2021届步步高数学大一轮复习讲义(理科)第六章 高考专题突破三 高考中的数列问题
《步步高》2021届高考数学大一轮复习课件(人教A版)常考题型强化练——数列

5
6
7
8
9
解析
A组 专项基础训练
1
2
3
4
5
6
7
8
9
解析
A组 专项基础训练
1
2
3
4
5
6
7
8
9
解析
A组 专项基础训练
1
2
3
4
5
6
7
8
9
解析
A组 专项基础训练
1
2
3
4
5
6
7
8
9
解析
A组 专项基础训练
1
2
3
4
5
6
7
8
9
解析
A组 专项基础训练
1
2
3
4
5
6
7
8
9
解析
A组 专项基础训练
1
2
3
4
5
6
7
C 解析
A组 专项基础训练
1
2
3
4
5
6
7
8
9
解析
A组 专项基础训练
1
2
3
4
5
6
7
8
9
A
解析
A组 专项基础训练
1
2
3
4
5
6
7
8
9
解析
A组 专项基础训练
1
2
3
4
5
6
7
8
9
B 解析
A组 专项基础训练
1
2
3
4
5
6
7
2021高考北师版(理科)数学一轮复习讲义: 第6章 第6节 数学归纳法

第六节数学归纳法[考纲] 1.了解数学归纳法的原理.2.能用数学归纳法证明一些简单的数学命题.1.数学归纳法数学归纳法是用来证明某些与正整数n有关的数学命题的一种方法,它的根本步骤是:(1)验证:当n取第一个值n0(如n0=1或2等)时,命题成立;(2)在假设当n=k(k∈N*,k≥n0)时命题成立的前提下,推出当n=k+1时,命题成立.根据(1)(2)可以断定命题对一切从n0开场的正整数n都成立.2.数学归纳法的框图表示1.(思考辨析)判断以下结论的正误.(正确的打“√〞,错误的打“×〞)(1)用数学归纳法证明问题时,第一步是验证当n=1时结论成立.()(2)用数学归纳法证明问题时,归纳假设可以不用.()(3)不管是等式还是不等式,用数学归纳法证明时,由n=k到n=k+1时,项数都增加了一项.()(4)用数学归纳法证明等式“1+2+22+…+2n+2=2n+3-1〞,验证n=1时,左边式子应为1+2+22+23.()[答案](1)×(2)×(3)×(4)√2.(2021·银川九中月考)在应用数学归纳法证明凸n 边形的对角线为12n (n -3)条时,第一步检验n 等于( )A .1B .2C .3D .0C [因为凸n 边形最小为三角形,所以第一步检验n 等于3,应选C.] 3.n 为正偶数,用数学归纳法证明1-12+13-14+…-1n =2⎝ ⎛⎭⎪⎫1n +2+1n +4+…+12n 时,假设已假设n =k (k ≥2,且k 为偶数)时命题为真,那么还需要用归纳假设再证( )A .n =k +1时等式成立B .n =k +2时等式成立C .n =2k +2时等式成立D .n =2(k +2)时等式成立B [k 为偶数,那么k +2为偶数.]4.(教材改编){a n }满足a n +1=a 2n -na n +1,n ∈N *,且a 1=2,那么a 2=__________,a 3=__________,a 4=__________,猜测a n =__________.3 4 5 n +15.用数学归纳法证明:“1+12+13+…+12n -1<n (n >1)〞由n =k (k >1)不等式成立,推证n =k +1时,左边应增加的项的项数是__________.【导学号:57962319】2k [当n =k 时,不等式为1+12+13+…+12k -1<k .那么n =k +1时,左边应为1+12+13+…+12k -1+12k +12k +1+…+12k +1-1,那么左边增加的项数为2k+1-1-2k +1=2k .]用数学归纳法证明等式设f (n )=1+12+13+…+1n (n ∈N *).求证:f (1)+f (2)+…+f (n -1)=n [f (n )-1](n ≥2,n ∈N *).[证明] (1)当n =2时,左边=f (1)=1, 右边=2⎝ ⎛⎭⎪⎫1+12-1=1,左边=右边,等式成立.3分(2)假设n =k (k ≥2,k ∈N *)时,结论成立,即 f (1)+f (2)+…+f (k -1)=k [f (k )-1], 6分 那么,当n =k +1时,f (1)+f (2)+…+f (k -1)+f (k )=k [f (k )-1]+f (k )=(k +1)f (k )-k =(k +1)⎣⎢⎡⎦⎥⎤f (k +1)-1k +1-k =(k +1)f (k +1)-(k +1)=(k +1)[f (k +1)-1], 10分 ∴当n =k +1时结论仍然成立.由(1)(2)可知:f (1)+f (2)+…+f (n -1)=n [f (n )-1](n ≥2,n ∈N *).12分 [规律方法] 1.用数学归纳法证明等式问题,要“先看项〞,弄清等式两边的构成规律,等式两边各有多少项,初始值n 0是多少.2.由n =k 时命题成立,推出n =k +1时等式成立,一要找出等式两边的变化(差异),明确变形目标;二要充分利用归纳假设,进展合理变形,正确写出证明过程,不利用归纳假设的证明,就不是数学归纳法.[变式训练1] 求证:1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n (n ∈N *).【导学号:57962320】[证明] (1)当n =1时,左边=1-12=12, 右边=11+1=12,左边=右边. 3分(2)假设n =k 时等式成立, 即1-12+13-14+…+12k -1-12k=1k +1+1k +2+…+12k , 6分那么当n =k +1时,⎝ ⎛⎭⎪⎫1-12+13-14+…+12k -1-12k +⎝ ⎛⎭⎪⎫12k +1-12k +2 =⎝ ⎛⎭⎪⎫1k +1+1k +2+…+12k +⎝ ⎛⎭⎪⎫12k +1-12k +2 =1k +2+1k +3+…+12k +1+12k +2. 10分即当n =k +1时,等式也成立.综合(1)(2)可知,对一切n ∈N *,等式成立.12分用数学归纳法证明不等式用数学归纳法证明:对一切大于1的自然数n ,不等式⎝ ⎛⎭⎪⎫1+13⎝ ⎛⎭⎪⎫1+15·…·⎝ ⎛⎭⎪⎫1+12n -1>2n +12均成立. [证明] (1)当n =2时,左边=1+13=43;右边=52.∵左边>右边,∴不等式成立.3分(2)假设n =k (k ≥2,且k ∈N *)时不等式成立, 即⎝ ⎛⎭⎪⎫1+13⎝ ⎛⎭⎪⎫1+15·…·⎝ ⎛⎭⎪⎫1+12k -1>2k +12.6分 那么当n =k +1时,⎝ ⎛⎭⎪⎫1+13⎝ ⎛⎭⎪⎫1+15·…·⎝ ⎛⎭⎪⎫1+12k -1⎣⎢⎡⎦⎥⎤1+12(k +1)-1>2k +12·2k +22k +1=2k +222k +1=4k 2+8k +422k +1>4k 2+8k +322k +1=2k +32k +122k +1=2(k +1)+12.10分∴当n =k +1时,不等式也成立.由(1)(2)知,对于一切大于1的自然数n ,不等式都成立.12分[规律方法]n 有关的不等式证明时,假设用其他方法不容易证明,那么可考虑应用数学归纳法.2.用数学归纳法证明不等式的关键是由n =k 时命题成立,再证n =k +1时命题也成立,在归纳假设使用后可运用比拟法、综合法、分析法、放缩法等来加以证明,充分应用根本不等式、不等式的性质等放缩技巧,使问题得以简化.[变式训练2] 数列{a n },当n ≥2时,a n <-1,又a 1=0,a 2n +1+a n +1-1=a 2n ,求证:当n ∈N *时,a n +1<a n .[证明] (1)当n =1时,∵a 2是a 22+a 2-1=0的负根,∴a 1>a 2.3分 (2)假设当n =k (k ∈N *)时,a k +1<a k ,5分∵a 2k +1-a 2k =(a k +2-a k +1)(a k +2+a k +1+1),a k +1<a k ≤0, ∴a 2k +1-a 2k >0.8分又∵a k +2+a k +1+1<-1+(-1)+1=-1, ∴a k +2-a k +1<0,∴a k +2<a k +1,即当n =k +1时,命题成立. 由(1)(2)可知,当n ∈N *时,a n +1<a n .12分归纳——猜测——证明数列{a n }的前n 项和S n 满足:S n =a n 2+1a n-1,且a n >0,n ∈N *.(1)求a 1,a 2,a 3,并猜测{a n }的通项公式; (2)证明通项公式的正确性.[解] (1)当n =1时,由得a 1=a 12+1a 1-1,a 21+2a 1-2=0.∴a 1=3-1(a 1>0).2分当n =2时,由得a 1+a 2=a 22+1a 2-1,将a 1=3-1代入并整理得a 22+23a 2-2=0. ∴a 2=5-3(a 2>0).同理可得a 3=7- 5. 猜测a n =2n +1-2n -1(n ∈N *).5分(2)证明:①由(1)知,当n =1,2,3时,通项公式成立. ②假设当n =k (k ≥3,k ∈N *)时,通项公式成立, 即a k =2k +1-2k -1.7分由于a k +1=S k +1-S k =a k +12+1a k +1-a k 2-1a k ,将a k =2k +1-2k -1代入上式,整理得a 2k +1+22k +1a k +1-2=0, ∴a k +1=2k +3-2k +1,即n =k +1时通项公式成立. 10分由①②可知对所有n ∈N *,a n =2n +1-2n -1都成立.12分[规律方法] 1.猜测{a n }的通项公式时应注意两点:(1)准确计算a 1,a 2,a 3发现规律(必要时可多计算几项);(2)证明a k +1时,a k +1的求解过程与a 2,a 3的求解过程相似,注意体会特殊与一般的辩证关系.2.“归纳—猜测—证明〞的模式,是不完全归纳法与数学归纳法综合应用的解题模式,这种方法在解决探索性问题、存在性问题时起着重要作用,它的模式是先由合情推理发现结论,然后经逻辑推理证明结论的正确性.[变式训练3] (2021·洛阳调研)数列{x n }满足x 1=12,x n +1=11+x n ,n ∈N *.猜测数列{x 2n }的单调性,并证明你的结论.【导学号:57962321】[解] 由x 1=12及x n +1=11+x n ,得x 2=23,x 4=58,x 6=1321,由x 2>x 4>x 6猜测:数列{x 2n }是递减数列. 3分下面用数学归纳法证明: (1)当n =1时,已证命题成立.5分 (2)假设当n =k (k ≥1,k ∈N *)时命题成立, 即x 2k >x 2k +2,易知x k >0,那么 x 2k +2-x 2k +4=11+x 2k +1-11+x 2k +3=x2k+3-x2k+1(1+x2k+1)(1+x2k+3)=x2k-x2k+2(1+x2k)(1+x2k+1)(1+x2k+2)(1+x2k+3)>0,9分即x2(k+1)>x2(k+1)+2.也就是说,当n=k+1时命题也成立.结合(1)(2)知,对任意n∈N*命题成立. 12分[思想与方法]1.数学归纳法是一种重要的数学思想方法,主要用于解决与正整数有关的数学命题.证明时步骤(1)和(2)缺一不可,步骤(1)是步骤(2)的根底,步骤(2)是递推的依据.2.在推证n=k+1时,可以通过凑、拆、配项等方法用上归纳假设.此时既要看准目标,又要弄清n=k与n=k+1之间的关系.在推证时,应灵活运用分析法、综合法、反证法等方法.[易错与防范]1.第一步验证当n=n0时,n0不一定为1,要根据题目要求选择适宜的起始值.2.由n=k时命题成立,证明n=k+1时命题成立的过程中,一定要用归纳假设,否那么就不是数学归纳法.3.解“归纳——猜测——证明〞题的关键是准确计算出前假设干具体项,这是归纳、猜测的根底.否那么将会做大量无用功.。
2021届步步高数学大一轮复习讲义(理科)第六章 6.3等比数列及其前n项和

§6.3等比数列及其前n项和1.等比数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q (n ∈N *,q 为非零常数). (2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即G 是a 与b 的等比中项⇒a ,G ,b 成等比数列⇒G 2=ab . 2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1. (2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1(q =1),a 1(1-q n )1-q =a 1-a n q 1-q (q ≠1).3.等比数列的常用性质(1)通项公式的推广:a n =a m ·q n -m (n ,m ∈N *).(2)若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m ·a n =a p ·a q =a 2k. (3)若数列{a n },{b n }(项数相同)是等比数列,则{λa n },⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a nb n (λ≠0)仍然是等比数列.(4)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n +3k ,…为等比数列,公比为q k .4.在等比数列{a n }中,若S n 为其前n 项和,则S n ,S 2n -S n ,S 3n -S 2n 也成等比数列(n 为偶数且q =-1除外).概念方法微思考1.将一个等比数列的各项取倒数,所得的数列还是一个等比数列吗?若是,这两个等比数列的公比有何关系?提示仍然是一个等比数列,这两个数列的公比互为倒数.2.任意两个实数都有等比中项吗?提示不是.只有同号的两个非零实数才有等比中项.3.“b2=ac”是“a,b,c”成等比数列的什么条件?提示必要不充分条件.因为b2=ac时不一定有a,b,c成等比数列,比如a=0,b=0,c =1.但a,b,c成等比数列一定有b2=ac.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)满足a n+1=qa n(n∈N*,q为常数)的数列{a n}为等比数列.(×)(2)如果数列{a n}为等比数列,则数列{ln a n}是等差数列.(×)(3)数列{a n }的通项公式是a n =a n,则其前n 项和为S n =a (1-a n )1-a.( × )(4)数列{a n }为等比数列,则S 4,S 8-S 4,S 12-S 8成等比数列.( × ) 题组二 教材改编2.已知{a n }是等比数列,a 2=2,a 5=14,则公比q =______.答案 12解析 由题意知q 3=a 5a 2=18,∴q =12.3.公比不为1的等比数列{a n }满足a 5a 6+a 4a 7=18,若a 1a m =9,则m 的值为( ) A .8 B .9 C .10 D .11 答案 C解析 由题意得,2a 5a 6=18,a 5a 6=9,∴a 1a m =a 5a 6=9,∴m =10.题组三 易错自纠4.若1,a 1,a 2,4成等差数列,1,b 1,b 2,b 3,4成等比数列,则a 1-a 2b 2的值为________.答案 -12解析 ∵1,a 1,a 2,4成等差数列, ∴3(a 2-a 1)=4-1,∴a 2-a 1=1.又∵1,b 1,b 2,b 3,4成等比数列,设其公比为q ,则b 22=1×4=4,且b 2=1×q 2>0,∴b 2=2,∴a 1-a 2b 2=-(a 2-a 1)b 2=-12.5.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2=________.