智能避障小车设计
《2024年基于Arduino的智能小车自动避障系统设计与研究》范文

《基于Arduino的智能小车自动避障系统设计与研究》篇一一、引言随着科技的不断发展,智能化和自动化成为现代社会发展的重要方向。
其中,智能小车作为智能交通系统的重要组成部分,具有广泛的应用前景。
自动避障系统作为智能小车的关键技术之一,对于提高小车的安全性和智能化水平具有重要意义。
本文将介绍一种基于Arduino的智能小车自动避障系统的设计与研究。
二、系统设计1. 硬件设计本系统采用Arduino作为主控制器,通过连接超声波测距模块、电机驱动模块、LED灯等硬件设备,实现对小车的控制。
其中,超声波测距模块用于检测小车前方障碍物的距离,电机驱动模块用于控制小车的运动,LED灯则用于指示小车的状态。
2. 软件设计本系统的软件设计主要包括Arduino程序的编写和上位机界面的开发。
Arduino程序采用C++语言编写,实现了对小车的控制、数据采集和处理等功能。
上位机界面则采用图形化界面设计,方便用户进行参数设置和系统监控。
三、自动避障原理本系统的自动避障原理主要基于超声波测距模块的测距数据。
当小车运行时,超声波测距模块不断检测前方障碍物的距离,并将数据传输给Arduino主控制器。
主控制器根据测距数据判断是否存在障碍物以及障碍物的距离,然后通过控制电机驱动模块,使小车进行避障动作。
四、系统实现1. 超声波测距模块的实现超声波测距模块通过发射超声波并检测其反射时间,计算出与障碍物的距离。
本系统中,超声波测距模块采用HC-SR04型号,具有测量精度高、抗干扰能力强等优点。
2. 电机驱动模块的实现电机驱动模块采用L298N型号的H桥驱动芯片,可以实现对电机的正反转和调速控制。
本系统中,通过Arduino的PWM输出功能,实现对电机的精确控制。
3. 系统调试与优化在系统实现过程中,需要进行多次调试和优化。
通过调整超声波测距模块的灵敏度、电机驱动模块的控制参数等,使系统达到最佳的避障效果。
同时,还需要对系统的稳定性、响应速度等进行测试和优化。
智能小车避障系统的设计与实现

智能小车避障系统的设计与实现智能小车避障系统是一种基于人工智能技术的智能设备,能够实现自主避免障碍物并沿着预设路径行驶的功能。
本文将介绍智能小车避障系统的设计原理和实现过程。
一、引言随着人工智能技术的发展,智能小车逐渐成为智能家居和智能工业设备中的重要组成部分。
智能小车避障系统是其中一个重要的功能之一,它能够通过传感器对周围环境进行感知,并根据感知结果做出相应的避障决策。
本文将详细介绍智能小车避障系统的实现过程。
二、设计原理智能小车避障系统的设计原理主要包括传感器模块、决策模块和执行模块。
1. 传感器模块传感器模块是智能小车避障系统中最重要的组成部分之一,它能够实时感知周围环境的障碍物位置和距离。
常用的传感器包括红外线传感器、超声波传感器和摄像头等。
通过这些传感器模块,智能小车能够获取周围环境的相关信息。
2. 决策模块决策模块是智能小车避障系统中的核心部分,它根据传感器模块获取到的环境信息进行处理和分析,并做出相应的决策。
常见的决策算法包括模糊逻辑算法、神经网络算法和遗传算法等。
通过这些算法,智能小车可以根据环境信息做出合理的避障决策。
3. 执行模块执行模块是智能小车避障系统中的最终执行部分,它负责根据决策模块的输出结果进行相应的控制。
通常,执行模块包括电机模块、舵机模块和通信模块等。
通过这些模块,智能小车能够根据避障决策结果自主行驶并避免障碍物。
三、实现过程智能小车避障系统的实现过程主要包括硬件搭建和软件编程两个步骤。
1. 硬件搭建硬件搭建是智能小车避障系统实现的第一步,它主要包括选择合适的传感器和执行模块,并进行连接和组装。
首先,选择适合的传感器模块,如红外传感器和超声波传感器,并将其连接到相应的接口。
