p j p1
p2 p j
三、 连续型随机变量的边缘概率密度
设(X,Y) 概率密度为f (x, y),则
x FX ( x ) F ( x, ) f ( x, y )dy dx,
x
由此知,X是连续型随机变量,且其概率密度为
F ( x, y)
2
x
y
f ( u, v )dudv
则称(X,Y)为二维连续型随机变量, f (x,y)称为(X,Y)的概率密度, 或称为X和Y的联合概率密度.
性 质
1 f ( x, y) 0,
2 F( x , y ) 3 f ( x, y) , 在f ( x , y )的 连 续 点 . x y
y
(x,y)
y2
y1 O
y
O
x
x1
x2
x
P{ x1 X x2 , y1 Y y2 } F ( x2 , y2 ) F ( x2 , y1 ) F ( x1 , y1 ) F ( x1 , y2 )
分布函数F(x,y)的性质:
1) F(x,y)是变量 x 和 y 的不减函数,即
y
f Y ( y ) f ( x, y )dx
r
r 2 y2 2 2 2 2 dx, 0 y 1 r y r 其 它 . 0,
-r
o
x r
x
2 2 r 0,
r 2 y2 , 0 y 1 其 它.
2 2, f ( x , y ) r 0,
( x, y) G, 其 它.
-r o
r
f X ( x ) f ( x, y )dy
r 2 x2 2 dy, 0 2 r 0,
x r
x
r x r, qita.
2 2 r 2 x2 , x r r qita 0,
X(e)
[注]:二维随机变量(X,Y)的性质 不仅与X 和Y有关,且 还依赖于 两者的相互关系.
e S
Y(e)
分布函数(联合分布函数)
设(X,Y)是二维随机变量, 对于任意实数x,y,
F ( x, y) P{( X x ) (Y y)} ˆ P{ X x,Y y}
称F(x,y)为二维随机变量(X,Y)的分布函数,或称为 随机变量X 和Y 的联合分布函数。
i 1
i
1,
p
i 1
j
1.
离散型随机变量的边缘分布律列表 X Y
y1
y2 y j
p i
p 1 p 2 p i
1
例1
x1 x2 xi
p11 p 21 p i1
p11 p1 j p 22 p 2 j p i 2 p ij
2 2 2
例4 设二维随机变量具有概率密度 2e ( 2 x y ) , x 0, y 0, f ( x, y ) 其 它. 0, 求 (1)分布函数F(x,y);(2)P{XY} 解
y (x,y)
O
x
概念的推广:
设E是一随机试验,S是其样本空间,X1,X2,...Xn是定 义S在上的n个随机变量,则称n维向量(X1,X2,...Xn )为定 义在S上的n维随机向量或n维随机变量. 对个任意实数x1,x2,…xn ,令
定义1 设(X,Y)为二维随机变量,其分布函为F(x,y)
F X { x } P{ X x }
(X,Y)关于X的边缘分布函数 (X,Y)关于Y的边缘分布函数
FY ( y ) P{Y y }
[注] 边缘分布函数可以由X与Y的联合分布函F(x,y)唯 一确定:
FX ( x ) F ( x, ) FY ( y ) F ( ,y)
例1 设随机变量X在1,2,3,4四个整数中等可能地取值, 另一随机变量Y在1~X中等可能地取一整数值.试求 (X,Y)的分布律. 解: X=i, i=1,2,3,4, Y=j, ji.
11 P{ X i , Y j } P{Y j X i }P{ X i } ( i 1,2,3,4, i4 Y j i)
二 、 离散型随机变量的边缘分布律
若(X,Y)分布律为 P{ X x i , Y y j } pij , ( i , j 1,2, )
P{ X x i } P{Y xi }
P{ X x , Y y
j 1 i
j
}
P{ X x , Y y
F( x1 , x 2 , , x n ) P{X 1 x1 , X 2 x 2 , X n x n }
称为n维随机变量(X1,X2,...Xn )的分布函数.
类似可以定义离散型及连续型n维随机变量的分布 律及概率密度,它们都具有类似于二维时的性质.
§2
一、 边缘分布函数
边缘分布
对任意固定的y, 当x2 >x1时,有F(x2, y) F(x1 ,y);
对任意固定的x ,当y2 > y1时,有F(x, y2) F(x ,y1). 2) 0 F(x,y) 1,且 F(-, y)=0, F(x, -)=0, F(-,-)=0, F(+,+)=1 . 3) F(x,y)关于 x右连续, 关于 y右连续, 4) 对于任意x1 <x2 , y1 < y2 ,有 F(x2, y2)-F(x2, y1)+ F(x1,y1)-F(x1,y2)0
2
X
Y
x1 x2 xi
y1
p11 p21 pi 1
y2 y j
p12 p1 j p22 p2 j pi 2 pij
p
j 1 i 1
i
ij
1.