答案 -11解析 设等比数列{a n }的公比为q , ∵8a 2+a 5=0,∴8a 1q +a 1q 4=0. ∴q 3+8=0,∴q =-2,∴S5S2=a1(1-q5)1-q·1-qa1(1-q2)=1-q51-q2=1-(-2)51-4=-11.6.一种专门占据内存的计算机病毒开机时占据内存1 MB,然后每3秒自身复制一次,复制后所占内存是原来的2倍,那么开机________秒,该病毒占据内存8 GB.(1 GB=210 MB)答案39解析由题意可知,病毒每复制一次所占内存的大小构成一等比数列{a n},且a1=2,q=2,∴a n=2n,则2n=8×210=213,∴n=13.即病毒共复制了13次.∴所需时间为13×3=39(秒).等比数列基本量的运算1.设正项等比数列{a n }的前n 项和为S n ,若S 2=3,S 4=15,则公比q 等于( ) A .5 B .4 C .3 D .2 答案 D解析 因为S 2=3,S 4=15,S 4-S 2=12,所以⎩⎪⎨⎪⎧a 1+a 2=3,a 3+a 4=12,两个方程左右两边分别相除,得q 2=4, 因为数列是正项等比数列, 所以q =2,故选D.2.(2019·全国Ⅲ)已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3等于( )A .16B .8C .4D .2 答案 C解析 设等比数列{a n }的公比为q ,由a 5=3a 3+4a 1得q 4=3q 2+4,得q 2=4,因为数列{a n }的各项均为正数,所以q =2,又a 1+a 2+a 3+a 4=a 1(1+q +q 2+q 3)=a 1(1+2+4+8)=15,所以a 1=1,所以a 3=a 1q 2=4.3.(2019·全国Ⅰ)记S n 为等比数列{a n }的前n 项和.若a 1=13,a 24=a 6,则S 5=________. 答案1213解析 设等比数列{a n }的公比为q ,因为a 24=a 6,所以(a 1q 3)2=a 1q 5,所以a 1q =1,又a 1=13,所以q =3,所以S 5=a 1(1-q 5)1-q =13×(1-35)1-3=1213.4.(2018·全国Ⅲ)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和,若S m =63,求m . 解 (1)设{a n }的公比为q ,由题设得a n =q n -1. 由已知得q 4=4q 2,解得q =0(舍去),q =-2或q =2. 故a n =(-2)n -1或a n =2n -1(n ∈N *). (2)若a n =(-2)n -1,则S n =1-(-2)n3.由S m =63得(-2)m =-188,此方程没有正整数解. 若a n =2n -1,则S n =2n -1. 由S m =63得2m =64,解得m =6. 综上,m =6.思维升华 (1)等比数列的通项公式与前n 项和公式共涉及五个量a 1,a n ,q ,n ,S n ,已知其中三个就能求另外两个(简称“知三求二”).(2)运用等比数列的前n 项和公式时,注意对q =1和q ≠1的分类讨论.等比数列的判定与证明例1 (2020·四川名校联盟模拟)已知数列{a n },{b n }满足a 1=1,b 1=12,2a n +1=a n +12b n ,2b n +1=12a n +b n . (1)证明:数列{a n +b n },{a n -b n }为等比数列; (2)记S n 为数列{a n }的前n 项和,证明:S n <103.证明(1)依题意,有⎩⎨⎧2an +1=a n +12b n,2bn +1=12a n +b n ,两式相加得,a n +1+b n +1=34(a n +b n ),又∵a 1+b 1=32≠0,∴{a n +b n }为首项为32,公比为34的等比数列,两式相减得,a n +1-b n +1=14(a n -b n ),又∵a 1-b 1=12≠0,∴{a n -b n }为首项为12,公比为14的等比数列.(2)由(1)可得,a n +b n =32⎝⎛⎭⎫34n -1,①a n -b n =12⎝⎛⎭⎫14n -1,②①+②得,a n =⎝⎛⎭⎫14n +⎝⎛⎭⎫34n,∴S n =14⎝⎛⎭⎫1-14n 1-14+34⎝⎛⎭⎫1-3n 4n 1-34 <141-14+341-34=103.思维升华 判定一个数列为等比数列的常见方法(1)定义法:若a n +1a n=q (q 是不为零的常数),则数列{a n }是等比数列.(2)等比中项法:若a 2n +1=a n a n +2(n ∈N *,a n ≠0),则数列{a n }是等比数列.(3)通项公式法:若a n =Aq n (A ,q 是不为零的常数),则数列{a n }是等比数列. 跟踪训练1 已知数列{a n }满足对任意的正整数n ,均有a n +1=5a n -2·3n ,且a 1=8.(1)证明:数列{a n -3n }为等比数列,并求数列{a n }的通项公式; (2)记b n =a n3n ,求数列{b n }的前n 项和T n .解 (1)因为a n +1=5a n -2·3n ,所以a n +1-3n +1=5a n -2·3n -3n +1=5(a n -3n ), 又a 1=8,所以a 1-3=5≠0,所以数列{a n -3n }是首项为5,公比为5的等比数列. 所以a n -3n =5n ,所以a n =3n +5n .(2)由(1)知,b n =a n 3n =3n +5n3n =1+⎝⎛⎭⎫53n , 则数列{b n }的前n 项和T n =1+⎝⎛⎭⎫531+1+⎝⎛⎭⎫532+…+1+⎝⎛⎭⎫53n =n +53⎣⎡⎦⎤1-⎝⎛⎭⎫53n 1-53=5n +12·3n +n -52.等比数列性质的应用例2 (1)(2020·四川六市联考)在等比数列{a n }中,a 3,a 15是方程x 2+6x +2=0的两根,则a 2a 16a 9的值为( ) A .-2+22B .- 2 C. 2D .-2或 2答案 B解析 由题意知,a 3·a 15=a 29=2,a 3+a 15=-6,所以a 3<0,a 15<0,则a 9=-2, 所以a 2a 16a 9=a 29a 9=a 9=- 2.(2)各项均为正数的等比数列{a n }的前n 项和为S n ,已知S 6=30,S 9=70,则S 3=________. 答案 10解析 根据等比数列的前n 项和的性质,若S n 是等比数列的和,则S n ,S 2n -S n ,S 3n -S 2n ,…仍是等比数列,得到(S 6-S 3)2=S 3(S 9-S 6),解得S 3=10,或S 3=90(舍).思维升华 等比数列性质的应用可以分为三类 (1)通项公式的变形. (2)等比中项的变形.(3)前n 项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.跟踪训练2 (1)(2020·德阳诊断)已知等比数列{a n }的公比q =-12,该数列前9项的乘积为1,则a 1等于( )A .8B .16C .32D .64 答案 B解析 由已知a 1a 2…a 9=1 ,又a 1a 9=a 2a 8=a 3a 7=a 4a 6=a 25 ,所以a 95=1 ,即a 5=1,所以a 1⎝⎛⎭⎫-124=1 ,a 1=16.故选B. (2)已知等比数列{a n }的前n 项和为S n ,且S 3S 6=89,则a n +1a n -a n -1=________(n ≥2,且n ∈N *).答案 -12解析 很明显等比数列的公比q ≠1,则由题意可得,S 3S 6=a 1()1-q 31-q a 1()1-q 61-q=11+q 3=89, 解得q =12, 则a n +1a n -a n -1=a n -1q 2a n -1q -a n -1=q 2q -1=1412-1=-12.对于数列通项公式的求解,除了我们已经学习的方法以外,根据所给递推公式的特点,还有以下几种构造方式.构造法1 形如a n +1=ca n +d (c ≠0,其中a 1=a )型(1)若c =1,数列{a n }为等差数列;(2)若d =0,数列{a n }为等比数列;(3)若c ≠1且d ≠0,数列{a n }为线性递推数列,其通项可通过待定系数法构造等比数列来求. 方法如下:设a n +1+λ=c (a n +λ),得a n +1=ca n +(c -1)λ,与题设a n +1=ca n +d 比较系数得λ=d c -1(c ≠1), 所以a n +d c -1=c ⎝⎛⎭⎫a n -1+d c -1(n ≥2), 即⎩⎨⎧⎭⎬⎫a n +d c -1构成以a 1+d c -1为首项,以c 为公比的等比数列. 例1 在数列{a n }中,若a 1=1,a n +1=3a n +2,则通项a n =________.答案 2×3n -1-1解析 a n +1=3a n +2,即a n +1+1=3(a n +1),又因为a 1+1=2≠0,所以{a n +1}构成以2为首项,以3为公比的等比数列, 所以a n +1=2·3n -1,a n =2·3n -1-1.构造法2 形如 a n +1=pa n +q ·p n +1(p ≠0,1,q ≠0)型a n +1=pa n +q ·p n +1(p ≠0,1,q ≠0)的求解方法是两端同时除以p n +1,即得a n +1pn +1-a n p n =q ,则数列⎩⎨⎧⎭⎬⎫a n p n 为等差数列.例2 (1)已知正项数列{a n }满足a 1=4,a n +1=2a n +2n +1,则a n 等于( )A .n ·2n -1B .(n +1)·2nC .n ·2n +1D .(n -1)·2n答案 B解析 ∵a n +1=2a n +2n +1,∴a n +12n +1=a n 2n +1,即a n +12n +1-a n 2n =1, 又∵a 121=42=2, ∴数列⎩⎨⎧⎭⎬⎫a n 2n 是首项为2,公差为1的等差数列, ∴a n 2n =2+(n -1)×1=n +1, ∴a n =(n +1)·2n ,故选B.(2)(2019·武汉市二中月考)已知正项数列{a n }中,a 1=2,a n +1=2a n +3×5n ,则数列{a n }的通项a n 等于( )A .-3×2n -1B .3×2n -1 C .5n +3×2n -1D .5n -3×2n -1 答案 D解析 方法一 在递推公式a n +1=2a n +3×5n 的两边同时除以5n +1,得a n +15n +1=25×a n 5n +35,① 令a n 5n =b n ,则①式变为b n +1=25b n +35, 即b n +1-1=25(b n -1),所以数列{b n -1}是等比数列,其首项为b 1-1=a 15-1=-35,公比为25, 所以b n -1=⎝⎛⎭⎫-35×⎝⎛⎭⎫25n -1, 即b n =1-35×⎝⎛⎭⎫25n -1, 所以a n 5n =1-35×⎝⎛⎭⎫25n -1=1-3×2n -15n.故a n =5n -3×2n -1.方法二 设a n +1+k ·5n +1=2(a n +k ×5n ),则a n +1=2a n -3k ×5n ,与题中递推公式比较得k =-1, 即a n +1-5n +1=2(a n -5n ),所以数列{a n -5n }是首项为a 1-5=-3,公比为2的等比数列, 则a n -5n =-3×2n -1,故a n =5n -3×2n -1.故选D.构造法3 相邻项的差为特殊数列(形如a n +1=pa n +qa n -1,其中a 1=a ,a 2=b 型) 可化为a n +1-x 1a n =x 2(a n -x 1a n -1),其中x 1,x 2是方程x 2-px -q =0的两根.例3 数列{a n }中,a 1=1,a 2=2,a n +2=23a n +1+13a n ,求数列{a n }的通项公式. 解 由a n +2=23a n +1+13a n 可得, a n +2-a n +1=-13(a n +1-a n ), 所以数列{a n +1-a n }是首项为1,公比为-13的等比数列, 当n ≥2时,a 2-a 1=1,a 3-a 2=-13,a 4-a 3=19,…, a n -a n -1=⎝⎛⎭⎫-13n -2, 将上面的式子相加可得a n -1=1+⎝⎛⎭⎫-13+19+…+⎝⎛⎭⎫-13n -2, 从而可求得a n =2+⎝⎛⎭⎫-13+19+…+⎝⎛⎭⎫-13n -2,故有a n =74+94·⎝⎛⎭⎫-13n (n ≥2). a 1=1也满足上式.构造法4 倒数为特殊数列(形如a n =pa n -1ra n -1+s型) 例4 已知数列{a n }中,a 1=1,a n +1=2a n a n +2,求数列{a n }的通项公式. 解 ∵a n +1=2a n a n +2,a 1=1, ∴a n ≠0,∴1a n +1=1a n +12, 即1a n +1-1a n =12, 又a 1=1,则1a 1=1, ∴⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公差的等差数列. ∴1a n =1a 1+(n -1)×12=n 2+12, ∴a n =2n +1(n ∈N *).1.若等比数列{a n }的各项均为正数,a 2=3,4a 23=a 1a 7,则a 5等于( )A.34B.38 C .12 D .24答案 D解析 数列{a n }是等比数列,各项均为正数,4a 23=a 1a 7=a 24,所以q 2=a 24a 23=4,所以q =2.所以a 5=a 2·q 3=3×23=24,故选D.2.(2020·四川联合诊断考试)在等比数列{a n }中,a 1=2,a 4=12,若a k =2-5,则k 等于() A .5 B .6 C .9 D .10答案 D解析 由a 1=2,a 4=12⇒q 3=14⇒q =232-,∴a k =a 1q k -1=2·q k -1=2-5,∴q k -1=2-6=()2132k --,∴-2(k -1)3=-6,∴k =10.3.等比数列{a n }的前n 项和为S n =32n -1+r ,则r 的值为( )A.13 B .-13 C.19 D .-19答案 B解析 当n =1时,a 1=S 1=3+r ,当n ≥2时,a n =S n -S n -1=32n -1-32n -3=32n -3(32-1)=8·32n -3=8·32n -2·3-1=83·9n -1, 所以3+r =83,即r =-13,故选B. 4.设{a n }是公比为q 的等比数列,则“q >1”是“{a n }为递增数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 D解析 取a n =-2n ,此时q =2>1,但{a n }是单调递减数列,取a n =-⎝⎛⎭⎫12n ,因a n -a n -1=⎝⎛⎭⎫12n >0,故{a n }是单调递增数列,但q =12<1, 故“q >1 ”是“{a n }是递增数列”的既不充分也不必要条件,故选D.5.已知递增的等比数列{a n }中,a 2=6,a 1+1,a 2+2,a 3成等差数列,则该数列的前6项和S 6等于( )A .93B .189 C.18916D .378 答案 B解析 设数列{a n }的公比为q ,由题意可知,q >1, 且2()a 2+2=a 1+1+a 3,即2×()6+2=6q+1+6q , 整理可得2q 2-5q +2=0,则q =2⎝⎛⎭⎫q =12舍去,则a 1=62=3,∴数列{a n }的前6项和S 6=3×()1-261-2=189.6.已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7等于( )A .21B .42C .63D .84答案 B解析 设数列{a n }的公比为q ,则a 1(1+q 2+q 4)=21, 又a 1=3,所以q 4+q 2-6=0,所以q 2=2(q 2=-3舍去) 所以a 3=6,a 5=12,a 7=24,所以a 3+a 5+a 7=42.7.