然后,选择合适的执行模块,如电机模块和舵机模块,并进行连接和组装。
最后,将所有的模块连接到主控板,并确保其正常工作。
2. 软件编程软件编程是智能小车避障系统实现的关键步骤,它主要包括传感器数据处理、避障决策算法和执行控制程序的编写。
《2024年智能小车避障系统的设计与实现》范文

《智能小车避障系统的设计与实现》篇一一、引言随着科技的发展,智能小车已成为现代社会的重要组成部分。
在许多领域,如工业生产、救援和科研中,智能小车都能发挥出极大的作用。
智能小车的一个核心功能是其避障系统,它可以保障小车在运行过程中的安全性,同时也决定着小车的灵活性和适用性。
本文将介绍一个智能小车避障系统的设计与实现过程。
二、系统设计1. 硬件设计智能小车的硬件部分主要包括小车底盘、电机驱动、传感器等。
其中,传感器部分是避障系统的关键。
我们选择了超声波传感器作为主要的避障传感器,其优点是测量距离准确,且价格适中。
此外,我们还设置了红外线传感器作为辅助,以增加系统的适应性和稳定性。
2. 软件设计软件部分主要涉及传感器的数据处理、小车的运动控制等。
我们采用了模块化的设计思路,将系统分为传感器数据获取模块、数据处理模块、运动控制模块等几个部分。
其中,传感器数据获取模块负责获取传感器的数据,数据处理模块负责处理这些数据并做出判断,运动控制模块则负责根据判断结果控制小车的运动。
三、避障算法的实现避障算法是避障系统的核心。
我们采用了基于超声波传感器和红外线传感器的融合算法。
具体来说,首先通过超声波传感器获取小车与障碍物的距离信息,然后通过红外线传感器获取前方的物体信息。
接着,数据处理模块将两个传感器的数据融合处理,判断出是否存在障碍物以及障碍物的位置。
最后,运动控制模块根据判断结果控制小车的转向和速度。
在算法实现中,我们采用了模糊控制理论。
模糊控制可以处理不确定性的问题,使得我们的避障系统可以应对各种复杂的场景。
同时,我们还采用了PID控制算法来控制小车的速度和转向,以保证小车的稳定性和精度。
四、系统实现与测试我们首先在仿真环境中对避障系统进行了测试。
通过调整算法参数,我们使得小车在仿真环境中能够准确地识别出障碍物并做出相应的反应。
然后,我们在实际环境中对系统进行了测试。
在多种场景下,如光线变化、障碍物形状变化等,我们的智能小车都能稳定地运行,并成功避开障碍物。
基于STM32的智能循迹避障小车

基于STM32的智能循迹避障小车智能循迹避障小车是一种基于STM32微控制器的智能车辆,它可以根据预设的路径自动行驶并能够避开障碍物。
这种小车具有很高的自主性和智能性,非常适合用于教学、科研和娱乐等领域。
本文将介绍基于STM32的智能循迹避障小车的设计原理、硬件结构、软件开发以及应用场景。
一、设计原理智能循迹避障小车的设计原理主要包括传感器感知、决策控制和执行动作三个部分。
通过传感器感知车辆周围环境的变化,小车可以及时做出决策并执行相应的动作,从而实现自动行驶和避障功能。
在基于STM32的智能小车中,常用的传感器包括红外避障传感器、光电传感器和编码器等。
红外避障传感器可以检测到障碍物的距离和方向,从而帮助小车避开障碍物。
光电传感器可以用于循迹,帮助小车按照预定的路径行驶。
编码器可以用于测量小车的速度和位置,实现精确的定位和控制。
通过这些传感器的数据采集和处理,小车可以实现智能化的行驶和避障功能。
二、硬件结构基于STM32的智能循迹避障小车的硬件结构包括主控制板、传感器模块、执行器模块和电源模块。
主控制板采用STM32微控制器,负责控制整个车辆的运行和决策。
传感器模块包括红外避障传感器、光电传感器和编码器等,用于感知周围环境的变化。
执行器模块包括电机和舵机,用于控制车辆的速度和方向。
电源模块提供电能,为整个车辆的运行提供动力支持。