分 F ( x, y) 布 函 数
p ij x x
yj y
y
v
(3) F ( x, y ) f (u, v )dvdu
0,
2x y x
2 2 4
x
y
当x<0 或 y<0 时, 当x y<1, 0 x<1 时,
F (x,y) =
y4
当x >y, 0 y < 1时,
2 4
2x x
1,
当y 1, 0 x <1时, 当 x 1, y 1 时,
D x y 1 1 1 02
x+y1
D
0 C 8
C dx Cxydy 1 x 1 x dx 8 xydy8
1
O
1
x
x+y=1
x
6
(3) F ( x, y ) f (u, v )dvdu
当x<0 或 y<0 时, F(x,y) = 0
x , y
其中 1 , 2 , 1 , 2 , 是常数,且 1 0, 2 0, 1 ,则 称(X,Y)服从参数为的,记为
( X , Y ) ~ N ( 1 , 2 , 1 , 2 , )
2
2
二维正态分布图
二维正态分布
( x 1 ) 2 ( x 1 )( y 2 ) ( y 2 ) 2 2 2 2 2 1 2 ) 2 ( 1 ) 1 2 e 1
设二维随机变量(X,Y)具有概率密度
f ( x, y) 1 2 1 2 1 2
P{ X i,Y j } P{ X i } P{Y j|X i }
Y X 0 1 0 15 28 6 28 1 64 设二维随机变量(X,Y)的分布函数为F(x, y), 若存在一个
1 , f ( x, y) A 0,
( x, y) G, 其它.
则称(X,Y)在域G上服从均匀分布. 例2 设(X,Y)在域 G: x2+y2 r2, y0上服从均匀 分布,求其边缘概率密度.
例2 设(X,Y)在域 G: x2+y2 r2, y0 上服从均匀分布, 求其边缘概率密度. y 解
f X ( x)
f ( x, y )dy,
x
同理,Y也是连续型随机变量,其概率密度为
fY ( y )
f ( x, y )dx,
y
分别称为(X,Y)关于X和关于Y的边缘概率密度.
二维常见分布
均匀分布:设 G为一面积为 A平面有界区域,若
X 1 2 3 4
1
2
3
4
1/4 1/8 1/12 1/16
0 1/8 1/12 1/16
0 0 1/12 1/16 7/48
0 0 0 1/16 1/16
1/4 1/4 1/4 1/4 1 返 回
25/48 13/48
例2 某产品8件,其中有2件次品.每次从中抽取一件, 不放回,抽取两次,分别以X、Y表示第一、二次取到 的次品件数, 试求(X,Y)的分布律. 解 (X,Y)的所有取值为(i, j), i,j=0,1 由乘法公式有
二维离散型随机变量:
(X,Y)的所有可能取值是可列队或可列无限多队.
二维离散(X,Y)的分布律(联合分布律):
(X,Y)的所有可能取值(xi , yj ), i, j=1, 2…,
P{ X xi ,Y y j } ˆ pij , ( i , j 1,2,)
满 足
1 0 pij 1,
p j p1
p2 p j
三、 连续型随机变量的边缘概率密度
设(X,Y) 概率密度为f (x, y),则
x FX ( x ) F ( x, ) f ( x, y )dy dx,
x
由此知,X是连续型随机变量,且其概率密度为
F ( x, y)
2
x
y
f ( u, v )dudv
则称(X,Y)为二维连续型随机变量, f (x,y)称为(X,Y)的概率密度, 或称为X和Y的联合概率密度.
性 质
1 f ( x, y) 0,
2 F( x , y ) 3 f ( x, y) , 在f ( x , y )的 连 续 点 . x y
y
(x,y)
y2
y1 O
y
O
x
x1
x2
x
P{ x1 X x2 , y1 Y y2 } F ( x2 , y2 ) F ( x2 , y1 ) F ( x1 , y1 ) F ( x1 , y2 )
分布函数F(x,y)的性质:
1) F(x,y)是变量 x 和 y 的不减函数,即
y
f Y ( y ) f ( x, y )dx
r
r 2 y2 2 2 2 2 dx, 0 y 1 r y r 其 它 . 0,
-r
o
x r
x
2 2 r 0,
r 2 y2 , 0 y 1 其 它.
2 2, f ( x , y ) r 0,
( x, y) G, 其 它.
-r o
r
f X ( x ) f ( x, y )dy
r 2 x2 2 dy, 0 2 r 0,
x r
x
r x r, qita.