已知各项均为正数的等比数列{a n }的前n 项和为S n 且S 3=14,a 3=8,则a 6=________. 答案 64解析 由题意得,等比数列的公比为q ,由S 3=14,a 3=8,则⎩⎪⎨⎪⎧a 1(1+q +q 2)=14,a 1q 2=8, 解得a 1=2,q =2,所以a 6=a 1q 5=2×25=64.8.已知各项为正数的等比数列{a n }中, a 2a 3=16,则数列{log 2a n }的前四项和等于________. 答案 8解析 各项为正数的等比数列{a n }中,a 2a 3=16, 可得a 1a 4=a 2a 3=16,即有log 2a 1+log 2a 2+log 2a 3+log 2a 4=log 2(a 1a 2a 3a 4)=log 2256=8.9.已知等比数列{a n }的前n 项和为S n ,且a 1=2 020,a 2+a 4=-2a 3,则S 2 021=________. 答案 2 020解析 ∵a 2+a 4=-2a 3,∴a 2+a 4+2a 3=0,a 2+2a 2q +a 2q 2=0,∵a 2≠0,∴q 2+2q +1=0,解得q =-1.∵a 1=2 020,∴S 2 021=a 1(1-q 2 021)1-q=2 020×[1-(-1)2 021]2=2 020. 10.(2020·贵州部分重点中学联考)已知S n 为等差数列{a n }的前n 项和,已知a 3+S 5=18,a 5=7.若a 3,a 6,a m 成等比数列,则m =________. 答案 15解析 ∵数列{a n }为等差数列,∴a 3+S 5=6a 3=18,∴a 3=3.又a 5=7,∴a 1=-1,d =2,a n =2n -3.∵a 3,a 6,a m 成等比数列,∴a 3·a m =a 26,即3(2m -3)=(2×6-3)2,解得m =15.11.(2018·全国Ⅰ)已知数列{a n }满足a 1=1,na n +1=2(n +1)a n .设b n =a n n. (1)求b 1,b 2,b 3;(2)判断数列{b n }是否为等比数列,并说明理由;(3)求{a n }的通项公式.解 (1)由条件可得a n +1=2(n +1)na n , 将n =1代入得,a 2=4a 1,而a 1=1,所以a 2=4. 将n =2代入得,a 3=3a 2,所以a 3=12.从而b 1=1,b 2=2,b 3=4.(2){b n }是首项为1,公比为2的等比数列.由条件可得a n +1n +1=2a n n,即b n +1=2b n , 又b 1=1,所以{b n }是首项为1,公比为2的等比数列.(3)由(2)可得a n n=2n -1, 所以a n =n ·2n -1.12.已知数列{a n }的前n 项和为S n ,a 1=34,S n =S n -1+a n -1+12(n ∈N *且n ≥2),数列{b n }满足:b 1=-374,且3b n -b n -1=n +1(n ∈N *且n ≥2). (1)求数列{a n }的通项公式;(2)求证:数列{b n -a n }为等比数列.(1)解 由S n =S n -1+a n -1+12,得S n -S n -1=a n -1+12,即a n -a n -1=12(n ≥2且n ∈N *), 则数列{a n }是以34为首项,12为公差的等差数列, 因此a n =34+(n -1)×12 =12n +14. (2)证明 因为3b n -b n -1=n +1(n ≥2),所以b n =13b n -1+13(n +1)(n ≥2), b n -a n =13b n -1+13(n +1)-12n -14=13b n -1 -16n +112=13⎝⎛⎭⎫b n -1-12n +14(n ≥2), b n -1-a n -1=b n -1- 12(n -1)-14= b n -1-12n +14(n ≥2), 所以b n -a n =13(b n -1-a n -1)(n ≥2), 因为b 1-a 1=-10≠0,所以数列{b n -a n }是以-10为首项,13为公比的等比数列.13.(2020·广西七市联考)已知正项等比数列{a n }满足a 8=a 6+2a 4,若存在两项a m ,a n ,使得a m a n =2a 1,则1m +9n的最小值为________. 答案 4解析 ∵a 8=a 6+2a 4,∴a 1q 7=a 1q 5+2a 1q 3,解得q 2=2, ∵a m a n =2a 1,∴a m a n =2a 21=a 22,∴m +n =4,则1m +9n =14⎝⎛⎭⎫1m +9n (m +n ) =14⎝⎛⎭⎫10+n m +9m n ≥14(10+6)=4, 当且仅当m =1,n =3时等号成立.14.(2020·成都外国语学校模拟)已知函数f (x )=3x3x +1,正项等比数列{a n }满足a 50=1,则f (ln a 1)+f (ln a 2)+f (ln a 3)+…+f (ln a 99)=________. 答案 992解析 ∵f (x )=3x3x +1, 得f (x )+f (-x )=3x 3x +1+3-x 3-x +1=1.∵数列{a n}是等比数列,∴a1a99=a2a98=…=a49a51=a250=1,即ln a1+ln a99=ln a2+ln a98=…=ln a49+ln a51=0,设S99=f (ln a1)+f (ln a2)+f (ln a3)+…+f (ln a99),①又S99=f (ln a99)+f (ln a98)+f (ln a97)+…+f (ln a1),即S99=f (-ln a1)+f (-ln a2)+f (-ln a3)+…+f (-ln a99),②由①+②得2S99=99,∴S99=992.15.如图所示,正方形上连接着等腰直角三角形,等腰直角三角形腰上再连接正方形,…,如此继续下去得到一个树状图形,称为“勾股树”.若某勾股树含有1 023个正方形,且其最大的正方形的边长为22,则其最小正方形的边长为________.答案 132解析 由题意,得正方形的边长构成以22为首项,以22为公比的等比数列,现已知共得到1 023个正方形,则有1+2+…+2n -1=1 023,∴n =10,∴最小正方形的边长为22×⎝⎛⎭⎫229=132. 16.在数列的每相邻两项之间插入此两项的积,形成新的数列,这样的操作叫做该数列的一次“扩展”.将数列1,2进行“扩展”,第一次得到数列1,2,2;第二次得到数列1,2,2,4,2,….设第n 次“扩展”后得到的数列为1,x 1,x 2,…,x t ,2,并记a n =log 2(1·x 1·x 2·…·x t ·2),其中t =2n -1,n ∈N *,求数列{a n }的通项公式.解 a n =log 2(1·x 1·x 2·…·x t ·2),所以a n +1=log 2[1·(1·x 1)·x 1·(x 1·x 2)·…·x t ·(x t ·2)·2]=log 2(12·x 31·x 32·x 33·…·x 3t ·22)=3a n -1, 所以a n +1-12=3⎝⎛⎭⎫a n -12, 所以数列⎩⎨⎧⎭⎬⎫a n -12是以32为首项,以3为公比的等比数列, 所以a n -12=32×3n -1,所以a n =3n +12.。
2021届步步高数学大一轮复习讲义(理科)第十二章 高考专题突破六 高考中的概率与统计问题

高考专题突破六高考中的概率与统计问题概率与统计的综合应用例1(2020·四川双流中学检测)甲、乙两品牌计划入驻某商场,该商场批准两个品牌先进场试销5天.两品牌提供的返利方案如下:甲品牌无固定返利,卖出10件以内(含10件)的产品,每件产品返利5元,超出10件的部分每件返利7元;乙品牌每天固定返利20元,且每卖出一件产品再返利3元.经统计,两家品牌在试销期间的销售件数的茎叶图如图:(1)现从乙品牌试销的5天中随机抽取3天,求这3天的销售量中至少有一天低于10的概率;(2)若将频率视作概率,回答以下问题:①记甲品牌的日返利额为X(单位:元),求X的分布列和均值;②商场拟在甲、乙两品牌中选择一个长期销售,如果仅从日返利额的角度考虑,请利用所学的统计学知识为商场作出选择,并说明理由.解 (1)方法一 设A 为从乙品牌试销售的5天中抽取3天,这3天的销量中至少有一天低于10件的事件,则P (A )=C 12C 23+C 22C 13C 35=910. 方法二 设A 为从乙品牌试销售的5天中抽取3天,这3天的销售量中至少有一天低于10件的事件,则A 为从乙品牌试销售的5天中抽取3天,这3天的销售量都不低于10件的事件, 则P (A )=1-P (A )=1-C 33C 35=1-110=910.(2)①设甲品牌的日销售量为随机变量ξ, 则甲品牌的日返利额X (单位:元)与ξ的关系为:X =⎩⎪⎨⎪⎧5ξ,0≤ξ≤10,ξ∈N ,50+7(ξ-10),ξ≥11,ξ∈N .当ξ=6时,X =30; 当ξ=7时,X =35; 当ξ=10时,X =50; 当ξ=12时,X =64. 所以X 的分布列为E (X )=30×25+35×15+50×15+64×15=41.8(元).②方法一 设乙品牌的日销售量为随机变量η,乙品牌的日返利额Y (单位:元)与η的关系为Y =20+3η,且η的分布列为则E(η)=6×15+9×15+12×25+13×15=10.4(件),则E(Y)=E(3η+20)=3E(η)+20=3×10.4+20=51.2(元).因为乙品牌的日平均返利额大于甲品牌的日平均返利额,所以如果仅从日返利额的角度考虑,商场应选择乙品牌长期销售.方法二乙品牌的日返利额Y(单位:元)的取值集合为{38,47,56,59},分布列为则E(Y)=38×15+47×15+56×25+59×15=51.2(元).思维升华概率与统计作为考查学生应用意识的重要载体,已成为近几年高考一大亮点和热点.它与其他知识融合、渗透,情境新颖,充分体现了概率与统计的工具性和交汇性.跟踪训练1(2020·四川成都诊断性检测)某保险公司给年龄在20~70岁的民众提供某种疾病的一年期医疗保险,现从10 000名参保人员中随机抽取100名作为样本进行分析,按年龄段[20,30),[30,40),[40,50),[50,60),[60,70]分成了五组,其频率分布直方图如图所示;参保年龄(单位:岁)与每人每年应交纳的保费(单位:元)如表所示.据统计,该公司每年为这10 000名参保人员支出的各种费用为一百万元.(1)用样本的频率分布估计总体分布,为使公司不亏本,求x精确到整数时的最小值x0;(2)经调查,年龄在[60,70]的老人每50人中有1人患该种疾病(以此频率作为概率).该种疾病的治疗费为12 000元,如果参保,保险公司补贴治疗费10 000元.某老人年龄为66岁,若购买该项保险(x取(1)中的x0),针对此疾病所支付的费用为X元;若没有购买该项保险,针对此疾病所支付的费用为Y元.试比较X和Y的均值大小,并判断该老人购买此项保险是否划算?解(1)由(0.007+0.016+a+0.025+0.020)×10=1,解得a=0.032.该保险公司每年收取的保费为10 000(0.007×10x+0.016×10×2x+0.032×10×3x+0.025×10×4x+0.020×10×5x)=10 000×3.35x.要使公司不亏本,则10 000×3.35x≥1 000 000,即3.35x≥100,解得x≥1003.35≈29.85,∴x0=30.(2)①若该老人购买了此项保险,则X 的取值为150,2 150.P (X =150)=4950,P (X =2 150)=150,∴E (X )=150×4950+2 150×150=147+43=190(元).②若该老人没有购买此项保险,则Y 的取值为0,12 000. P (Y =0)=4950,P (X =12 000)=150,∴E (Y )=0×4950+12 000×150=240(元).∴E (Y )>E (X ),∴该老人购买此项保险比较划算.概率与统计案例的综合应用例2 (2020·蓉城名校联盟联考)成都市现在已是拥有1 400多万人口的城市,机动车保有量已达450多万辆,成年人中约40%拥有机动车驾驶证.为了解本市成年人的交通安全意识情况,某中学的同学利用国庆假期进行了一次全市成年人安全知识抽样调查.先根据是否拥有驾驶证,用分层抽样的方法抽取了200名成年人,然后对这200人进行问卷调查.这200人所得的分数都分布在[30,100]范围内,规定分数在80以上(含80)的为“具有很强安全意识”,所得分数的频率分布直方图如图所示.(1)补全上面的2×2列联表,并判断能否有超过95%的把握认为“‘具有很强安全意识’与拥有驾驶证”有关?(2)将上述调查所得的频率视为概率,现从全市成年人中随机抽取4人,记“具有很强安全意识”的人数为X,求X的分布列及均值.附表及公式:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.解(1)200人中拥有驾驶证的占40%,有80人,没有驾驶证的有120人;具有很强安全意识的占20%,有40人,不具有很强安全意识的有160人.补全的2×2列联表如表所示:K 2的观测值k =200×(22×102-18×58)240×160×80×120=7516=4.687 5>3.841, 所以有超过95%的把握认为“‘具有很强安全意识’与拥有驾驶证”有关.(2)由频率分布直方图中数据可知,抽到的每个成年人“具有很强安全意识”的概率为15,所以X =0,1,2,3,4,且X ~B ⎝⎛⎭⎫4,15. P (X =k )=C k 4·⎝⎛⎭⎫15k ·⎝⎛⎭⎫454-k(k =0,1,2,3,4), X 的分布列为所以E (X )=4×15=45.思维升华 概率与统计案例的综合应用常涉及相互独立事件同时发生的概率、独立重复实验、超几何分布、二项分布、独立性检验、线性回归等知识,考查学生的阅读理解能力、数据处理能力、运算求解能力及应用意识.跟踪训练2 (2020·四川成都检测)为了让税收政策更好地为社会发展服务,国家在修订《中华人民共和国个人所得税法》之后,发布了《个人所得税专项附加扣除暂行办法》,明确“个税专项附加扣除”是指个人所得税法规定的子女教育、继续教育、大病医疗、住房贷款利息、住房租金、赡养老人六项专项附加扣除,并公布了相应的定额扣除标准,决定自2019年1月1日起施行.某企业为了调查内部员工对新个税方案的满意程度与年龄的关系,通过问卷调查,整理数据得如下2×2列联表:(1)根据列联表,能否有99%的把握认为满意程度与年龄有关?(2)为了帮助年龄在40岁及以下的未购房的8名员工解决实际困难,该企业拟按员工贡献积分x (单位:分)给予相应的住房补贴y (单位:元),现有两种补贴方案,方案甲:y =1 000+700x ;方案乙:y =⎩⎪⎨⎪⎧3 000,0<x ≤5,5 600,5<x ≤10,9 000,x >10.已知这8名员工的贡献积分分别为2,3,6,7,7,11,12,12,将采用方案甲比采用方案乙获得更多补贴的员工记为“A 类员工”.为了解员工对补贴方案的认可度,现从这8名员工中随机抽取4名进行面谈,求恰好抽到3名“A 类员工”的概率. 附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d . 参考数据:解 (1)根据列联表可得K 2的观测值k =80×(25×30-10×15)235×45×40×40=807≈11.429.∵11.429>6.635,∴有99%的把握认为满意程度与年龄有关.(2)据题意,这8名员工的贡献积分及按甲、乙两种方案所获补贴情况为:由表可知,“A类员工”有5名.设从这8名员工中随机抽取4名进行面谈,恰好抽到3名“A类员工”的概率为P,则P=C35C13C48=37.