三、软件开发基于STM32的智能循迹避障小车的软件开发主要包括嵌入式系统的编程和算法的设计。
嵌入式系统的编程主要使用C语言进行开发,通过STM32的开发环境进行编译和调试。
算法的设计主要包括避障算法和循迹算法。
避障算法通过传感器的数据处理,判断障碍物的位置和距离,并做出相应的避开动作。
循迹算法通过光电传感器的数据处理,使小车能够按照预设的路径行驶。
四、应用场景基于STM32的智能循迹避障小车可以广泛应用于教学、科研和娱乐等领域。
在教学领域,可以用于智能机器人课程的教学实验,帮助学生掌握嵌入式系统的开发和智能控制的原理。
智能循迹避障小车设计说明

智能循迹避障小车设计说明智能循迹避障小车是一种基于微控制器控制的智能小车,它能够根据预设程序进行自主行驶、循迹和避障。
下面是对智能循迹避障小车的设计说明:1.硬件设计智能循迹避障小车的硬件设计包括以下组成部分:1.1 微控制器:使用单片机实现小车的控制和决策,采用常见的单片机有STC、ATmega、STM32等。
1.2 传感器:使用光电传感器进行循迹,超声波传感器进行避障。
在循迹方面,一般采用两个光电传感器,安装在小车底部,分别检测黑线和白色地面;在避障方面,一般采用超声波传感器,安装在小车前方,检测前方物体距离。
1.3 驱动电机:小车驱动电机一般采用直流减速电机,通过H桥驱动电路实现正反转控制。
1.4 电源:小车电源采用锂电池或干电池供电。
1.5 其他:小车还需要一些辅助元件,如LED指示灯、蜂鸣器等。
2.软件设计智能循迹避障小车的软件设计包括以下几个方面:2.1 循迹算法:根据光电传感器检测到的黑线和白色地面的信号,判断小车当前位置,控制小车朝着黑线方向运动。
2.2 避障算法:根据超声波传感器检测到的前方距离信息,判断小车前方是否有障碍物,避免碰撞。
2.3 控制逻辑:根据传感器数据计算得出的小车状态,进行控制决策。
比如,避障优先还是循迹优先,小车如何避障等。
2.4 通信协议:如果需要远程控制或传输数据,需要设计相应的通信协议。
3.功能实现基于硬件和软件设计,实现智能循迹避障小车以下功能:3.1 循迹:小车能够自主行驶,按照预设的循迹算法进行路径规划和执行。
3.2 避障:小车能够根据预设的避障算法,自主避开前方障碍物,避免碰撞。
3.3 情境感知:小车能够通过传感器感知环境,根据感知到的信息做出相应的控制决策。
3.4 远程控制:如果需要,可以通过通信模块实现小车的远程控制和数据传输。
循迹避障智能小车设计

循迹避障智能小车设计一、硬件设计1、车体结构智能小车的车体结构通常采用四轮驱动或两轮驱动的方式。
四轮驱动能够提供更好的稳定性和动力,但结构相对复杂;两轮驱动则较为简单,但在稳定性方面可能稍逊一筹。
在选择车体结构时,需要根据实际应用场景和需求进行权衡。
为了保证小车的灵活性和适应性,车架材料一般选择轻质且坚固的铝合金或塑料。
同时,合理设计车轮的布局和尺寸,以确保小车能够在不同的地形上顺利行驶。
2、传感器模块(1)循迹传感器循迹传感器是实现小车循迹功能的关键部件。
常见的循迹传感器有光电传感器和红外传感器。
光电传感器通过检测反射光的强度来判断黑线的位置;红外传感器则利用红外线的反射特性来实现循迹。
在实际应用中,可以根据小车的运行速度和精度要求选择合适的传感器。
为了提高循迹的准确性,通常会在小车的底部安装多个传感器,形成传感器阵列。
通过对传感器信号的综合处理,可以更加精确地判断小车的位置和行驶方向。
(2)避障传感器避障传感器主要用于检测小车前方的障碍物。
常用的避障传感器有超声波传感器、激光传感器和红外测距传感器。
超声波传感器通过发射和接收超声波来测量距离;激光传感器则利用激光的反射来计算距离;红外测距传感器则是根据红外线的传播时间来确定距离。
在选择避障传感器时,需要考虑其测量范围、精度、响应速度等因素。
