13.1轴对称(第3课时)

合集下载

人教版数学八年级上册教学设计13.1《轴对称》

人教版数学八年级上册教学设计13.1《轴对称》

人教版数学八年级上册教学设计13.1《轴对称》一. 教材分析人教版数学八年级上册第13.1节《轴对称》是初中数学中的重要内容,主要让学生理解轴对称的概念,掌握轴对称的性质,并能够运用轴对称解决实际问题。

本节内容通过具体的实例,引导学生探究轴对称的性质,培养学生的观察能力、操作能力和解决问题的能力。

二. 学情分析学生在学习本节内容前,已经学习了平面几何的基本概念,对图形的性质有一定的了解。

但轴对称作为一个全新的概念,对学生来说还是有一定难度的。

因此,在教学过程中,需要结合学生的实际情况,从生活实例出发,引导学生理解轴对称的概念,逐步掌握轴对称的性质。

三. 教学目标1.了解轴对称的概念,能够识别生活中的轴对称现象。

2.掌握轴对称的性质,能够运用轴对称解决实际问题。

3.培养学生的观察能力、操作能力和解决问题的能力。

四. 教学重难点1.轴对称的概念和性质。

2.运用轴对称解决实际问题。

五. 教学方法1.采用情境教学法,从生活实例出发,引导学生发现轴对称现象。

2.采用探究教学法,让学生通过合作交流,自主发现轴对称的性质。

3.采用实践教学法,让学生动手操作,巩固对轴对称的理解。

4.采用问题教学法,引导学生运用轴对称解决实际问题。

六. 教学准备1.准备相关的多媒体教学课件,展示生活中的轴对称现象。

2.准备一些实际的例子,用于引导学生发现轴对称的性质。

3.准备一些练习题,用于巩固学生对轴对称的理解。

七. 教学过程1.导入(5分钟)通过展示一些生活中的轴对称现象,如剪纸、衣服的折叠等,引导学生发现并理解轴对称的概念。

2.呈现(10分钟)呈现一些实际的例子,让学生观察并探讨轴对称的性质。

如:轴对称图形的大小、形状、位置关系等。

3.操练(10分钟)让学生分组进行操作,通过实际动手,发现并验证轴对称的性质。

可以让学生剪出一些轴对称的图形,观察并总结其性质。

4.巩固(10分钟)让学生解决一些实际问题,运用轴对称的知识。

如:设计一个轴对称的图案,或解决一些与轴对称相关的几何问题。

人教版数学八年级上册13.1 轴对称(3课时)教案与反思

人教版数学八年级上册13.1 轴对称(3课时)教案与反思

13.1 轴对称工欲善其事,必先利其器。

《论语·卫灵公》翰皓学校陈阵语13.1.1 轴对称(第1课时)一、基本目标【知识与技能】1.理解轴对称图形和两个图形关于某条直线对称的概念.2.能识别简单的轴对称图形及其对称轴.【过程与方法】通过轴对称图形和两个图形成轴对称的学习以及动手操作,让学生关注生活,学会观察,增强交流.【情感态度与价值观】通过轴对称图形和两个图形成轴对称的学习,激发学生学习欲望,主动参与数学学习活动,体会图形的美,同时感悟数学来源于生活又用于生活.二、重难点目标【教学重点】轴对称图形和两个图形关于某直线对称的概念以及区别和联系.【教学难点】轴对称的性质.环节1 自学提纲,生成问题【5 min阅读】阅读教材P58~P60的内容,完成下面练习.【3 min反馈】1.如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)对称.2.把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线就是对称轴,折叠后重合的点是对应点,叫做对称点.3.经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.4.图形轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.5.下列体育运动标志中,不是轴对称图形的有1个.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】判断下列图形是否为轴对称图形?如果是,说出它有几条对称轴.【互动探索】(引发学生思考)如何判断一个图形是否是轴对称图形?如何找轴对称图形的对称轴?【解答】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.则(1)(3)(5)6)(9)不是轴对称图形,(2)(4)(7)(8)(10)是轴对称图形.(2)(4)(8)有1条对称轴;(7)有4条对称轴;(10)有2条对称轴.