均值与方差在决策中的应用例3(2018·全国Ⅰ)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品做检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件做检验,再根据检验结果决定是否对余下的所有新产品做检验.设每件产品为不合格品的概率都为p(0<p<1),且各件产品为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f (p),求f (p)的最大值点p0;(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p0作为p的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.①若不对该箱余下的产品做出检验,这一箱产品的检验费用与赔偿费用的和记为X,求E(X);②以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品做检验?解(1)20件产品中恰有2件不合格品的概率为f (p)=C220·p2(1-p)18.因此f′(p)=C220[2p(1-p)18-18p2(1-p)17]=2C220p(1-p)17(1-10p).令f′(p)=0,得p=0.1.当p∈(0,0.1)时,f′(p)>0;当p∈(0.1,1)时,f′(p)<0.所以f (p)的最大值点为p0=0.1.(2)由(1)知,p=0.1①令Y表示余下的180件产品中的不合格品件数,依题意知Y~B(180,0.1),X=20×2+25Y,即X=40+25Y.所以E(X)=E(40+25Y)=40+25E(Y)=490.②如果对余下的产品做检验,则这一箱产品所需要的检验费为400元.由于E(X)=490>400,故应该对余下的产品做检验.思维升华随机变量的均值反映了随机变量取值的平均水平,方差反映了随机变量偏离均值的程度,它们从整体和全局上刻画了随机变量,是生产实际中用于方案取舍的重要依据,一般先比较均值,若均值相同,再由方差来决定.跟踪训练3有两种理财产品A和B,投资这两种理财产品一年后盈亏的情况如下(每种理财产品的不同投资结果之间相互独立):产品A产品B注:p >0,q >0.(1)若甲、乙两人分别选择了产品A ,B 投资,一年后他们中至少有一人获利的概率大于34,求实数p 的取值范围;(2)若丙要将20万元人民币投资其中一种产品,以一年后的投资收益的均值为决策依据,则丙选择哪种产品投资较为理想?解 (1)记事件C 为“甲选择产品A 投资且获利”,记事件D 为“乙选择产品B 投资且获利”,记事件E 为“一年后甲、乙两人中至少有一人投资获利”, 则P (C )=14,P (C )=34,P (D )=p ,p (D )=1-p ,P (E )=1-P (C D )=1-34(1-p )>34,∴p >23.又p +q =34,且q >0,∴p <34,∴23<p <34.即p 的取值范围是⎝⎛⎭⎫23,34. (2)假设丙选择A 产品投资,且记ξ为获利金额(单位:万元),则ξ的分布列为∴E (ξ)=10×14-6×13=12.假设丙选择B 产品投资,且记η为获利金额(单位:万元),则η的分布列为E (η)=8p -4q =8p -4⎝⎛⎭⎫34-p =12p -3⎝⎛⎭⎫0<p <34.∴当p =724时,E (ξ)=E (η),丙可在产品A 和产品B 中任选一种投资;当0<p <724时,E (ξ)>E (η),丙应选产品A 投资;当724<p <34时,E (ξ)<E (η),丙应选产品B 投资.例 (12分)(2019·北京)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:(1)从全校学生中随机抽取1人,估计该学生上个月A ,B 两种支付方式都使用的概率; (2)从样本仅使用A 和仅使用B 的学生中各随机抽取1人,以X 表示这2人中上个月支付金额大于1 000元的人数,求X 的分布列和均值;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A 的学生中,随机抽查3人,发现他们本月的支付金额都大于2 000元.根据抽查结果,能否认为样本仅使用A 的学生中本月支付金额大于2 000元的人数有变化?说明理由. 规范解答解 (1)由题意知,样本中仅使用A 的学生有18+9+3=30(人),仅使用B 的学生有10+14+1=25(人),A ,B 两种支付方式都不使用的学生有5人,故样本中A ,B 两种支付方式都使用的学生有100-30-25-5=40(人).[1分]所以从全校学生中随机抽取1人,该学生上个月A ,B 两种支付方式都使用的概率为40100=0.4.[2分](2)X 的所有可能值为0,1,2.[3分]记事件C 为“从样本仅使用A 的学生中随机抽取1人,该学生上个月的支付金额大于1 000元”,事件D 为“从样本仅使用B 的学生中随机抽取1人, 该学生上个月的支付金额大于1 000元”.由题设知,事件C ,D 相互独立,且P (C )=9+330=0.4,P (D )=14+125=0.6,[4分]所以P (X =2)=P (CD )=P (C )P (D )=0.24.[5分] P (X =1)=P (C D ∪C D ) =P (C )P (D )+P (C )P (D ) =0.4×(1-0.6)+(1-0.4)×0.6 =0.52,[6分]P (X =0)=P (C D )=P (C )P (D )=0.24.[7分] 所以X 的分布列为[8分]故X 的均值E (X )=0×0.24+1×0.52+2×0.24=1.0.[9分](3)记事件E 为“从样本仅使用A 的学生中随机抽查3人,他们本月的支付金额大于2 000元”.假设样本仅使用A的学生中,本月支付金额大于2 000元的人数没有变化,则由上个月的样本数据得P(E)=1C330=14 060.[11分]答案示例1:可以认为有变化.理由如下:P(E)比较小,概率比较小的事件一般不容易发生.一旦发生,就有理由认为本月的支付金额大于2 000元的人数发生了变化,所以可以认为有变化.[12分]答案示例2:无法确定有没有变化,理由如下:事件E是随机事件,P(E)比较小,一般不容易发生,但还是有可能发生的,所以无法确定有没有变化.[12分]第一步:审清题意,理清条件和结论,找到关键数量关系.第二步:找数量关系,把图表语言转化为数字,将图表中的数字转化为公式中的字母.第三步:建立解决方案,找准公式,根据图表数据代入公式计算数值.第四步:作出判断得结论,依据题意,借助数表作出正确判断.第五步:反思回顾,查看关键点、易错点和答题规范性.1.(2020·四川成都质检)2018年央视大型文化节目《经典咏流传》热播,在全民中掀起了诵读诗词的热潮.某大学社团调查了该校文学院300名学生每天诵读诗词的时间(所有学生诵读时间都在两小时内),并按时间(单位:min)将学生分成六个组:[0,20),[20,40),[40,60),[60,80),[80,100),[100,120],经统计得到了如图所示的频率分布直方图.(1)求频率分布直方图中a的值,并估计该校文学院的学生每天诵读诗词的平均时间;(2)若2名学生诵读诗词的时间分别为x,y.当x,y满足|x-y|>60时,这2名同学组成一个“Team”.已知从每天诵读时间小于20 min和大于或等于80 min的所有学生中用分层抽样的方法抽取5人,现从这5人中随机选取2人,求选取的2人能组成一个“Team”的概率.解(1)∵各组数据的频率之和为1,即所有小矩形的面积和为1,∴(a+a+6a+8a+3a+a)×20=1,解得a=0.002 5.∴该校文学院的学生每天诵读诗词的平均时间为10×0.05+30×0.05+50×0.3+70×0.4+90×0.15+110×0.05=64(min).(2)由频率分布直方图,知[0,20),[80,100),[100,120]内的学生人数的频率之比为1∶3∶1,故5人中[0,20),[80,100),[100,120]内的学生人数分别为1,3,1.方法一设[0,20)内的1名学生为A,[80,100)内的3名学生分别为B,C,D,[100,120]内的1名学生为E,则抽取2人的所有基本事件有AB,AC,AD,AE,BC,BD,BE,CD,CE,DE,共10种.选取的2人能组成一个“Team”的情况有AB,AC,AD,AE,共4种,故选取的2人能组成一个“Team”的概率P=410=2 5.方法二由题意知,应从[0,20)内的学生抽取1人,从[80,120]内的学生抽取1人,故所求概率为C 11C 14C 25=25.2.(2020·贵州贵阳模拟)某大学毕业生准备到贵州非私营单位求职,为了了解工资待遇情况,他在贵州省统计局的官网上,查询到2008年至2017年非私营单位在岗职工的年平均工资近 似值(单位:万元),如下表:(1)请根据上表的数据,利用线性回归模型进行拟合,求y 关于x 的线性回归方程y ^=b ^x +a ^(a ^,b ^的计算结果根据四舍五入精确到小数点后第二位);(2)如果该大学生对年平均工资的期望值为9万元,请利用(1)的结论,预测2020年非私营单位在岗职工的年平均工资(单位:万元.计算结果根据四舍五入精确到小数点后第二位),并判断2020年平均工资能否达到他的期望.参考数据:∑i =110x i y i =311.5,∑i =110x 2i =385,∑i =110(x i -x )(y i -y )=47.5.附:对于一组具有线性相关的数据:(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其回归直线y ^=b ^x +a ^的斜率和截距的最小二乘估计分别为b ^=∑i =1nx i y i -n x ·y∑i =1nx 2i -n x2=∑i =1n(x i -x )(y i -y )∑i =1n(x i -x )2,a ^=y -b ^x .解 (1)由已知,得x =5.5,y =4.8.b ^=∑i =110(x i -x )(y i -y )∑i =110x 2i -n ·x2=47.5385-10×5.52≈0.58, 所以a ^=y -b ^x =4.8-0.58×5.5=1.61, 故y 关于x 的线性回归方程为y ^=0.58x +1.61. (2)由(1)知y ^=0.58x +1.61,当x =13时,y ^=0.58×13+1.61=9.15>9.所以,预测2020年非私营单位在岗职工的年平均工资为9.15万元,达到了他的期望. 3.(2020·贵州贵阳模拟)运动健康已成为大家越来越关心的话题,某公司开发的一个类似计步数据库的公众号,手机用户可以通过关注该公众号查看自己每天行走的步数,同时也可以和好友进行运动量的PK 和点赞.现从张华的好友中随机选取40人(男、女各20人),记录他们某一天行走的步数,并将数据整理如下表:(1)若某人一天行走的步数超过8 000被评定为“积极型”,否则被评定为“懈怠型”,根据题意完成下列2×2列联表,若有n %(n ∈Z )的把握认为男、女的“评定类型”有差异,参考现有公式与数据,则n 可能的最大值为多少?(2)在张华的这40位好友中,从该天行走的步数超过10 000的人中随机抽取3人,设抽取的女性有X 人,求X 的分布列及均值E (X ). 参考公式与数据:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .解 (1)由题意可得2×2列联表如下:K 2的观测值k =40×(13×12-7×8)220×20×21×19=1 000399≈2.506<2.706,所以85<n <90(n ∈Z ),因此n 可能的最大值为89. (2)该天行走步数超过10 000的有6男2女共8人,则X =0,1,2,P (X =0)=C 36C 38=514,P (X =1)=C 12C 26C 38=1528,P (X =2)=C 22C 16C 38=328,所以X 的分布列为所以E (X )=0×514+1×1528+2×328=34.4.东方商店欲购进某种食品(保质期两天),此商店每两天购进该食品一次(购进时,该食品为刚生产的).根据市场调查,该食品每份进价8元,售价12元,如果两天内无法售出,则食品过期作废,且两天内的销售情况互不影响,为了了解市场的需求情况,现统计该产品在本地区100天的销售量如表:(视样本频率为概率)(1)根据该产品100天的销售量统计表,记两天中一共销售该食品份数为ξ,求ξ的分布列与均值;(2)以两天内该产品所获得的利润均值为决策依据,东方商店一次性购进32或33份,哪一种得到的利润更大?解(1)ξ的可能取值有30,31,32,33,34,35,36,其中P(ξ=30)=0.2×0.2=0.04,P(ξ=31)=2×0.2×0.3=0.12,P(ξ=32)=0.3×0.3+2×0.2×0.4=0.25,P(ξ=33)=2×0.2×0.1+2×0.3×0.4=0.28,P(ξ=34)=0.4×0.4+2×0.3×0.1=0.22,P(ξ=35)=2×0.4×0.1=0.08,P(ξ=36)=0.1×0.1=0.01,∴ξ的分布列为∴E(ξ)=30×0.04+31×0.12+32×0.25+33×0.28+34×0.22+35×0.08+36×0.01=32.8.(2)当一次性购进32份食品时,设每两天的利润为X,则X的可能取值有104,116,128,且P(X=104)=0.04,P(X=116)=0.12,P(X=128)=1-0.04-0.12=0.84,∴E(X)=104×0.04+116×0.12+128×0.84=125.6.当一次性购进33份食品时,设每两天的利润为Y,则Y的可能取值有96,108,120,132.且P(Y=96)=0.04,P(Y=108)=0.12,P(Y=120)=0.25,P(Y=132)=1-0.04-0.12-0.25=0.59,∴E(Y)=96×0.04+108×0.12+120×0.25+132×0.59=124.68.∵E(X)>E(Y),∴东方商店一次性购进32份食品时得到的利润更大.5.为了解2019届高三毕业学生的复习备考情况,某省甲、乙两市组织了一次大联考.为比较两市本届高三毕业学生的数学优秀率,某教研机构从甲、乙两市参加大联考的数学高分段(数学成绩不低于100分)的学生中各随机抽取了100名学生,统计其数学成绩,得到甲市数学高分段学生成绩的频率分布直方图如图所示,乙市数学高分段学生成绩的频数分布表如下表所示(同一组数据用该组数据的区间中点值作代表,将频率视为概率).(1)现计算得甲市数学高分段学生成绩的平均分为123分,乙市数学高分段学生成绩的方差为111,试利用统计知识判断甲、乙两市哪一个市2019届高三毕业学生数学高分段成绩更突出;(2)由频率分布直方图可以认为,甲市这次大联考的数学高分段学生成绩Z(单位:分)近似地服从正态分布N (μ,σ2),其中μ近似为样本平均数,试利用该正态分布模型解决下列问题. ①若甲市恰有2万名学生这次大联考的数学成绩不低于100分,试估计甲市这次大联考的数学成绩Z 高于142.6分的学生人数;②现从甲市这次大联考的数学成绩不低于100分的学生中随机抽取1 000人,若抽到k 人的数学成绩在区间(123,142.6]内的可能性最大,试求整数k 的值. 附:若X ~N (μ,σ2),则P (μ-σ<X ≤μ+σ)≈0.682 7, P (μ-2σ<X ≤μ+2σ)≈0.954 5, P (μ-3σ<X ≤μ+3σ)≈0.997 3.解 (1)由题意得甲市数学高分段学生成绩的方差为s 2甲=(105-123)2×0.05+(115-123)2×0.4+(125-123)2×0.3+(135-123)2×0.2+(145-123)2×0.05=96,乙市数学高分段学生成绩的平均分为 x乙=105×0.15+115×0.25+125×0.4+135×0.15+145×0.05=122(分). 又x 甲=123,s 2乙=111,所以x 甲>x 乙,s 2甲<s 2乙.故甲市数学高分段学生成绩的平均分更高,且方差更小,故甲市数学高分段学生成绩更稳定. 综上可知甲市的2019届高三毕业学生数学高分段成绩更为突出.(2)①P (Z >142.6)=P (Z >μ+2σ)=12[1-P (μ-2σ<Z ≤μ+2σ)]≈12(1-0.954 5)=0.022 75.因为20 000×0.022 75=455,所以可估计甲市这次大联考的数学成绩Z 高于142.6分的学生有455人.②记所抽取的1 000人中数学成绩在区间(123,142.6]内的人数为Y , 因为P (123<Z ≤142.6)=P (μ<Z ≤μ+2σ)=P (μ-2σ<Z ≤μ+2σ)2≈0.477 25,所以Y ~B (1 000,0.477 25),故P (Y =k )=C k 1 000×0.477 25k ×0.522 751 000-k . 设P (Y =k )最大,则⎩⎪⎨⎪⎧ P (Y =k )≥P (Y =k +1),P (Y =k )≥P (Y =k -1)即⎩⎪⎨⎪⎧0.522 751 000-k ≥0.477 25k +1,0.477 25k≥0.522 751 001-k,解得476.727 25≤k ≤477.727 25.因为k ∈N *,所以使P (Y =k )取得最大值的整数k 的值为477.。