一般来说,超声波传感器测量范围较大,但精度相对较低;激光传感器精度高,但成本较高;红外测距传感器则介于两者之间。
3、控制模块控制模块是智能小车的核心部分,负责处理传感器数据、控制电机驱动和实现各种逻辑功能。
常见的控制模块有单片机(如 Arduino、STM32 等)和微控制器(如 PIC、AVR 等)。
单片机具有开发简单、资源丰富等优点,适合初学者使用;微控制器则在性能和稳定性方面表现更优,适用于对系统要求较高的场合。
在实际设计中,可以根据需求和个人技术水平选择合适的控制模块。
4、电机驱动模块电机驱动模块用于控制小车的电机运转,实现前进、后退、转弯等动作。
基于AT89C52的智能避障小车设计

基于AT89C52的智能避障小车设计摘要:智能避障小车是一种基于单片机控制的智能机器人,能够通过传感器感知周围环境,自主避开障碍物并实现自动导航。
本文基于AT89C52单片机,设计了一款简单的智能避障小车,通过详细的硬件设计和软件编程实现了小车的智能避障功能。
实验结果表明,该智能避障小车具有良好的稳定性和灵活性,能够有效地避开障碍物并沿着指定的路线自主行驶。
关键词:AT89C52;智能避障小车;单片机控制;传感器;自动导航二、AT89C52单片机简介AT89C52是一款8位微控制器,由51系列单片机中的一员,采用CMOS工艺制造,具有较高的性能和稳定性。
AT89C52具有4KB的闪存程序存储器、128字节RAM和32个I/O端口,适用于各种嵌入式控制应用。
由于其性能优异且价格低廉,AT89C52在嵌入式系统和智能控制领域得到了广泛应用。
三、智能避障小车硬件设计1. 主控制电路本设计采用AT89C52单片机作为主控制芯片,通过I/O口控制小车的电机驱动和传感器信号的采集。
AT89C52的复位电路、时钟电路和编程电路按照规范连接,保证单片机正常工作。
2. 电机驱动电路小车采用直流电机作为驱动装置,为了实现正转、反转和制动等功能,需要设计一个电机驱动电路。
电机驱动电路采用L298N驱动芯片,能够提供足够的电流和电压给电机,并且通过控制L298N芯片的使能端和控制端,可以实现对电机的控制。
3. 传感器模块为了实现避障功能,小车需要安装多个传感器用于感知周围环境。
本设计采用红外避障传感器模块,能够通过红外线感知前方障碍物的距离,从而实现避障功能。
传感器模块通过模拟信号输出障碍物距离,通过AT89C52的模拟输入端口采集传感器信号。
4. 电源管理电路小车采用锂电池作为电源,并且需要设计一个电源管理电路,用于对电池进行充电和放电管理。
电源管理电路采用锂电池充放电管理芯片,能够对锂电池进行充电保护和放电保护,保证小车电源的安全和稳定。
《2024年基于Arduino的智能小车自动避障系统设计与研究》范文

《基于Arduino的智能小车自动避障系统设计与研究》篇一一、引言随着科技的进步和物联网的快速发展,智能小车在日常生活和工业生产中的应用越来越广泛。
其中,自动避障系统是智能小车的重要功能之一。
本文将详细介绍基于Arduino的智能小车自动避障系统的设计与研究,旨在为相关领域的研究和应用提供参考。
二、系统设计概述本系统以Arduino为核心控制器,通过红外线传感器、超声波传感器等硬件设备实现小车的自动避障功能。
系统主要由传感器模块、控制模块、驱动模块和电源模块四部分组成。
三、硬件设计1. 传感器模块:传感器模块包括红外线传感器和超声波传感器。
红外线传感器用于检测前方障碍物的距离,超声波传感器用于检测周围环境的距离和物体。
这两种传感器将检测到的信号传输给Arduino控制器。
2. 控制模块:控制模块以Arduino为核心,负责接收传感器模块的信号,并根据信号做出相应的控制决策。
Arduino通过数字舵机或PWM信号控制小车的行驶方向和速度。
3. 驱动模块:驱动模块包括电机和电机驱动器。