【互动总结】(学生总结,老师点评)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.【例2】如图,△ABC和△AED关于直线l对称,若AB=2 cm,∠C=95°,则AE=________,∠D=________.【互动总结】(学生总结,老师点评)根据轴对称的性质,有AE=AB= cm,∠D=∠C=95°.【答案】2 cm 95°【互动总结】(学生总结,老师点评)根据成轴对称的两个图形全等及全等的性质得到对应线段相等,对应角相等.活动2 巩固练习(学生独学)1.下图中的轴对称图形有( B )A.(1)(2) B.(1)(4)C.(2)(3) D.(3)(4)2.如图,一种滑翔伞的形状是左右轴对称的四边形ABCD,其中∠BAD=150°,∠B=40°,则∠BCD的度数是( A )A.130°B.150°C.40°D.65°3.画图:试画出下列正多边形的所有对称轴,并完成表格,正多边形的边34567…数对称轴的条数4567…n条对称轴.解:如图.环节3 课堂小结,当堂达标(学生总结,老师点评)1.可用折叠法判断是否为轴对称图形.2.多角度、多方法思考对称轴的条数.3.对称轴是一条直线,一条垂直于对应点连线的直线.4.轴对称是指两个图形的位置关系,轴对称图形是指一个具有特殊形状的形.请完成本课时对应练习!13.1.2 线段的垂直平分线的性质第2课时线段垂直平分线的性质和判定一、基本目标【知识与技能】探索并理解线段垂直平分线的性质及判定.【过程与方法】经历探索轴对称图形性质及判定的过程,发展空间观念,培养学生认真探究、积极思考的能力.【情感态度与价值观】通过对轴对称图形性质的探索,促使学生对轴对称有了更进一步的认识,活动与探究的过程可以更大程度地激发学生学习的主动性和积极性,并使学生具有一些初步研究问题的能力.二、重难点目标【教学重点】掌握线段垂直平分线的性质及判定.【教学难点】运用其性质及判定解答相关问题.环节1 自学提纲,生成问题【5 min阅读】阅读教材P61~P62的内容,完成下面练习.【3 min反馈】1.如图,△ABC和△A′B′C′关于直线MN对称,点A′、B′、C′分别是点A、B、C的对称点,猜想一下线段AA′、BB′、CC′与直线MN有什么关系?答:直线MN垂直平分线段AA′、BB′、CC′.2.垂直平分线的性质:线段垂直平分线的点与这条线段两个端点的距离相等.3.垂直平分线的判定:与线段两个端点距离相等的点在这条线段的垂直平分线上.4.下列条件中,不能判定直线MN是线段AB的垂直平分线的是( C ) A.MA=MB,NA=NBB.MA=MB,MN⊥ABC.MA=NA,MB=NBD.MA=MB,MN平分∠AMB环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】如图,在△ABC中,AB=AC=20 cm,DE垂直平分AB,垂足为E,交AC于点D,若△DBC的周长为35 cm,求BC的长.【互动探索】(引发学生思考)△DBC 的周长为35 cm ,求BC →需求BC +DC 的长,利用AD =BD (垂直平分线的性质)→BC +DC =AC .【解答】∵△DBC 的周长=BC +BD +CD =35 cm ,DE 垂直平分AB , ∴AD =BD ,故BC +AD +CD =35 cm. ∵AC =AD +DC =20 cm , ∴BC =35-20=15(cm).【互动总结】(学生总结,老师点评)利用线段垂直平分线的性质,可以实现线段之间的相互转化,从而求出未知线段的长.【例2】如图所示,在△ABC 中,AD 平分∠BAC ,DE ⊥AB 于点E ,DF ⊥AC 于点F ,试说明AD 与EF 的关系.【互动探索】(引发学生思考)先利用角平分线的性质得出DE =DF ,再证△AED ≌△AFD ,从而找出AD 与EF 的关系.【解答】AD 垂直平分EF .∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC , ∴DE =DF .在Rt △ADE 和Rt △ADF 中,∵⎩⎨⎧AD =AD ,DE =DF ,∴Rt △ADE ≌Rt △ADF , ∴AE =AF ,∴A 、D 均在线段EF 的垂直平分线上,即直线AD 垂直平分线段EF . 【互动总结】(学生总结,老师点评)证线段垂直平分线的方法1即定义,证垂直平分,方法2即线段垂直平分线的判定定理.活动2 巩固练习(学生独学)1.