《步步高》2021届高考数学大一轮复习(人教A版)专题训练:专题一函数图象与性质的综合应用

题型四
函数的值域与不等式恒成立问题
思维启迪 解析
探究提高
题型分类·深度剖析
题型四
函数的值域与不等式恒成立问题
思维启迪 解析
探究提高
题型分类·深度剖析
题型四
函数的值域与不等式恒成立问题
思维启迪 解析
探究提高
题型分类·深度剖析
题型四
函数的值域与不等式恒成立问题
思维启迪 解析
探究提高
题型分类·深度剖析
6
7
8
9
A
练出高分
A组 专项基础训练
1
2
3
4
5
6
7
8
9
解析
练出高分
A组 专项基础训练
1
2
3
4
5
6
7
8
9
解析
(2,+∞)
练出高分
A组 专项基础训练
1
2
3
4
5
6
7
8
9
解析
练出高分
A组 专项基础训练
1
2
3
4
5
6
7
8
9
解析
练出高分
A组 专项基础训练
1
2
3
4
5
6
7
8
9
解析
练出高分
A组 专项基础训练
题型分类·深度剖析
高考圈题
2.高考中的函数零点问题
考点分析
求解策略
解析
解后反思
题型分类·深度剖析
高考圈题
2.高考中的函数零点问题
考点分析
求解策略
解析
解后反思
题型分类·深度剖析
高2021届高2018级苏教版步步高大一轮高三数学复习课件学案第六章 6.4

§6.4 数列求和1.(1)a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2;(2)等差数列前n 项和S n =n (a 1+a n )2,推导方法:倒序相加法;(3)等比数列前n 项和S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1.推导方法:错位相减法. 2.常见数列的前n 项和(1)1+2+3+…+n =n (n +1)2;(2)2+4+6+…+2n =n (n +1); (3)1+3+5+…+(2n -1)=n 2. 3.数列求和的常见方法(1)分组求和:把一个数列分成几个可以直接求和的数列;(2)裂项相消:有时把一个数列的通项公式分成二项差的形式,相加过程消去中间项,只剩有限项再求和;(3)错位相减:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和; (4)倒序相加:如等差数列前n 项和公式的推导方法.(5)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.概念方法微思考请思考以下常见式子的裂项方法.(1)1n (n +1); (2)1(2n -1)(2n +1); (3)1n +n +1;(4)1n (n +1)(n +2). 提示 (1)1n (n +1)=1n -1n +1;(2)1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1;(3)1n +n +1=n +1-n ;(4)1n (n +1)(n +2)=12⎣⎡⎦⎤1n (n +1)-1(n +1)(n +2).题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q .( √ )(2)当n ≥2时,1n 2-1=12⎝⎛⎭⎫1n -1-1n +1.( √ )(3)求S n =a +2a 2+3a 3+…+na n 之和时,只要把上式等号两边同时乘以a 即可根据错位相减法求得.( × )(4)推导等差数列求和公式的方法叫做倒序相加法,利用此法可求得sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°=44.5.( √ )(5)如果数列{a n }是周期为k 的周期数列,那么S km =mS k (m ,k 为大于1的正整数).( √ ) 题组二 教材改编2.等比数列1,2,4,8,…中从第5项到第10项的和为________. 答案 1 008解析 由a 1=1,a 2=2,得q =2, ∴S 10=1×(1-210)1-2=1 023,S 4=1×(1-24)1-2=15,∴S 10-S 4=1 008.3.已知数列{a n }的通项公式a n =1n +n +1,则该数列的前________项之和等于9.答案 99解析 由题意知,a n =1n +n +1=n +1-n ,所以S n =(2-1)+(3-2)+…+(n +1-n )=n +1-1=9,解得n =99.4.1+2x +3x 2+…+nx n -1=________(x ≠0且x ≠1). 答案 1-x n (1-x )2-nx n1-x解析 设S n =1+2x +3x 2+…+nx n -1,① 则xS n =x +2x 2+3x 3+…+nx n ,②①-②得(1-x )S n =1+x +x 2+…+x n -1-nx n =1-x n 1-x -nx n , ∴S n =1-x n (1-x )2-nx n1-x .题组三 易错自纠5.一个球从100 m 高处自由落下,每次着地后又跳回到原高度的一半再落下,当它第10次着地时,经过的路程是________________. 答案 100+200(1-2-9)解析 第10次着地时,经过的路程为100+2(50+25+…+100×2-9)=100+2×100×(2-1+2-2+…+2-9)=100+200×2-1(1-2-9)1-2-1=100+200(1-2-9). 6.数列{a n }的通项公式为a n =n cosn π2,其前n 项和为S n ,则S 2 017=________.答案 1 008解析 因为数列a n =n cos n π2呈周期性变化,观察此数列规律如下:a 1=0,a 2=-2,a 3=0,a 4=4. 故S 4=a 1+a 2+a 3+a 4=2. a 5=0,a 6=-6,a 7=0,a 8=8, 故a 5+a 6+a 7+a 8=2,∴周期T =4. ∴S 2 017=S 2 016+a 2 017 =2 0164×2+2 017·cos 2 0172π=1 008. 7.已知数列{a n }的前n 项和S n =1-5+9-13+…+(-1)n -1(4n -3),则S 15+S 22-S 31=________. 答案 -76解析 S n=⎩⎨⎧n2×(-4),n 为偶数,n -12×(-4)+4n -3,n 为奇数,∴S n =⎩⎪⎨⎪⎧-2n ,n 为偶数,2n -1,n 为奇数,∴S 15=29,S 22=-44,S 31=61, ∴S 15+S 22-S 31=-76.分组求和与并项求和例1 已知数列{a n }的前n 项和S n =n 2+n2,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和. 解 (1)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n .a 1也满足a n =n ,故数列{a n }的通项公式为a n =n (n ∈N *). (2)由(1)知a n =n ,故b n =2n +(-1)n n .记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ). 记A =21+22+…+22n ,B =-1+2-3+4-…+2n , 则A =2(1-22n )1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n . 故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2(n ∈N *).本例(2)中,求数列{b n }的前n 项和T n .解 由(1)知b n =2n +(-1)n n . 当n 为偶数时,T n =(21+22+…+2n )+[-1+2-3+4-…-(n -1)+n ] =2-2n +11-2+n 2=2n +1+n 2-2;当n 为奇数时,T n =(21+22+…+2n )+[-1+2-3+4-…-(n -2)+(n -1)-n ] =2n +1-2+n -12-n=2n +1-n 2-52.∴T n=⎩⎨⎧2n +1+n 2-2,n 为偶数,2n +1-n 2-52,n 为奇数.思维升华 分组转化法求和的常见类型(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组求和法求{a n }的前n 项和.(2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n,n 为偶数的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组求和法求和.跟踪训练1 (2019·苏州模拟)已知数列{a n }满足a n +1+a n =4n -3(n ∈N *). (1)若数列{a n }是等差数列,求a 1的值; (2)当a 1=2时,求数列{a n }的前n 项和S n .解 (1)若数列{a n }是等差数列,则a n =a 1+(n -1)d ,a n +1=a 1+nd .由a n +1+a n =4n -3,得(a 1+nd )+[a 1+(n -1)d ]=4n -3, 即2d =4,2a 1-d =-3,解得d =2,a 1=-12.(2)由a n +1+a n =4n -3(n ∈N *), 得a n +2+a n +1=4n +1(n ∈N *). 两式相减得a n +2-a n =4,所以数列{a 2n -1}是首项为a 1,公差为4的等差数列,数列{a 2n }是首项为a 2,公差为4的等差数列. 由a 2+a 1=1,a 1=2,得a 2=-1,所以a n =⎩⎪⎨⎪⎧2n ,n 为奇数,2n -5,n 为偶数.①当n 为奇数时,a n =2n , S n =a 1+a 2+a 3+…+a n=(a 1+a 2)+(a 3+a 4)+…+(a n -2+a n -1)+a n =1+9+…+(4n -11)+2n=n -12×(1+4n -11)2+2n =2n 2-3n +52.②当n 为偶数时, S n =a 1+a 2+a 3+…+a n=(a 1+a 2)+(a 3+a 4)+…+(a n -1+a n ) =1+9+…+(4n -7)=2n 2-3n2.所以S n=⎩⎨⎧2n 2-3n +52,n 为奇数,2n 2-3n2,n 为偶数.错位相减法求和例2 已知数列{a n }的前n 项和为S n ,S n =n 2+n . (1)求{a n }的通项公式a n ;(2)若a k +1,a 2k ,a 2k +3(k ∈N *)恰好依次为等比数列{b n }的第一、第二、第三项,求数列⎩⎨⎧⎭⎬⎫n b n 的前n项和T n .解 (1)当n =1时,a 1=S 1=12+1=2. 当n ≥2时,a n =S n -S n -1=(n 2+n )-[(n -1)2+(n -1)]=2n . 检验n =1时,上式符合, ∴a n =2n (n ∈N *).(2)由题意知a k +1,a 2k ,a 2k +3成等比数列, ∴a 22k =a k +1·a 2k +3, 即(2·2k )2=2(k +1)·2(2k +3), 解得k =3(负值舍去).b 1=a 4=8,b 2=a 6=12,公比q =128=32,∴b n =8·⎝⎛⎭⎫32n -1, ∴n b n =18n ·⎝⎛⎭⎫23n -1, ∴T n =18×⎝⎛⎭⎫230+18×2×⎝⎛⎭⎫231+…+18×n ×⎝⎛⎭⎫23n -1, 即T n =18×⎣⎡⎦⎤⎝⎛⎭⎫230+2×⎝⎛⎭⎫231+…+n ×⎝⎛⎭⎫23n -1.① 上式两边乘以23,得23T n =18×⎣⎡ ⎝⎛⎭⎫231+2×⎝⎛⎭⎫232+…+⎦⎤(n -1)×⎝⎛⎭⎫23n -1+n ×⎝⎛⎭⎫23n .② ①-②,得13T n =18×⎣⎡ ⎝⎛⎭⎫230+⎝⎛⎭⎫231+…+⎦⎤⎝⎛⎭⎫23n -1-18n ⎝⎛⎭⎫23n =38-3+n 8⎝⎛⎭⎫23n ,则T n =98-9+3n 8⎝⎛⎭⎫23n(n ∈N *).思维升华 形如{a n ·b n }(其中{a n }是等差数列,{b n }是等比数列)的数列可用错位相减法求和. 跟踪训练2 已知数列{a n }满足a n ≠0,a 1=13,a n -a n +1=2a n a n +1,n ∈N *.(1)求证:⎩⎨⎧⎭⎬⎫1a n 是等差数列,并求出数列{a n }的通项公式;(2)若数列{b n }满足b n =2na n ,求数列{b n }的前n 项和T n .解 (1)由已知可得,1a n +1-1a n=2,1a 1=3,∴⎩⎨⎧⎭⎬⎫1a n 是首项为3,公差为2的等差数列, ∴1a n =3+2(n -1)=2n +1,∴a n =12n +1(n ∈N *). (2)由(1)知b n =(2n +1)2n ,∴T n =3×2+5×22+7×23+…+(2n -1)2n -1+(2n +1)2n , 2T n =3×22+5×23+7×24+…+(2n -1)2n +(2n +1)·2n +1, 两式相减得,-T n =6+2×22+2×23+…+2×2n -(2n +1)2n +1. =6+8-8×2n -11-2-(2n +1)2n +1=-2-(2n -1)2n +1,∴T n =2+(2n -1)2n +1(n ∈N *).裂项相消法求和例3 (2019·江苏省启东中学月考)已知正项数列{a n }的前n 项和为S n ,且满足a 1=2,a n a n +1=2(S n +1)(n ∈N *).(1)求a 2 019的值;(2)求数列{a n }的通项公式;(3)若数列{b n }满足b 1=1,b n =1a n a n -1+a n -1a n(n ≥2,n ∈N *),求数列{b n }的前n 项和T n . 解 (1)因为a n a n +1=2(S n +1),所以当n ≥2时,a n -1a n =2(S n -1+1),两式相减,得a n a n +1-a n -1a n =2a n ,a n ≠0,所以a n +1-a n -1=2.又a 1=2,所以a 2 019=2+2 019-12×2=2 020. (2)由a n a n +1=2(S n +1)(n ∈N *),当n =1时,a 1a 2=2(a 1+1),即2a 2=2×3,解得a 2=3.由a n +1-a n -1=2,可得数列{a n }的奇数项与偶数项都成等差数列,公差为2, 所以a 2k -1=2+2(k -1)=2k ,k ∈N *,a 2k =3+2(k -1)=2k +1,k ∈N *, 所以a n =n +1.