电机驱动器接收Arduino发出的控制信号,驱动电机转动,从而控制小车的行驶。
4. 电源模块:电源模块为整个系统提供稳定的电源,保证系统正常工作。
四、软件设计软件设计主要包括传感器信号处理、控制算法和程序编写等方面。
1. 传感器信号处理:Arduino通过读取红外线传感器和超声波传感器的信号,将原始数据转换为可识别的数字信号,为后续的控制决策提供依据。
2. 控制算法:根据传感器信号的强弱,采用适当的控制算法,如PID控制算法等,实现小车的自动避障功能。
3. 程序编写:根据硬件设备和控制需求,编写相应的程序代码,实现小车的自动行驶、避障、速度控制等功能。
五、系统实现与测试1. 系统实现:根据硬件设计和软件设计,搭建智能小车自动避障系统,并进行调试和优化。
2. 测试方法:在室内外环境下,对小车的自动避障功能进行测试。
测试内容包括小车对不同类型、不同距离的障碍物的识别和避障能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江阴职业技术学院项目设计报告项目:超声波避障小车的设计与制作专业应用电子技术专业学生姓名班级10应用电子()班学号指导教师完成日期智能小车是一种能够通过编程手段完成特定任务的小型化机器人,它具有制作成本低廉,电路结构简单,程序调试方便等优点。
由于具有很强的趣味性,智能小车深受广大机器人爱好者以及高校学生的喜爱。
本论文介绍的是具有自动避障功能的智能小车的设计与制作(以下简称智能小车),论文对智能小车的方案选择,设计思路,以及软硬件的功能和工作原理进行了详细的分析和论述。
经实践验收测试,该智能小车的电路结构简单,调试方便,系统反映快速、灵活,设计方案正确、可行,各项指标稳定、可靠。
Smart cars can be programmed to perform a specific task means the miniaturization of robot, it has to make cost is low, circuit simple structure, convenient program test. Because of it has strong interest, intelligent robot car favored by the majority of the university students' enthusiasts and love.This paper introduces the is a automatic obstacle avoidance function of intelligent car design and production (hereinafter referred to as the smart car), the thesis to the intelligence of the car scheme selection, design idea, and the implementation of hardware and software function and working principle of a detailed analysis and discusses. After practice acceptance test, this intelligent car circuit structure is simple, convenient debug, fast, flexible system reflect, correct and feasible design scheme, each index is steady and reliable.第一章绪论1.1项目研究背景及意义:智能作为现代社会的新产物,是以后的发展方向,他可以按照预先设定的模式在一个特定的环境里自动的运作,无需人为管理,便可以完成预期所要达到的或是更高的目标。