如图,直线CD 是线段AB 的垂直平分线,P 为直线CD 上的一点,已知线段PA =5,则线段PB 的长度为( B )A.6 B.5C.4 D.32.到平面内不在同一直线上的三个点A、B、C的距离相等的点有1个.3.如图,在△ABC中,D是AB的中点,点F是BC延长线上一点,连结DF,交AC于点E,连结BE,∠A=∠ABE.(1)求证:DF是线段AB的垂直平分线;(2)当AB=AC,∠A=46°时,求∠EBC及∠F的度数.(1)证明:∵∠A=∠ABE,∴EA=EB.∵AD=DB,∴DF是线段AB的垂直平分线.(2)解:∵∠A=46°,∴∠ABE=∠A=46°.∵AB=AC,∴∠ABC=∠ACB=67°,∴∠EBC=∠ABC-∠ABE=21°,∠F=90°-∠ABC=23°.活动3 拓展延伸(学生对学)【例3】如图,在四边形ABCD中,AD∥BC,E为CD的中点,连结AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC =AD ; (2)AB =BC +AD .【互动探索】(1)根据AD ∥BC 可知∠ADC =∠ECF ,再根据E 是CD 的中点可证△ADE ≌△FCE ,根据全等三角形的性质即可解答;(2)根据线段垂直平分线的性质判断出AB =BF 即可.【解答】(1)∵AD ∥BC , ∴∠ADC =∠ECF . ∵E 是CD 的中点, ∴DE =EC .又∵∠AED =∠CEF ,∴△ADE ≌△FCE , ∴FC =AD .(2)∵△ADE ≌△FCE , ∴AE =EF . ∵BE ⊥AE ,∴BE 是线段AF 的垂直平分线, ∴AB =BF =BC +CF . ∵AD =CF , ∴AB =BC +AD .【互动总结】(学生总结,老师点评)此题主要考查线段的垂直平分线的性质等几何知识.线段垂直平分线上的点到线段两个端点的距离相等,利用它可以证明线段相等.环节3 课堂小结,当堂达标 (学生总结,老师点评)线段垂直平分线⎩⎨⎧性质:线段垂直平分线的点与这条线段两个端点的距离相等判断:与线段两个端点距离相等的点在这 条线段的垂直平分线请完成本课时对应练习!第3课时线段垂直平分线的有关作图一、基本目标【知识与技能】理解并掌握线段垂直平分线的有关作图.【过程与方法】经历探索线段垂直平分线的有关作图的过程,发展空间观念,培养学生认真探究、积极思考的能力.【情感态度与价值观】通过作轴对称图形的对称轴,促使学生对轴对称有了更进一步的认识,活动与操作的过程可以更大程度地激发学生学习的主动性和积极性,并使学生具有一些初步研究问题的能力,同时培养学生动手操作的意识及能力.二、重难点目标【教学重点】理解作轴对称图形的对称轴的方法.【教学难点】能解决有关线段垂直平分线的作图题.环节1 自学提纲,生成问题【5 min阅读】阅读教材P62~P63的内容,完成下面练习.【3 min反馈】1.如果两个图形成轴对称,其对称轴就是任何一对对应点所连线段的垂直平分线.因此,我们只要找到一对对应点,作出连结它们的线段的垂直平分线,就可以得到这两个图形的对称轴.2.同样,对于轴对称图形,只要找到任意一组对应点,作出对应点所连线段的垂直平分线,就得到此图形的对称轴.3.下面的图形是轴对称图形吗?如果是,请说出它的对称轴.解:它们都是轴对称图形,第一幅图的对称轴是中间的水平直线,第二、三幅图的对称轴是中间的竖着直线.4.作线段AB的垂直平分线.解:作法:(1)分别以点A、B为圆心,以大于12AB的长为半径作弧,两弧相交于E、F两点;(2)作直线EF,EF即为所求的直线.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例题】找出下列图形的所有的对称轴,并一一画出来.【互动探索】(引发学生思考)如何作轴对称图形的对称轴?【解答】所画对称轴如下所示:【互动总结】(学生总结,老师点评)对于轴对称图形,只要找到任意一组对应点,作出对应点所连线段的垂直平分线,就得到此图形的对称轴.活动2 巩固练习(学生独学)1.图中有阴影的三角形与哪些三角形成轴对称?整个图形是轴对称图形吗?它共有几条对称轴?解:图中有阴影的三角形与三角形1、3成轴对称,整个图形是轴对称图形,它共有2条对称轴.2.观察图中的图形,是轴对称图形的画出所有的对称轴.略环节3 课堂小结,当堂达标(学生总结,老师点评)作对称轴的步骤:先找出任意一对对应点,再作出对应点所连线段的垂直平分线.请完成本课时对应练习!【素材积累】指豁出性命,进行激烈的搏斗。