(3)因为数列{b n }满足b 1=1,b n =1a n a n -1+a n -1a n =1(n +1)n +n n +1=(n +1)n -n n +1n (n +1)=n n -n +1n +1, 所以{b n }的前n 项和T n =⎝⎛⎭⎫1-22+⎝⎛⎭⎫22-33+…+⎝ ⎛⎭⎪⎫n n -n +1n +1 =1-n +1n +1. 思维升华 裂项相消法的关键是对通项拆分,要注意相消后剩余的项. 跟踪训练3 已知数列{a n }满足:a n +1=a n (1-a n +1),a 1=1,数列{b n }满足:b n =a n a n +1,则数列{b n }的前10项和S 10=________.答案 1011解析 由a n +1=a n (1-a n +1),a 1=1,得1a n +1-1a n=1, 所以数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,1为公差的等差数列,所以1a n =n ,即a n =1n. 因为b n =a n a n +1=1n (n +1)=1n -1n +1, 所以S 10=b 1+b 2+…+b 10=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫110-111=1-111=1011.1.正项等差数列{a n }满足a 1=4,且a 2,a 4+2,2a 7-8成等比数列,{a n }的前n 项和为S n .(1)求数列{a n }的通项公式;(2)令b n =1S n +2,求数列{b n }的前n 项和T n . 解 (1)设数列{a n }的公差为d (d >0),由已知得a 2(2a 7-8)=(a 4+2)2,化简得,d 2+4d -12=0,解得d =2或d =-6(舍),所以a n =a 1+(n -1)d =2n +2(n ∈N *).(2)因为S n =n (a 1+a n )2=n (2n +6)2=n 2+3n , 所以b n =1S n +2=1n 2+3n +2=1(n +1)(n +2)=1n +1-1n +2, 所以T n =b 1+b 2+b 3+…+b n=⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+⎝⎛⎭⎫14-15+…+⎝⎛⎭⎫1n +1-1n +2 =12-1n +2=n 2n +4(n ∈N *). 2.(2020·南京模拟)等差数列{a n }的前n 项和为S n ,数列{b n }是等比数列,满足a 1=3,b 1=1,b 2+S 2=10,a 5-2b 2=a 3.(1)求数列{a n }和{b n }的通项公式;(2)令c n =⎩⎪⎨⎪⎧ 2S n ,n 为奇数,b n ,n 为偶数,设数列{c n }的前n 项和为T n ,求T 2n . 解 (1)设数列{a n }的公差为d ,数列{b n }的公比为q ,由⎩⎪⎨⎪⎧ b 2+S 2=10,a 5-2b 2=a 3,得⎩⎪⎨⎪⎧ q +6+d =10,3+4d -2q =3+2d , 解得⎩⎪⎨⎪⎧d =2,q =2, 所以a n =3+2(n -1)=2n +1(n ∈N *),b n =2n -1(n ∈N *).(2)由a 1=3,a n =2n +1,得S n =n (a 1+a n )2=n (n +2), 则c n =⎩⎪⎨⎪⎧ 2n (n +2),n 为奇数,2n -1,n 为偶数, 即c n =⎩⎪⎨⎪⎧1n -1n +2,n 为奇数,2n -1,n 为偶数,所以T 2n =(c 1+c 3+…+c 2n -1)+(c 2+c 4+…+c 2n )=⎣⎡⎦⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-15+…+⎝⎛⎭⎫12n -1-12n +1+(2+23+…+22n -1) =1-12n +1+2(1-4n )1-4=2n 2n +1+23(4n -1)(n ∈N *). 3.已知递增的等比数列{a n }满足:a 2+a 3+a 4=28,且a 3+2是a 2和a 4的等差中项.(1)求数列{a n }的通项公式;(2)若b n =12log n n a a ,S n =b 1+b 2+…+b n ,求使S n +n ·2n +1>62成立的正整数n 的最小值. 解 (1)由题意,得⎩⎪⎨⎪⎧a 1q +a 1q 2+a 1q 3=28,a 1q +a 1q 3=2(a 1q 2+2), 解得⎩⎪⎨⎪⎧ a 1=2,q =2或⎩⎪⎨⎪⎧ a 1=32,q =12,∵{a n }是递增数列,∴a 1=2,q =2,∴数列{a n }的通项公式为a n =2·2n -1=2n (n ∈N *).(2)∵b n =12log n n a a =122log 2n n ⋅=-n ·2n ,∴S n =b 1+b 2+…+b n =-(1×2+2×22+…+n ·2n ),① 则2S n =-(1×22+2×23+…+n ·2n +1),②②-①,得S n =(2+22+…+2n )-n ·2n +1=2n +1-2-n ·2n +1, 则S n +n ·2n +1=2n +1-2,解2n +1-2>62,得n >5,∴n 的最小值为6.4.数列{a n }的前n 项和为S n ,已知a 1=1,(2n -1)a n +1=(2n +3)S n (n =1,2,3,…).(1)证明:数列⎩⎨⎧⎭⎬⎫S n 2n -1是等比数列; (2)求数列{S n }的前n 项和T n .(1)证明 ∵a n +1=S n +1-S n =2n +32n -1S n, ∴S n +1=2(2n +1)2n -1S n, ∴S n +12n +1=2·S n 2n -1, 又a 1=1,∴S 11=1≠0, ∴数列⎩⎨⎧⎭⎬⎫S n 2n -1是以1为首项,2为公比的等比数列. (2)解 由(1)知,S n 2n -1=2n -1, ∴S n =(2n -1)·2n -1,∴T n =1+3×2+5×22+…+(2n -3)·2n -2+(2n -1)·2n -1,① 2T n =1×2+3×22+5×23+…+(2n -3)·2n -1+(2n -1)·2n .② ①-②得-T n =1+2×(21+22+…+2n -1)-(2n -1)·2n=1+2×2-2n -1×21-2-(2n -1)·2n =(3-2n )·2n -3,∴T n =(2n -3)·2n +3(n ∈N *).5.已知正项数列{a n }的前n 项和为S n ,∀n ∈N *,2S n =a 2n +a n .令b n =1a n a n +1+a n +1a n,设{b n }的前n项和为T n,求在T1,T2,T3,…,T100中有理数的个数. 解∵2S n=a2n+a n,①∴2S n+1=a2n+1+a n+1,②②-①,得2a n+1=a2n+1+a n+1-a2n-a n,a2n+1-a2n-a n+1-a n=0,(a n+1+a n)(a n+1-a n-1)=0. 又∵{a n}为正项数列,∴a n+1-a n-1=0,即a n+1-a n=1.在2S n=a2n+a n中,令n=1,可得a1=1.∴数列{a n}是以1为首项,1为公差的等差数列.∴a n=n,∴b n=1n n+1+(n+1)n=(n+1)n-n n+1[n n+1+(n+1)n][(n+1)n-n n+1]=(n+1)n-n n+1n(n+1)=1n-1n+1,∴T n=1-12+12-13+…+1n-1-1n+1n-1n+1=1-1n+1,要使T n为有理数,只需1n+1为有理数,令n+1=t2.∵1≤n≤100,∴n=3,8,15,24,35,48,63,80,99,共9个数, ∴T1,T2,T3,…,T100中有理数的个数为9.。
【步步高】(广东专用)2021高考数学大一轮温习 第六章 第5讲 数列的综合应用训练 理(1)

第5讲 数列的综合应用一、选择题1.已知{a n }为等比数列.下面结论中正确的选项是 ( ).A .a 1+a 3≥2a 2B .a 21+a 23≥2a 22C .假设a 1=a 3,那么a 1=a 2D .假设a 3>a 1,那么a 4>a 2解析 设公比为q ,关于选项A ,当a 1<0,q ≠1时不正确;选项C ,当q =-1时不正确;选项D ,当a 1=1,q =-2时不正确;选项B 正确,因为a 21+a 23≥2a 1a 3=2a 22.答案 B2.知足a 1=1,log 2a n +1=log 2a n +1(n ∈N *),它的前n 项和为S n ,那么知足S n >1 025的最小n 值是( ).A .9B .10C .11D .12解析 因为a 1=1,log 2a n +1=log 2a n +1(n ∈N *),因此a n +1=2a n ,a n =2n -1,S n =2n -1,那么知足S n >1 025的最小n 值是11. 答案 C3.某化工厂打算投入一条新的生产线,但需要经环保部门审批同意方可投入生产.已知该生产线持续生产n 年的累计产量为f (n )=12n (n +1)(2n +1)吨,但如果是年产量超过150吨,将会给环境造成危害.为爱惜环境,环保部门应给该厂这条生产线拟定最长的生产期限是 ( ). A .5年B .6年C .7年D .8年解析 由已知可得第n 年的产量a n =f (n )-f (n -1)=3n 2.当n =1时也适合,据题意令a n ≥150⇒n ≥52,即数列从第8项开始超过150,即这条生产线最多生产7年. 答案 C4.在等差数列{a n }中,知足3a 4=7a 7,且a 1>0,S n 是数列{a n }前n 项的和,假设S n 取得最大值,那么n =( ).A .7B .8C .9D .10解析 设公差为d ,由题设3(a 1+3d )=7(a 1+6d ), 因此d =-433a 1<0.解不等式a n >0,即a 1+(n -1)⎝ ⎛⎭⎪⎫-433a 1>0,因此n <374,那么n ≤9,当n ≤9时,a n >0,同理可得n ≥10时,a n <0. 故当n =9时,S n 取得最大值. 答案 C5.设y =f (x )是一次函数,假设f (0)=1,且f (1),f (4),f (13)成等比数列,那么f (2)+f (4)+…+f (2n )等于( ). A .n (2n +3)B .n (n +4)C .2n (2n +3)D .2n (n +4)解析 由题意可设f (x )=kx +1(k ≠0), 那么(4k +1)2=(k +1)×(13k +1),解得k =2,f (2)+f (4)+…+f (2n )=(2×2+1)+(2×4+1)+…+(2×2n +1)=2n 2+3n .答案 A6.假设数列{a n }为等比数列,且a 1=1,q =2,那么T n =1a 1a 2+1a 2a 3+…+1a n a n +1的结果可化为( )A .1-14nB .1-12nC.23⎝ ⎛⎭⎪⎫1-14nD.23⎝⎛⎭⎪⎫1-12n解析a n =2n -1,设b n =1a n a n +1=⎝ ⎛⎭⎪⎫122n -1,则T n =b 1+b 2+…+b n =12+⎝ ⎛⎭⎪⎫123+…+⎝ ⎛⎭⎪⎫122n -1=12⎝ ⎛⎭⎪⎫1-14n 1-14=23⎝⎛⎭⎪⎫1-14n .答案 C 二、填空题7.设关于x 的不等式x 2-x <2nx (n ∈N *)的解集中整数的个数为a n ,数列{a n }的前n 项和为S n ,那么S 100的值为________.解析 由x 2-x <2nx (n ∈N *),得0<x <2n +1,因此知a n =2n . ∴S 100=1002+2002=10 100.答案 10 1008.已知a ,b ,c 成等比数列,若是a ,x ,b 和b ,y ,c 都成等差数列,那么a x +cy=________.解析 赋值法.如令a ,b ,c 别离为2,4,8,可求出x =a +b2=3,y =b +c2=6,a x +cy=2.答案 29.设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lg x n ,那么a 1+a 2+a 3+…+a 99的值为________.解析 由y ′=(n +1)x n (x ∈N *),因此在点(1,1)处的切线斜率k =n +1,故切线方程为y =(n +1)(x -1)+1,令y =0得x n =nn +1,因此a 1+a 2+a 3+…+a 99=lg x 1+lg x 2+…+lg x 99=lg(x 1·x 2·…·x 99)=lg 12×23×…×9999+1=lg 199+1=-2.答案 -210.数列{a n }的前n 项和为S n ,假设数列{a n }的各项按如下规律排列:12,13,23,14,24,34,15,25,35,45,…,1n ,2n ,…,n -1n ,…,有如下运算和结论: ①a 24=38;②数列a 1,a 2+a 3,a 4+a 5+a 6,a 7+a 8+a 9+a 10,…是等比数列; ③数列a 1,a 2+a 3,a 4+a 5+a 6,a 7+a 8+a 9+a 10,…的前n 项和为T n =n 2+n4;④假设存在正整数k ,使S k <10,S k +1≥10,那么a k =57.其中正确的结论有________.(将你以为正确的结论序号都填上)解析 依题意,将数列{a n }中的项依次按分母相同的项分成一组,第n 组中的数的规律是:第n 组中的数共有n 个,而且每一个数的分母均是n +1,分子由1依次增大到n ,第n 组中的各数和等于1+2+3+…+nn +1=n2.关于①,注意到21=66+12<24<77+12=28,因此数列{a n }中的第24项应是第7组中的第3个数,即a 24=38,因此①正确.关于②、③,设b n 为②、③中的数列的通项,那么b n =1+2+3+…+n n +1=n 2,显然该数列是等差数列,而不是等比数列,其前n 项和等于12×n n +12=n 2+n4,因此②不正确,③正确.关于④,注意到数列的前6组的所有项的和等于62+64=1012,因此知足条件的a k 应是第6组中的第5个数,即a k =57,因此④正确.综上所述,其中正确的结论有①③④. 答案 ①③④ 三、解答题11.已知等差数列{a n }的前n 项和为S n ,S 5=35,a 5和a 7的等差中项为13. (1)求a n 及S n ; (2)令b n =4a 2n-1(n ∈N *),求数列{b n }的前n 项和T n .解 (1)设等差数列{a n }的公差为d , 因为S 5=5a 3=35,a 5+a 7=26,因此⎩⎪⎨⎪⎧a 1+2d =7,2a 1+10d =26,解得a 1=3,d =2,因此a n =3+2(n -1)=2n +1,S n =3n +n n -12×2=n 2+2n .(2)由(1)知a n =2n +1, 因此b n =4a 2n -1=1n n +1=1n -1n +1, 因此T n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1 =1-1n +1=nn +1.12.设数列{a n }的前n 项和为S n ,知足2S n =a n +1-2n +1+1,n ∈N *,且a 1,a 2+5,a 3成等差数列. (1)求a 1的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1+1a 2+…+1a n <32.(1)解 当n =1时,2a 1=a 2-4+1=a 2-3, ① 当n =2时,2(a 1+a 2)=a 3-8+1=a 3-7,② 又a 1,a 2+5,a 3成等差数列,因此a 1+a 3=2(a 2+5),③由①②③解得a 1=1.