本设计主要体现多功能小车的智能模式,设计中的理论方案、分析方法及特色与创新点等可以为自动运输机器人、采矿勘探机器人、家用自动清洁机器人等自动半自动机器人的设计与普及有一定的参考意义。
同时小车可以作为玩具的发展对象,为中国玩具市场技术含量的缺乏进行一定的弥补,实现经济收益,形成商业价值。
超声波作为智能车避障的一种重要手段,以其避障实现方便,计算简单,易于做到实时控制,测量精度也能达到实用的要求,在未来汽车智能化进程中必将得到广泛应用。
我国作为一个世界大国,在高科技领域也必须占据一席之地,未来汽车的智能化是汽车产业发展必然的,在这种情况下研究超声波在智能车避障上的应用具有深远意义,这将对我国未来智能汽车的研究在世界高科技领域占据领先地位具有重要作用。
本智能小车系统最诱人的前景就是可用于未来的智能汽车上了,当驾驶员因疏忽或打瞌睡时这样的智能汽车的设计就能体现出它的作用。
如果汽车偏离车道或距障碍物小于安全距离时,汽车就会发出警报,提醒驾驶员注意,如果驾驶员没有及时作出反应,汽车就会自动减速或停靠于路边。
这样的小车还可以用于月球探测等的无人探月车,帮助我们传达月球上更多的信息,让我们更加的了解月球,为将来登月做好充分准备。
这样的小车在科学考察探测车上也有广阔的应用前景,在科学考察中,有很多危险且人们无法涉足的地方,这时,智能科学考察车就能够派上用场,在它上面装上摄像机,代替人们进行许多无法进行的工作。
1.2项目主要研究内容:本设计题目为智能避障小车设计,主要研究小车的避障功能,小车遇到障碍物时,当距离障碍物大于40cm,PWM信号自增,驱动电机加速,小车加速前进,当小于30cm时,PWM信号自减,驱动电机减速,小车减速前进,并且小车采取相应的避障措施。
这里探测装置必不可少,因为超声波在距离检测方面的较准确定位。
所以采用超声波传感器作为探测装置,由于超声波遇到障碍物时发生像光一样的反射和散射,在经过多次发射之后再回到超声波检测端口会产生较严重的路程差,从而影响对距离的检测进而影响对障碍物的较准确定位。
通过软件内部校准优化消除外部物理条件造成的误差从而达到对障碍物的较准确定位。
1.3直流电机的发展:直流电动机在冶金、矿山、化工、交通、机械、纺织、航空等领域中已经得到广泛的应用。
而以往直流电动机的控制只是简单的控制,很难进行调速,不能实现智能化。
如今,直流电动机的调速控制已经离不开单片机的支持,单片机应用技术的飞速发展促进了自动控制技术的发展,使人类社会步入了自动化时代,单片机应用技术与其他学科领域交叉融合,促进了学科发展和专业更新,引发了新兴交叉学科与技术的不断涌现。
现代科学技术的飞速发展,改变了世界,也改变了人类的生活。
由于单片机的体积小、重量轻、功能强、抗干扰能力强、控制灵活、应用方便、价格低廉等特点,计算机性能的不断提高,单片机的应用也更加广泛特别是在各种领域的控制、自动化等方面。
在实际应用中,电动机作为把电能转换为机械能的主要设备,一是要具有较高的能量转换效率;二是应能根据生产工艺的要求调整转速。
电动机的调速性能如何对提高产品质量、提高劳动生产率和节省电能有着直接的决定性影响。
因此,调速技术一直是研究的热点。
直流电机由于具有速度控制容易,启动制动性能良好,且能在宽范围内平滑调速等特点而在电力、冶金、机械制造等工业部门中得到广泛应用。
直流电动机转速的控制方法可分为两类:励磁控制阀与电枢电压控制法。
励磁控制法控制磁通,其控制功率虽然小但低俗时受到磁场饱和的限制,高速时受到换向火花和转向器结构强度的限制,而且由于励磁线圈电感较大动态响应较差。
所以常用的控制方法是改变电枢端电压调速的电枢电压控制法。
传统的改变端电压的方法是通过调节电阻来实现的,但这种调压方法效率低。