八年级数学上册 13.1 轴对称 13.1.1 轴对称教学设计 (新版)新人教版

八年级数学上册 13.1 轴对称 13.1.1 轴对称教学设计 (新版)新人教版

八年级数学上册 13.1 轴对称 13.1.1 轴对称教学设计(新版)新人教版一. 教材分析《新人教版八年级数学上册》第13.1节介绍了轴对称的概念和性质。

本节内容是学生对几何图形变换的一次重要学习,它不仅巩固了学生对平面几何图形的认识,而且为后续学习其他几何变换打下基础。

教材通过丰富的实例,引导学生认识轴对称,探索轴对称的性质,提高学生的空间想象能力和抽象思维能力。

二. 学情分析八年级的学生已经掌握了基本的几何知识,具备一定的观察、分析和推理能力。

但轴对称概念较为抽象,学生可能难以理解。

因此,在教学过程中,教师应注重引导学生通过具体实例去发现和探索轴对称的性质,让学生在实践中掌握知识。

三. 教学目标1.让学生了解轴对称的概念,理解轴对称的性质。

2.培养学生观察、分析和推理的能力。

3.引导学生运用轴对称的性质解决实际问题。

四. 教学重难点1.轴对称的概念及性质。

2.如何运用轴对称的性质解决实际问题。

五. 教学方法采用问题驱动法、实例教学法和小组合作学习法。

通过生动有趣的实例,引导学生发现轴对称的性质,激发学生的学习兴趣。

在小组合作学习中,培养学生团队合作精神和沟通能力。

六. 教学准备1.准备与轴对称相关的实例图片和练习题。

2.准备课件,展示轴对称的性质和应用。

3.准备黑板,用于板书重要知识点。

七. 教学过程1. 导入(5分钟)利用生活中常见的实例,如剪纸、折纸等,引导学生发现这些实例中存在一种对称现象。

提问:“这种现象叫做什么?”让学生回答,引出本节课的主题——轴对称。

2. 呈现(10分钟)展示轴对称的定义和性质。

通过PPT呈现轴对称的图片,让学生观察并总结轴对称的性质。

同时,教师在黑板上画出轴对称的图形,标注出对称轴,让学生更直观地理解轴对称。

3. 操练(15分钟)让学生分组讨论,每组找出生活中的一个实例,运用轴对称的性质进行解释。

讨论结束后,每组选代表进行分享。

教师对每组的分享进行点评,指出优点和需要改进的地方。

画对称轴

画对称轴

A
B
C
D
三、小结:
1. 画图形的对称轴的方法: (1)找出轴对称图形的任意一组对称点。 (2)连结对称点。 (3)画出对称点所连线段的垂直平分线, 就是该图形的对称轴
2.轴对称性质: 如果一个图形关于某一条直线对称,那 么连结对称点的线段的垂直平分线就是 该图形的对称轴.
布置作业
教科书习题66页第10、12、13题.
小组合作讨论、探索—— 轴对称或轴对称图形有些什么性质?
① 连结对称点的线段的垂直平分线就 是该图形的对称轴. ② 如果它们的对应线段或延长线相交, 那么交点一定在对称轴上。 ③两个图形是全等形。
课堂练习
练习2 如图,角是轴对称图形吗?如果是,它的 对称轴是什么?
课堂练习
练习3 如图,与图形A 成轴对称的是哪个图形? 画出它的对称轴.
作轴对称图形的对称轴
如果两个图形成轴对称,怎样作出图形的对称轴?
如果两个图形成轴对称,其对称轴是任何一对对应 点所连线段的垂直平分线.因此,只要找到任意一组对 应点,作出对应点所连线段的垂直平分线,就得到此图 形的对称轴.
作轴对称图形的对称轴
如图中的五角星,请作出它的一条对称轴.
画完图后请思考下面的问题:
作轴对称图形的对称轴
你能作出这个五角星的其他对称轴吗?它共有几条 对称轴? 五角星的对称轴有什么特点? 相交于一点.
课堂练习
练习1 作出下列图形的一条对称轴,和同学比较 一下,你们作出的对称轴一样吗?
A C D B
A C E
B
C A
B B
A
A’
B’
E
D
C C’
画图的同时请思考: 轴对称有什么性质?
①能总结你画对称轴的方法吗? ②你是如何判断对称轴的位置的呢? ③连接对称点的线段与对称轴有什么关系?

部编人教版八年级数学上册《13第十三章 轴对称【全章】》精品PPT优质课件

部编人教版八年级数学上册《13第十三章 轴对称【全章】》精品PPT优质课件
正方形ABCD面积的一半,∵正方形ABCD的边长为4cm, ∴S阴影=42÷2=8(cm2).故选B.
方法归纳:正方形是轴对称图形,在轴对称图形中 求不规则的阴影部分的面积时,一般可以利用轴对 称变换,将其转换为规则图形后再进行计算.
当堂练习
1.观察下列各种图形,判断是不是轴对称图形?





方法归纳:轴对称是一种全等变换,在轴对称图形中求角度 时,一般先根据轴对称的性质及已知条件,得出相关角的度 数,然后再结合多边形的内角和或三角形外角的性质求解.
例2 如图,正方形ABCD的边长为4cm,则图中 阴影部分的面积为( B )
A.4cm2 B.8cm2 C.12cm2 D.16cm2
解析:根据正方形的轴对称性可得,阴影部分的面积等于
(1)
(2)
思考:如图,△ABC和△A′B′C′关于直线MN对称, 点A′,B′,C′分别是点A,B,C的对称点,线段AA′, BB′,CC′与直线MN有什么关系?
A
AA′⊥MN,
M A′
BB′⊥MN,
B
B′
CC′⊥MN.
C
C′
N
知识要点
线段垂直平分线的定义
M
经过线段中点并且垂直于这条
线段的直线,叫做这条线段的
A
P
垂直平分线.
B
如图,MN⊥AA′, AP=A′P.
C
直线MN是线段AA ′的垂直平分线.
N
图形轴对称的性质
A'
B' C'
如果两个图形关于某条直线对称,那么对称轴是任 何一对对应点所连线段的垂直平分线.
一个轴对称图形的对称轴是否也具有上述性质呢? 请你自己找一些轴对称图形来检验吧!