2 2 r 2 x2 , x r r qita 0,
X(e)
[注]:二维随机变量(X,Y)的性质 不仅与X 和Y有关,且 还依赖于 两者的相互关系.
e S
Y(e)
分布函数(联合分布函数)
设(X,Y)是二维随机变量, 对于任意实数x,y,
F ( x, y) P{( X x ) (Y y)} ˆ P{ X x,Y y}
称F(x,y)为二维随机变量(X,Y)的分布函数,或称为 随机变量X 和Y 的联合分布函数。
i 1
i
1,
p
i 1
j
1.
离散型随机变量的边缘分布律列表 X Y
y1
y2 y j
p i
p 1 p 2 p i
1
例1
x1 x2 xi
p11 p 21 p i1
p11 p1 j p 22 p 2 j p i 2 p ij
2 2 2
例4 设二维随机变量具有概率密度 2e ( 2 x y ) , x 0, y 0, f ( x, y ) 其 它. 0, 求 (1)分布函数F(x,y);(2)P{XY} 解
y (x,y)
O
x
概念的推广:
设E是一随机试验,S是其样本空间,X1,X2,...Xn是定 义S在上的n个随机变量,则称n维向量(X1,X2,...Xn )为定 义在S上的n维随机向量或n维随机变量. 对个任意实数x1,x2,…xn ,令
定义1 设(X,Y)为二维随机变量,其分布函为F(x,y)
F X { x } P{ X x }
(X,Y)关于X的边缘分布函数 (X,Y)关于Y的边缘分布函数
FY ( y ) P{Y y }
[注] 边缘分布函数可以由X与Y的联合分布函F(x,y)唯 一确定:
FX ( x ) F ( x, ) FY ( y ) F ( ,y)
例1 设随机变量X在1,2,3,4四个整数中等可能地取值, 另一随机变量Y在1~X中等可能地取一整数值.试求 (X,Y)的分布律. 解: X=i, i=1,2,3,4, Y=j, ji.
11 P{ X i , Y j } P{Y j X i }P{ X i } ( i 1,2,3,4, i4 Y j i)
二 、 离散型随机变量的边缘分布律
若(X,Y)分布律为 P{ X x i , Y y j } pij , ( i , j 1,2, )
P{ X x i } P{Y xi }
P{ X x , Y y
j 1 i
j
}
P{ X x , Y y
F( x1 , x 2 , , x n ) P{X 1 x1 , X 2 x 2 , X n x n }
称为n维随机变量(X1,X2,...Xn )的分布函数.
类似可以定义离散型及连续型n维随机变量的分布 律及概率密度,它们都具有类似于二维时的性质.
§2
一、 边缘分布函数
边缘分布
对任意固定的y, 当x2 >x1时,有F(x2, y) F(x1 ,y);
对任意固定的x ,当y2 > y1时,有F(x, y2) F(x ,y1). 2) 0 F(x,y) 1,且 F(-, y)=0, F(x, -)=0, F(-,-)=0, F(+,+)=1 . 3) F(x,y)关于 x右连续, 关于 y右连续, 4) 对于任意x1 <x2 , y1 < y2 ,有 F(x2, y2)-F(x2, y1)+ F(x1,y1)-F(x1,y2)0
2
X
Y
x1 x2 xi
y1
p11 p21 pi 1
y2 y j
p12 p1 j p22 p2 j pi 2 pij
p
j 1 i 1
i
ij
1.
分 F ( x, y) 布 函 数
p ij x x
yj y
y
v
(3) F ( x, y ) f (u, v )dvdu
0,
2x y x
2 2 4
x
y
当x<0 或 y<0 时, 当x y<1, 0 x<1 时,
F (x,y) =
y4
当x >y, 0 y < 1时,
2 4
2x x
1,
当y 1, 0 x <1时, 当 x 1, y 1 时,
D x y 1 1 1 02
x+y1
D
0 C 8
C dx Cxydy 1 x 1 x dx 8 xydy8
1
O
1
x
x+y=1
x
6
(3) F ( x, y ) f (u, v )dvdu
当x<0 或 y<0 时, F(x,y) = 0
x , y
其中 1 , 2 , 1 , 2 , 是常数,且 1 0, 2 0, 1 ,则 称(X,Y)服从参数为的,记为
( X , Y ) ~ N ( 1 , 2 , 1 , 2 , )
2
2
二维正态分布图
二维正态分布
( x 1 ) 2 ( x 1 )( y 2 ) ( y 2 ) 2 2 2 2 2 1 2 ) 2 ( 1 ) 1 2 e 1
设二维随机变量(X,Y)具有概率密度
f ( x, y) 1 2 1 2 1 2
P{ X i,Y j } P{ X i } P{Y j|X i }
Y X 0 1 0 15 28 6 28 1 64 设二维随机变量(X,Y)的分布函数为F(x, y), 若存在一个