(2)解 ∵2S n =a n +1-2n +1+1, ∴当n ≥2时,有2S n -1=a n -2n +1, 两式相减整理得a n +1-3a n=2n ,那么a n +12n-32·a n2n -1=1,即a n +12n +2=32⎝ ⎛⎭⎪⎫a n2n -1+2.又a 120+2=3,知⎩⎨⎧⎭⎬⎫a n 2n -1+2是首项为3,公比为32的等比数列,∴a n2n -1+2=3⎝ ⎛⎭⎪⎫32n -1, 即a n =3n -2n ,n =1时也适合此式,∴a n =3n -2n . (3)证明 由(2)得1a n =13n -2n.当n ≥2时,⎝ ⎛⎭⎪⎫32n >2,即3n -2n >2n ,∴1a 1+1a 2+…+1a n <1+⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫123+…+⎝ ⎛⎭⎪⎫12n =1+12⎝ ⎛⎭⎪⎫1-12n -1<32.13.已知各项均不相等的等差数列{a n }的前四项和为14,且a 1,a 3,a 7恰为等比数列{b n }的前三项. (1)别离求数列{a n },{b n }的前n 项和S n ,T n ; (2)记数列{a n b n }的前n 项和为K n ,设c n =S n T n K n,求证:c n +1>c n (n ∈N *).(1)解 设公差为d ,那么⎩⎪⎨⎪⎧4a 1+6d =14,a 1+2d 2=a 1a 1+6d ,解得d =1或d =0(舍去),a 1=2, 因此a n =n +1,S n =n n +32.又a 1=2,d =1,因此a 3=4,即b 2=4. 因此数列{b n }的首项为b 1=2,公比q =b 2b 1=2,因此b n =2n ,T n =2n +1-2.(2)证明 因为K n =2·21+3·22+…+(n +1)·2n , ① 故2K n =2·22+3·23+…+n ·2n +(n +1)·2n +1,②①-②得-K n =2·21+22+23+…+2n -(n +1)·2n +1, ∴K n =n ·2n +1,那么c n =S n T n K n=n +32n -12n +1.c n +1-c n =n +42n +1-12n +2-n +32n -12n +1=2n +1+n +22n +2>0,因此c n +1>c n (n ∈N *).14.设数列{a n }的前n 项和S n 知足S n +1=a 2S n +a 1,其中a 2≠0. (1)求证:{a n }是首项为1的等比数列;(2)假设a 2>-1,求证:S n ≤n2(a 1+a n ),并给出等号成立的充要条件.证明 (1)由S 2=a 2S 1+a 1,得a 1+a 2=a 2a 1+a 1,即a 2=a 2a 1.因a 2≠0,故a 1=1,得a 2a 1=a 2,又由题设条件知S n +2=a 2S n +1+a 1,S n +1=a 2S n +a 1, 两式相减得S n +2-S n +1=a 2(S n +1-S n ), 即a n +2=a 2a n +1,由a 2≠0,知a n +1≠0,因此a n +2a n +1=a 2.综上,a n +1a n=a 2对所有n ∈N *成立.从而{a n }是首项为1,公比为a 2的等比数列.(2)当n =1或2时,显然S n =n2(a 1+a n ),等号成立.设n ≥3,a 2>-1且a 2≠0,由(1)知,a 1=1,a n =a n -12, 因此要证的不等式化为:1+a 2+a 22+…+a n -12≤n2(1+a n -12)(n ≥3), 即证:1+a 2+a 22+…+a n 2≤n +12(1+a n 2)(n ≥2),当a 2=1时,上面不等式的等号成立.当-1<a 2<1时,a r 2-1与a n -r 2-1,(r =1,2,…,n -1)同为负; 当a 2>1时,a r 2-1与a n -r 2-1,(r =1,2,…,n -1)同为正; 因此当a 2>-1且a 2≠1时,总有(a r 2-1)(a n -r 2-1)>0,即a r 2+a n -r 2<1+a n 2,(r =1,2,…,n -1).上面不等式对r 从1到n -1求和得2(a 2+a 22+…+a n -12)<(n -1)(1+a n 2). 由此得1+a 2+a 22+…+a n 2<n +12(1+a n 2).综上,当a 2>-1且a 2≠0时,有S n ≤n2(a 1+a n ),当且仅当n =1,2或a 2=1时等号成立.。
2021届步步高数学大一轮复习讲义(文科)第六章 高考专题突破三 高考中的数列问题

高考专题突破三 高考中的数列问题等差数列、等比数列基本量的运算命题点1 数列与数学文化例1 (1)(2020·四川乐山模拟)《张丘建算经》中女子织布问题为:某女子善于织布,一天比一天织得快,且从第2天开始,每天比前一天多织相同量的布,已知第一天织5尺布,一月(按30天计)共织390尺布,则从第2天起每天比前一天多织多少尺布?( )A.1631B.1629C.12D.815答案 B解析 由题意可知每天织布的多少构成等差数列,其中第一天为首项a 1=5,一月按30天计可得S 30=390,从第2天起每天比前一天多织的即为公差d .又S 30=30×5+30×292×d =390,解得d =1629.故选B. (2)中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关, 初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”意思为:有一个人要走378里路,第一天健步行走,从第二天起脚痛,每天走的路程为前一天的一半,走了6天恰好到达目的地,则第三天走了( )A .192里B .48里C .24里D .96里答案 B解析 由题意可知此人每天走的步数构成公比为12的等比数列,∴ 由等比数列的求和公式可得,a 1⎣⎡⎦⎤1-⎝⎛⎭⎫1261-12=378, 解得a 1=192,∴a 3=a 1q 2=192×⎝⎛⎭⎫122=48.故选B.思维升华 对于数学文化中所涉及到的数列模型,解题时应认真审题,从问题背景中提取相关信息并分析归纳,然后构造恰当的数列模型,再根据等差或等比数列的有关公式求解作答,必要时要进行检验.跟踪训练1 (1)我国古代名著《九章算术》中有这样一段话:“今有金锤,长五尺,斩本一尺,重四斤,斩末一尺,重二斤.”意思是:现有一根金锤,长5尺,头部1尺,重4斤,尾部1尺,重2斤,若该金锤从头到尾,每一尺的重量构成等差数列,该金锤共重( )A .6斤B .7斤C .9斤D .15斤答案 D解析 因为每一尺的重量构成等差数列{a n },a 1=4,a 5=2,所以a 1+a 5=6,数列的前5项和为S 5=5×a 1+a 52=5×3=15. 即金锤共重15斤,故选D.(2)中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我的羊所吃的禾苗只有马的一半.”马主人说:“我的马所吃的禾苗只有牛的一半.”打算按此比例偿还,他们各应偿还多少?该问题中,1斗为10升,则马主人应偿还粟( ) A.253升 B.503升 C.507升 D.1007升 答案 D解析 因为5斗=50升,设羊、马、牛的主人应偿还的量分别为a 1,a 2,a 3,由题意可知其构成了公比为2的等比数列,且S 3=50,则a 1(23-1)2-1=50,解得a 1=507, 所以马主人要偿还的量为a 2=2a 1=1007. 故选D.命题点2 等差数列、等比数列的交汇例2 记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6.(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.解 (1)设{a n }的公比为q .由题设可得⎩⎪⎨⎪⎧ a 1(1+q )=2,a 1(1+q +q 2)=-6. 解得q =-2,a 1=-2.故{a n }的通项公式为a n =(-2)n .(2)由(1)可得S n =a 1(1-q n )1-q=-23+(-1)n 2n +13. 由于S n +2+S n +1=-43+(-1)n 2n +3-2n +23=2⎣⎢⎡⎦⎥⎤-23+(-1)n 2n +13=2S n , 故S n +1,S n ,S n +2成等差数列.思维升华 等差与等比数列的基本量之间的关系,利用方程思想和通项公式、前n 项和公式求解.求解时,应“瞄准目标”,灵活应用数列的有关性质,简化运算过程.跟踪训练2 (2020·桂林模拟)已知公差不为0的等差数列{a n }的前n 项和为S n ,S 1+1,S 3,S 4成等差数列,且a 1,a 2,a 5成等比数列.(1)求数列{a n }的通项公式;(2)若S 4,S 6,S n 成等比数列,求n 及此等比数列的公比.解 (1)设数列{a n }的公差为d .由题意可知⎩⎪⎨⎪⎧ 2S 3=S 1+1+S 4,a 22=a 1a 5,d ≠0,整理得⎩⎪⎨⎪⎧ a 1=1,d =2a 1,即⎩⎪⎨⎪⎧ a 1=1,d =2,∴a n =2n -1. (2)由(1)知a n =2n -1,∴S n =n 2,∴S 4=16,S 6=36,又S 4S n =S 26,∴n 2=36216=81, ∴n =9,公比q =S 6S 4=94. 数列的求和命题点1 分组求和与并项求和例3 已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4.(1)求{a n }的通项公式;(2)设c n =a n +b n ,求数列{c n }的前n 项和.解 (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q ,因为b 2=3,b 3=9,可得q =b 3b 2=3, 所以b n =b 2q n -2=3·3n -2=3n -1,又由a 1=b 1=1,a 14=b 4=27,所以d =a 14-a 114-1=2, 所以数列{a n }的通项公式为a n =a 1+(n -1)×d =1+2(n -1)=2n -1.(2)由题意知c n =a n +b n =(2n -1)+3n -1,则数列{c n }的前n 项和为[1+3+…+(2n -1)]+(1+3+9+…+3n -1)=n (1+2n -1)2+1-3n 1-3=n 2+3n -12. 命题点2 错位相减法求和例4 记等差数列{a n }的前n 项和为S n ,已知a 2+a 4=6,S 4=10.(1)求数列{a n }的通项公式;(2)令b n =a n ·2n (n ∈N *),求数列{b n }的前n 项和T n .解 (1)设等差数列{a n }的公差为d ,由a 2+a 4=6,S 4=10,可得⎩⎪⎨⎪⎧ 2a 1+4d =6,4a 1+4×32d =10, 即⎩⎪⎨⎪⎧a 1+2d =3,2a 1+3d =5, 解得⎩⎪⎨⎪⎧a 1=1,d =1,∴a n =a 1+(n -1)d =1+(n -1)=n , 故所求等差数列{a n }的通项公式为a n =n .(2)依题意,b n =a n ·2n =n ·2n ,∴T n =b 1+b 2+…+b n=1×2+2×22+3×23+…+(n -1)·2n -1+n ·2n ,又2T n =1×22+2×23+3×24+…+(n -1)·2n +n ·2n +1,两式相减得-T n =(2+22+23+…+2n -1+2n )-n ·2n +1=2(1-2n )1-2-n ·2n +1=(1-n )·2n +1-2, ∴T n =(n -1)·2n +1+2.命题点3 裂项相消法求和例5 已知正项数列{a n }的前n 项和为S n ,a 1=1,且(t +1)S n =a 2n +3a n +2(t ∈R ).(1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1=1,b n +1-b n =a n +1,求数列⎩⎨⎧⎭⎬⎫12b n +7n 的前n 项和T n . 解 (1)因为a 1=1,且(t +1)S n =a 2n +3a n +2,所以(t +1)S 1=a 21+3a 1+2,所以t =5.所以6S n =a 2n +3a n +2.①当n ≥2时,有6S n -1=a 2n -1+3a n -1+2,②①-②得6a n =a 2n +3a n -a 2n -1-3a n -1,所以(a n +a n -1)(a n -a n -1-3)=0,因为a n >0,所以a n -a n -1=3,又因为a 1=1,所以{a n }是首项为1,公差为3的等差数列,所以a n =3n -2(n ∈N *).(2)因为b n +1-b n =a n +1,b 1=1,所以b n -b n -1=a n (n ≥2,n ∈N *),所以当n ≥2时,b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1=a n +a n -1+…+a 2+b 1=3n 2-n 2. 又b 1=1也适合上式,所以b n =3n 2-n 2(n ∈N *). 所以12b n +7n =13n 2-n +7n=13·1n (n +2)=16·⎝ ⎛⎭⎪⎫1n -1n +2, 所以T n =16·⎝ ⎛⎭⎪⎫1-13+12-14+…+1n -1n +2=16·⎝ ⎛⎭⎪⎫32-1n +1-1n +2, =3n 2+5n12(n +1)(n +2). 思维升华 (1)一般求数列的通项往往要构造数列,此时可从要证的结论出发,这是很重要的解题信息.(2)根据数列的特点选择合适的求和方法,常用的求和方法有错位相减法、分组转化法、裂项相消法等.跟踪训练3 (1)已知数列{a n }的前n 项和为S n ,且a 1=12,a n +1=n +12n a n(n ∈N *). ①证明:数列⎩⎨⎧⎭⎬⎫a n n 是等比数列; ②求数列{a n }的通项公式与前n 项和S n .①证明 ∵a 1=12,a n +1=n +12n a n, 当n ∈N *时,a n n≠0, 又a 11=12,a n +1n +1∶a n n =12(n ∈N *)为常数, ∴⎩⎨⎧⎭⎬⎫a n n 是以12为首项,12为公比的等比数列. ②解 由⎩⎨⎧⎭⎬⎫a n n 是以12为首项,12为公比的等比数列, 得a n n =12·⎝⎛⎭⎫12n -1,∴a n =n ·⎝⎛⎭⎫12n . ∴S n =1·12+2·⎝⎛⎭⎫122+3·⎝⎛⎭⎫123+…+n ·⎝⎛⎭⎫12n , 12S n =1·⎝⎛⎭⎫122+2·⎝⎛⎭⎫123+…+(n -1)⎝⎛⎭⎫12n +n ·⎝⎛⎭⎫12n +1, ∴两式相减得12S n =12+⎝⎛⎭⎫122+⎝⎛⎭⎫123+…+⎝⎛⎭⎫12n -n ·⎝⎛⎭⎫12n +1=12-⎝⎛⎭⎫12n +11-12-n ·⎝⎛⎭⎫12n +1, ∴S n =2-⎝⎛⎭⎫12n -1-n ·⎝⎛⎭⎫12n =2-(n +2)·⎝⎛⎭⎫12n .综上,a n =n ·⎝⎛⎭⎫12n ,S n =2-(n +2)·⎝⎛⎭⎫12n . (2)已知数列{a n }的前n 项和S n =-a n -⎝⎛⎭⎫12n -1+2(n ∈N *),数列{b n }满足b n =2n a n . ①求证:数列{b n }是等差数列,并求数列{a n }的通项公式;②设c n =n (n +1)2n (n -a n )(n +1-a n +1),数列{c n }的前n 项和为T n ,求满足T n <12463(n ∈N *)的n 的最大值.解 ①∵S n =-a n -⎝⎛⎭⎫12n -1+2(n ∈N *),当n ≥2时,S n -1=-a n -1-⎝⎛⎭⎫12n -2+2,∴a n =S n -S n -1=-a n +a n -1+⎝⎛⎭⎫12n -1,化为2n a n =2n -1a n -1+1,∵b n =2n a n ,∴b n =b n -1+1,即当n ≥2时,b n -b n -1=1,令n =1,可得S 1=-a 1-1+2=a 1,即a 1=12. 