新人教版八年级数学上册 第十三章 轴对称全章课件

新人教版八年级数学上册    第十三章 轴对称全章课件

(2)承(1)小题,请判断当∠ABC不是你指出的角 度时,PR的长度小于6还是大于6?并完整说 明你判断的理由.
解:PR的长度小于6,理由如下: ∠ABC≠90°,则点P、B、R三点不在 同一直线上,∴PB+BR>PR. ∵PB+BR=2OB=2×3=6, ∴PR<6.
重合,那么就说这两个图形关于这条直线对称,这条直线就是它
的对称轴.
知识要点
比较归纳
轴对称图形
两个图形成轴对称
图形
区别 联系
一个图形具有的特 殊形状
两个全等图形的特殊 的位置关系
1.都是沿着某条直线折叠后能重合. 2.可以互相转化.
这是轴对称图形还是两个图形成轴对称?
二 轴对称的性质
如图,△ABC和△A′B′C′关于直线MN对称,点A′,B′,C′分
1.下列表情图中,属于轴对称图形的是( D )
2.下列图形,对称轴最多的是( D )
A.长方形
B.正方形
C.角
D.圆
3.如图,△ABC与△DEF关于直线MN轴对称,则以 下结论中错误的是( A )
A.AB∥DF
B.∠B=∠E C.AB=DE D.AD的连线被MN垂直平分
4.如图,Rt△ABC中,∠ACB= 90°,∠A=50°,将其折叠,使 点A落在边CB上A′处,折痕为 CD,则∠A′DB的度数为__1_0_°___.
A
A′
B
N B′
典例精析
例1 如图,一种滑翔伞的形状是左右成轴对称的 四边形ABCD,其中∠BAD=150°,∠B=40°, 则∠BCD的度数是( A ) A.130° B.150° C.40° D.65°
方法归纳:轴对称是一种全等变换,在轴对称图形中求角度 时,一般先根据轴对称的性质及已知条件,得出相关角的度 数,然后再结合多边形的内角和或三角形外角的性质求解.

八年级上册13.1轴对称(第3课时)

八年级上册13.1轴对称(第3课时)

线段的垂直平分线
经过线段中点并且垂直于这条线段的直线, 叫做这条线段的垂直平分线. M A A′ 用符号语言表示为: P ①∵ PA =PA′,MN⊥AA′, ∴MN是AA′的垂直平分线. B B′
②∵ MN是AA′的垂直平分线 ∴PA =PA′,MN⊥AA′
C
N
C′
成轴对称的两个图形的性质:A A′ 如果两个图形关于某条 P 直线对称,那么对称轴是任 何一对对应点所连线段的垂 B B′ 直平分线.即对称点所连线 C C′ 段被对称轴垂直平分;对称 N l 轴垂直平分对称点所连线段. 轴对称图形的性质: 轴对称图形的对称轴,是任何 A 一对对应点所连线段的垂直平分线.
八年级
上册
13.1 轴对称 (第3课时)
定义
一个平面图形 沿一条直线折叠,直线两旁的部分能 如果____________ 互相重合 轴对称图形 够_____________, 这个图形就叫做______________. 这条 对称轴 直线就是它的__________. 轴对称图形 轴对称图形
对称轴
你能作出这个五角星的其他对称轴吗?它共有几条 对称轴? 五角星的对称轴有什么特点? 相交于一点.
课堂练习
练习1 作出下列图形的一条对称轴,和同学比较 一下,你们作出的对称轴一样吗?
课堂练习
练习2 如图,角是轴对称图形吗?如果是,它的 对称轴是什么?
课堂练习
练习3 如图,与图形A 成轴对称的是哪个图形? 画出它的对称轴.
A
D
B
作轴对称图形的对称轴
如果两个图形成轴对称,怎样作出图形的对称轴?
如果两个图形成轴对称,其对称轴是任何一对对应 点所连线段的垂直平分线.因此,只要找到任意一组对 应点,作出对应点所连线段的垂直平分线,就得到此图 形的对称轴.