随着电力电子技术的发展,创造了许多新的电枢电压控制方法。
其中脉宽调制(Pulse Width Modulation,PWM)是常用的一种调速方法。
其基本原理是用改变电机电枢电压的接通和断开的时间比(即占空比)来控制马达的速度,在脉宽调速系统中当电机通电时,其速度增加,电机断电时其速度降低。
只要按照一定的规律改变通断电的时间,就可使电机的速度保持在一稳定值上。
1.4单片机以及微处理器控制系统的发展:单片微型计算机的诞生是计算机发展史上的一个新的里程碑。
近年来,随着技术的发展和进步,以及市场对产品功能和性能的要求不断提高,直流电动机的应用更加广泛,尤其是在智能机器人中的应用。
直流电动机的起动和调速性能、过载能力强等特点显得十分重要,为了能够适应发展的要求,单闭环直流电动机的调速控制系统得到了很大的发展。
而作为单片嵌入式系统的核心—单片机,正朝着多功能、多选择、高速度、低功耗、低价格、大存储容量和强 I/O 功能等方向发展。
随着计算机档次的不断提高,功能的不断完善,单片机已越来越广泛地应用在各种领域的控制、自动化、智能化等方面,特别是在直流电动机的调速控制系统中。
这是因为单片机具有很多优点:体积小,功能全,抗干扰能力强,可靠性高,结构合理,指令丰富,控制功能强,造价低等。
所以选用单片机作为控制系统的核心以提高整个系统的可靠性和可行性。
早期直流传动的控制系统采用模拟分离器件构成,由于模拟器件有其固有的缺点,如存在温漂、零漂电压,构成系统的器件较多,使得模拟直流传动系统的控制精度及可靠性较低。
随着计算机控制技术的发展,微处理器已经广泛使用于直流传动系统,实现了全数字化控制。
由于微处理器以数字信号工作,控制手段灵活方便,抗干扰能力强。
所以,全数字直流调速控制精度、可靠性和稳定性比模拟直流调速系统大大提高。
所以,直流传动控制采用微处理器实现全数字化,使直流调速系统进入一个崭新的阶段。
微处理器诞生于上个世纪七十年代,随着集成电路大规模及超大规模集成电路制造工艺的迅速发展,微处理器的性价比越来越高。
此外,由于电力电子技术的发展,制作工艺的提升,使得大功率电子器件的性能迅速提高。
为微处理器普遍用于控制电机提供了可能,利用微处理器控制电机完成各种新颖的、高性能的控制策略,使电机的各种潜在能力得到充分的发挥,使电机的性能更符合工业生产使用要求,还促进了电机生产商研发出各种如步进电机、无刷直流电机、开关磁阻电动机等便于控制且实用的新型电机,使电机的发展出现了新的变化。
对于简单的微处理器控制电机,只需利用用微处理器控制继电器、电子开关元器件,使电路开通或关断就可实现对电机的控制。
现在带微处理器的可编程控制器,已经在各种的机床设备和各种的生产流水线中普遍得到应用,通过对可编程控制器进行编程就可以实现对电机的规律化控制。
对于复杂的微处理器控制电机,则要利用微处理器控制电机的电压、电流、转矩、转速、转角等,使电机按给定的指令准确工作。
通过微处理器控制,可使电机的性能有很大的提高。
目前相比直流电机和交流电机他们各有所长,如直流电机调速性能好,但带有机械换向器,有机械磨损及换向火花等问题;交流电机,不论是异步电机还是同步电机,结构都比直流电机简单,工作也比直流电机可靠,但在频率恒定的电网上运行时,它们的速度不能方便而经济地调节。
高性能的微处理器如 DSP (DIGITAL SIGNAL PROCESSOR 即数字信号处理器)的出现,为采用新的控制理论和控制策略提供了良好的物质基础,使电机传动的自动化程度大为提高。
在先进的数控机床等数控位置伺服系统,已经采用了如 DSP 等的高速微处理器,其执行速度可达数百万兆以上每秒,且具有适合的矩阵运算。
1.5设计思路:直流电机PWM控制系统的主要功能包括:实现对直流电机的加速、减速,并且可以调整电机的转速,能够很方便的实现电机的智能控制。
主体电路:即直流电机PWM 控制模块。