又b 1=2a 1=1,∴数列{b n }是首项和公差均为1的等差数列.于是b n =1+(n -1)·1=n =2n a n ,∴a n =n 2n . ②由①可得c n =n (n +1)2n ⎝⎛⎭⎫n -n 2n ⎝ ⎛⎭⎪⎫n +1-n +12n +1 =2n +1(2n -1)(2n +1-1)=2⎝ ⎛⎭⎪⎫12n -1-12n +1-1, ∴T n =2⎝ ⎛⎭⎪⎫1-122-1+122-1-123-1+…+12n -1-12n +1-1 =2⎝ ⎛⎭⎪⎫1-12n +1-1, 由T n <12463可得2n +1<64=26,n <5, ∵n ∈N *,∴n 的最大值为4.例 (12分)(2019·全国Ⅱ)已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n +1=3a n -b n +4,4b n +1=3b n -a n -4.(1)证明:{a n +b n }是等比数列,{a n -b n }是等差数列;(2)求{a n }和{b n }的通项公式.规范解答(1)证明 ∵4a n +1=3a n -b n +4,4b n +1=3b n -a n -4.∴4(a n +1+b n +1)=2(a n +b n ),∴a n +1+b n +1=12(a n +b n ),[2分] ∵a 1+b 1=1+0=1≠0,[3分]∴a n +1+b n +1a n +b n=12为非零常数,[4分] ∴{a n +b n }是以1为首项,12为公比的等比数列.[5分] ∵4a n +1=3a n -b n +4,4b n +1=3b n -a n -4,∴4(a n +1-b n +1)=4(a n -b n )+8,∴(a n +1-b n +1)-(a n -b n )=2为常数,[7分]又∵a 1-b 1=1-0=1,∴{a n -b n }是以1为首项,2为公差的等差数列.[8分](2)解 由(1)知,a n +b n =12n -1,a n -b n =2n -1.[10分] ∴a n =12[(a n +b n )+(a n -b n )]=12n +n -12,[11分] b n =12[(a n +b n )-(a n -b n )]=12n -n +12.[12分]第一步:根据定义法、等差(等比)中项法、通项公式法等判定数列为等差(等比)数列; 第二步:由等差(等比)数列基本知识求通项,或者由递推公式求通项;第三步:根据和的表达式或通项的特征,选择合适的方法(分组转化法、错位相减法、裂项相消法)求和;第四步:反思解题过程,检验易错点、规范解题步骤.1.在数列{a n}和{b n}中,a1=1,a n+1=a n+2,b1=3,b2=7,等比数列{c n}满足c n=b n-a n.(1)求数列{a n}和{c n}的通项公式;(2)若b6=a m,求m的值.解(1)因为a n+1-a n=2,且a1=1,所以数列{a n}是首项为1,公差为2的等差数列.所以a n=1+2(n-1)=2n-1,即a n=2n-1.因为b1=3,b2=7,且a1=1,a2=3,所以c1=b1-a1=2,c2=b2-a2=4.因为数列{c n}是等比数列,=2,且数列{c n}的公比q=c2c1所以c n=c1·q n-1=2×2n-1=2n,即c n=2n.(2)因为c n=b n-a n,a n=2n-1,c n=2n,所以b n=2n+2n-1.因为b6=a m,所以26+2×6-1=2m-1,解得m=38.2.(2019·重庆西南大学附属中学月考)已知等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n.若a1=b1=3,a4=b2,S4-T2=12.(1)求数列{a n}与{b n}的通项公式;(2)求数列{a n+b n}的前n项和.解 (1)由a 1=b 1,a 4=b 2,则S 4-T 2=(a 1+a 2+a 3+a 4)-(b 1+b 2)=a 2+a 3=12,设等差数列{a n }的公差为d ,则a 2+a 3=2a 1+3d =6+3d =12,所以d =2.所以a n =3+2(n -1)=2n +1,设等比数列{b n }的公比为q ,由题意知b 2=a 4=9,即b 2=b 1q =3q =9,所以q =3.所以b n =3n .(2)a n +b n =(2n +1)+3n ,所以{a n +b n }的前n 项和为(a 1+a 2+…+a n )+(b 1+b 2+…+b n )=(3+5+…+2n +1)+(3+32+ (3))=(3+2n +1)n 2+3(1-3n )1-3=n (n +2)+3(3n -1)2. 3.(2019·天津市南开区模拟)数列{a n }是等差数列,S n 为其前n 项和,且a 5=3a 2,S 7=14a 2+7.(1)求数列{a n }的通项公式;(2)设数列{a n +b n }是首项为1,公比为2的等比数列,求数列{b n (a n +b n )}的前n 项和T n . 解 (1)设等差数列{a n }的公差是d .由a 5=3a 2得d =2a 1,①由S 7=14a 2+7得d =a 1+1,②由①②解得a 1=1,d =2.所以数列{a n }的通项公式为a n =2n -1.(2) 由数列{a n +b n }是首项为1,公比为2的等比数列,得a n +b n =2n -1,即2n -1+b n =2n -1.所以b n =2n -1-2n +1,所以b n (a n +b n )=2n -1·(2n -1-2n +1)=4n -1-2n -1(2n -1),令P n =40+41+…+4n -1=1-4n 1-4=4n -13, Q n =1·20+3·21+5·22+…+(2n -3)·2n -2+(2n -1)·2n -1,③ 则2Q n =1·21+3·22+5·23+…+(2n -3)·2n -1+(2n -1)·2n ,④ ③-④得-Q n =1·20+2·21+2·22+…+2·2n -1-(2n -1)·2n =(3-2n )2n -3, 所以Q n =(2n -3)·2n +3,所以T n =P n -Q n =4n -13-(2n -3)2n -3=4n 3-(2n -3)·2n -103.4.数列{a n }满足a n +1=a n2a n +1,a 1=1.(1)证明:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列;(2)求数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和S n ,并证明:1S 1+1S 2+…+1S n >n n +1.(1)证明 ∵a n +1=a n2a n +1,∴1a n +1=2a n +1a n ,化简得1a n +1=2+1a n ,即1a n +1-1a n=2,故数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,2为公差的等差数列. (2)解 由(1)知1a n=2n -1, ∴S n =n (1+2n -1)2=n 2,1S n =1n 2>1n (n +1)=1n -1n +1. 证明:1S 1+1S 2+…+1S n =112+122+…+1n 2>11×2+12×3+…+1n (n +1) =⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1.5.设等比数列a 1,a 2,a 3,a 4的公比为q ,等差数列b 1,b 2,b 3,b 4的公差为d ,且q ≠1,d ≠0.记c i =a i +b i (i =1,2,3,4).(1)求证:数列c 1,c 2,c 3不是等差数列;(2)设a 1=1,q =2.若数列c 1,c 2,c 3是等比数列,求b 2关于d 的函数关系式及其定义域;(3)数列c 1,c 2,c 3,c 4能否为等比数列?并说明理由.(1)证明 假设数列c 1,c 2,c 3是等差数列,则2c 2=c 1+c 3,即2()a 2+b 2=()a 1+b 1+()a 3+b 3. 因为b 1,b 2,b 3是等差数列,所以2b 2=b 1+b 3.从而2a 2=a 1+a 3.又因为a 1,a 2,a 3是等比数列,所以a 22=a 1a 3. 所以a 1=a 2=a 3,这与q ≠1矛盾,从而假设不成立. 所以数列c 1,c 2,c 3不是等差数列.(2)解 因为a 1=1,q =2,所以a n =2n -1.因为c 22=c 1c 3,所以()2+b 22=()1+b 2-d ()4+b 2+d , 即b 2=d 2+3d ,由c 2=2+b 2≠0,得d 2+3d +2≠0, 所以d ≠-1且d ≠-2.又d ≠0,所以b 2=d 2+3d ,定义域为{} |d ∈R d ≠-1,d ≠-2,d ≠0.(3)解 假设c 1,c 2,c 3,c 4成等比数列,其公比为q 1, 则⎩⎪⎨⎪⎧ a 1+b 1=c 1, ①a 1q +b 1+d =c 1q 1, ②a 1q 2+b 1+2d =c 1q 21, ③a 1q 3+b 1+3d =c 1q 31. ④将①+③-2×②得,a 1(q -1)2=c 1(q 1-1)2,⑤ 将②+④-2×③得,a 1q ()q -12=c 1q 1()q 1-12,⑥ 因为a 1≠0,q ≠1,由⑤得c 1≠0,q 1≠1. 由⑤⑥得q =q 1,从而a 1=c 1. 代入①得b 1=0.再代入②,得d =0,与d ≠0矛盾. 所以c 1,c 2,c 3,c 4不成等比数列.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由题意可知a22=a1a5, d≠0,
整理得ad1==21a,1, 即ad1==21,,
∴an=2n-1.
(2)若S4,S6,Sn成等比数列,求n及此等比数列的公比.
解 由(1)知an=2n-1,∴Sn=n2, ∴S4=16,S6=36, 又 S4Sn=S26,∴n2=31662=81, ∴n=9,公比 q=SS64=94.
(2)《九章算术》中有如下问题:今有蒲生一日,长三尺,莞生一日,长一尺,
蒲生日自半,莞生日自倍.问几何日而长等?意思是今有蒲第一天长高3尺,莞
第一天长高1尺,以后蒲每天长高前一天的一半,莞每天长高前一天的2倍,
若蒲、莞长度相等,则所需时间为(结果精确到0.1,参考数据: lg 2=0.301 0,
跟踪训练1 (1)《周髀算经》中有这样一个问题:从冬至日起,依次小寒、
大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个
节气,其日影长依次成等差数列,冬至、立春、春分日影长之和为31.5尺,
前九个节气日影长之和为85.5尺,则芒种日影长为
A.1.5尺
√B.2.5尺
C.3.5尺
D.4.5尺
解 设{an}的公比为q. 由题设可得aa1111+ +qq+=q22,=-6.
解得q=-2,a1=-2. 故{an}的通项公式为an=(-2)n.
(2)求Sn,并判断Sn+1,Sn,Sn+2是否成等差数列.
解 由(1)可得 Sn=a111--qqn=-23+(-1)n2n3+1. 由于 Sn+2+Sn+1=-34+(-1)n2n+3-3 2n+2 =2-23+-1n2n3+1=2Sn,
(2)设cn=an+bn,求数列{cn}的前n项和.
解 由题意知cn=an+bn=(2n-1)+3n-1, 则数列{cn}的前n项和为 [1+3+…+(2n-1)]+(1+3+9+…+3n-1) =n1+22n-1+11--33n=n2+3n-2 1.
A.235升
B.530升
C.570升
√D.1700升
解析 因为5斗=50升,设羊、马、牛的主人应偿还的量分别为a1,a2,a3, 由题意可知其构成了公比为2的等比数列,且S3=50, 则a122-3-11=50,解得 a1=570, 所以马主人要偿还的量为 a2=2a1=1700.
故选D.
命题点2 等差数列、等比数列的交汇 例2 记Sn为等比数列{an}的前n项和.已知S2=2,S3=-6. (1)求{an}的通项公式;
苗,苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”
今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾
苗,禾苗主人要求赔偿5斗粟.羊主人说:“我的羊所吃的禾苗只有马的一半.”
马主人说:“我的马所吃的禾苗只有牛的一半.”打算按此比例偿还,他们
各应偿还多少?该问题中,1斗为10升,则马主人应偿还粟
题型二 多维探究 数列的求和
命题点1 分组求和与并项求和 例3 已知{an}是等差数列,{bn}是等比数列,且b2=3,b3=9,a1=b1,a14=b4. (1)求{an}的通项公式;
解 设等差数列{an}的公差为d,等比数列{bn}的公比为q, 因为 b2=3,b3=9,可得 q=bb32=3, 所以bn=b2qn-2=3·3n-2=3n-1, 又由a1=b1=1,a14=b4=27, 所以 d=a1144--a11=2, 所以数列{an}的通项公式为an=a1+(n-1)×d=1+2(n-1)=2n-1.
大一轮复习讲义
高考专题突破三 高考中的数列问题
题型一 多维探究 等差数列、等比数列基本量的运算
命题点1 数列与数学文化
例1 (1)(2020·四川乐山模拟)《张丘建算经》中女子织布问题为:某女子善于
织布,一天比一天织得快,且从第2天开始,每天比前一天多织相同量的布,
已知第一天织5尺布,一月(按30天计)共织390尺布,则从第2天起每天比前一
天多织多少尺布?
16 A.31
√16 B.29
1 C.2
8 D.15
解析 由题意可知每天织布的多少构成等差数列, 其中第一天为首项a1=5,一月按30天计可得S30=390, 从第2天起每天比前一天多织的即为公差d .
又 S30=30×5+30×2 29×d=390,解得 d=1269 .故选 B.
由题意可得,61-21n=2n-1,
整理得,2n+26n=7,解得 2n=6 或 2n=1(舍去).
∴n=log26=llgg 62=1+llgg 32≈2.6.
∴蒲、莞长度相等大约需要2.6天. 故选C.
思维升华
SI WEI SHENG HUA
对于数学文化中所涉及到的数列模型,解题时应认真审题,从问题背景中提 取相关信息并分析归纳,然后构造恰当的数列模型,再根据等差或等比数列 的有关公式求解作答,必要时要进行检验.
故Sn+1,Sn,Sn+2成等差数列.
思维升华
SI WEI SHENG HUA
等差与等比数列的基本量之间的关系,利用方程思想和通项公式、前n项和公 式求解.求解时,应“瞄准目标”,灵活应用数列的有关性质,简化运算过程.
跟踪训练2 (2020·桂林模拟)已知公差不为0的等差数列{an}的前n项和为Sn, S1+1,S3,S4成等差数列,且a1,a2,a5成等比数列. (1)求数列{an}的通项公式;
解析 设这十二个节气日影长依次成等差数列{an}, Sn是其前n项和, 则 S9=9a1+ 2 a9=9a5=85.5,所以 a5=9.5,
由题意知a1+a4+a7=3a4=31.5,所以a4=10.5, 所以公差d=a5-a4=-1,所以a12=a5+7d=2.5,故选B.
(2)中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人
lg 3.4天
√C.2.6天
D.2.8天
解析 设蒲的长度组成等比数列{an},其 a1=3,公比为12, 其前 n 项和为 An,则 An=311--1221n=61-21n. 莞的长度组成等比数列{bn},其b1=1,公比为2, 其前 n 项和为 Bn.则 Bn=22n--11 =2n-1,