人教版八年级数学13.1轴对称(包含答案)

人教版八年级数学13.1轴对称(包含答案)

13.1轴对称知识要点:1.轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)对称.2.线段垂直平分线的定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.3.性质:线段垂直平分线上的点与这条线段两个端点的距离相等.4.判定:与线段两个端点距离相等的点在这条线段的垂直平分线上.书写格式:如图所示,若P A=PB,则点P在线段AB的垂直平分线上.一、单选题1.如图所示,哪一个选项中的左边图形与右边图形成轴对称( )A.B.C.D.【答案】C2.下列图形中,不一定是轴对称图形的是( )A.圆B.正方形C.三角形D.线段【答案】C3.下列选项中的图形均为正多边形,其中恰有4条对称轴的是( )A.B.C.D.【答案】B4.如果一个三角形有三条对称轴,那么它一定是( )A.等边三角形B.等腰三角形C.直角三角形D.锐角三角形【答案】A5.如图,是由四个四条边都相等的四边形组成的商标图案,在图中用虚线画出的6条直线中,是这个图案的对称轴的直线是( )A.①①①①①①B.①①C.①①①D.①①①【答案】B6.如图,有A、B、C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.在AC,BC两边高线的交点处B.在AC,BC两边中线的交点处C.在AC,BC两边垂直平分线的交点处D.在①A,①B两内角平分线的交点处【答案】C7.如图,已知直角三角形ABC中,①ACB=90°,E为AB上一点,且CE=EB,ED①CB 于D,则下列结论中不一定成立的是()A.AE=BE B.CE=12AB C.①CEB=2①A D.AC=12AB【答案】D8.已知①ABC与①A1B1C1关于直线MN对称,且BC与B1C1交直线MN于点O,则()A.点O是BC的中点B.点O是B1C1的中点C.线段OA与OA1关于直线MN对称D.以上都不对【答案】C9.如图,在3×2的正方形网格中,已有两个小正方形被涂上了阴影,再将图中其余小正方形任意一个涂上阴影,使整个阴影部分构成一个轴对称图形的涂法有()A.1种B.2种C.3种D.4种【答案】C10.下列图形中,轴对称图形的个数是()A.4个B.3个C.2个D.1个【答案】B11.如图,①ABC中,AD①BC于点D,且BD=DC,E是BC延长线上一点,且点C在AE的垂直平分线上.有下列结论:①AB=AC=CE;①AB+BD=DE;①AD=12AE;①BD=DC=CE.其中,正确的结论是()A.只有①B.只有①②C.只有①②③D.只有①④【答案】B12.如图,在①ABC中,AB边上的中垂线DE分别交AB、BC于点E、D,连接AD,若①ADC的周长为7cm,AC=2cm,则BC的长为()cm.A.4B.5C.3D.以上答案都不对【答案】B13.如图,在①ABC中,按以下步骤作图:①分别以A,B为圆心,大于12AB长为半径作弧,两弧相交于M,N两点;①作直线MN交BC于点D,连接AD.若AD=AC,①B=25°,则①C=( )A.70°B.60°C.50°D.40°【答案】C14.如图,在①ABC中,①C=90°,AB的垂直平分线DE交AB于点E,交BC于点D,若AB=13,AC=5,则①ACD的周长为( )A.18B.17C.20D.25【答案】B二、填空题15.如图,在①ABC中,①C=90°,AB的垂直平分线MN分别交AC,AB于点D,E.若①CBD : ①DBA =3:1,则①A的度数为________.【答案】18°16.在一次“寻宝”游戏中,“寻宝”人在如图23-6-9所示的藏宝图中找到了两个标志点A(2,3),B(4,1),A,B两点到“宝藏”点的距离相等,则“宝藏”点的可能坐标是________(填一个即可).【答案】如(0,-1)或(1,0)或(2,1)或(3,2)或(4,3)或(5,4)或(6,5)等17.如图所示,不是轴对称图形的有_____(只写序号).【答案】⑥⑥⑥18.如图,①ABC与①DEF关于直线l对称,若①C=40°,①B=80°,则①F=______.【答案】40°19.①ABC与①A′B′C′关于直线l对称,如果①ABC的周长为38cm,①A′B′C′的面积为55 cm2,那么①A′B′C′的周长为__________cm,①ABC的面积为__________cm2.【答案】38 55三、解答题20.如图:AD为①ABC的高,①B=2①C,用轴对称图形说明:CD=AB+BD.证明:在CD上取一点E使DE=BD,连接AE.⑥BD=DE,且⑥AED为⑥AEC的外角,⑥B=2⑥C,⑥⑥B=⑥AED=⑥C+⑥EAC=2⑥C,⑥⑥EAC=⑥C,⑥AE=EC;则CD=DE+EC=AB+BD.21.试画出下列正多边形的所有对称轴,并完成表格:根据上表,猜想正n边形有________条对称轴.解:如图.故表格中依次填3,4,5,6,7;猜想正n边形有n条对称轴.22.如图,在Rt①ABC中,过直角边AC上的一点P作直线交AB于点M,交BC的延长线于点N,且①APM=①A.求证:点M在BN的垂直平分线上.证明:⑥⑥B+⑥A=90°,⑥N+⑥CPN=90°,又⑥⑥CPN=⑥MPA=⑥A,⑥⑥B=⑥N,⑥BM=MN,⑥点M在BN的垂直平分线上.23.如图,在四边形ABCD中,AC①BD于点E,BE=DE,已知AC=10 cm,BD=8 cm,求阴影部分的面积.⑥AC⑥BD ,BE =DE ,⑥点B ,D 关于直线AC 对称,又⑥点E 在AC 上,⑥⑥BEF 与⑥DEF 关于直线AC 对称, ⑥⑥BEF⑥⑥DEF ,⑥S 阴影=S ⑥ABC ,又⑥BD =8,⑥BE =4,⑥S ⑥ABC =12AC·BE =12×10×4=20(cm 2)24.ABC V 在平面直角坐标系中的位置如图所示. ()1在图中画出ABC V 与关于y 轴对称的图形111A B C V ,并写出顶点1A 、1B 、1C 的坐标;()2若将线段11A C 平移后得到线段22A C ,且()()2222A a C b ,,,-,求a b +的值.解:(1)如图所示:A1(2,3)、B1(3,2)、C1(1,1).(2)⑥A1(2,3)、C1(1,1),A2(a,2),C2(-2,b).⑥将线段A1C1向下平移了1个单位,向左平移了3个单位.⑥a=-1,b=0.⑥a+b=-1+0=-1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

13.1 轴对称(第3课时)
一、学习目标
1、会依据轴对称的性质找出两个图形成轴对称及轴对称图形的对称轴;
2、掌握作出轴对称图形的对称轴的方法,即线段垂直平分线的尺规作图。

二、温故知新(口答)
1、下面的图形是轴对称图形吗?如果是,请说出它的对称轴。

2、如果两个图形关于某条直线对称,那么对称轴是任何一对 所连 的 线.
3、与一条线段两个端点距离相等的点,在这条线段的 上。

三、自主探究 合作展示
【问题】
1、 如果我们感觉两个图形是成轴对称的,你准备用什么方法去验证?
2、 两个成轴对称的图形,不经过折叠,你有什么方法画出它的对称轴?
归纳:
作轴对称图形的对称轴的方法是:找到一对 ,作出连接它们的 的 线,就可以得到这两个图形的对称轴.
【新知应用】
例题1:如图(1),点A 和点B 关于某条直线成轴对称,
你能作出这条直线吗?
1、请同学们按照以下作法在图(1)中完成作图。

作法:
(1)分别以点A 、B 为圆心,以 的长为半径作弧,两弧相交于C 和D 两点;
(2)作直线CD .
直线CD 即为所求的直线.
2、思考:(1)在上述作法中,为什么要以“大于
12
AB 的长”为半径作弧?
(2)在上面作法的基础上,连接AB , 直线CD 是线段AB 的垂直平分线吗?并说明理由.
图(1)
例题2:如图(2),在五角星上作出它的一条对称轴。

例题反思:
四、双基检测
1、如图(3),下面的虚线中,哪些是图形的对称轴,哪些不是?
2、如图(4),画出图形的一条对称轴,和同学比较一下,你们画的对称轴一样吗?
3、如图(5),角是轴对称图形吗?如果是,画出它的对称轴。

4、如图,与图形A 成轴对称的是哪个图形?画出它们的对称轴.
5、下面是我们学过的一些几何图形,说出下面图形是不是轴对称图形,并完成下表。

五、学习反思
请你对照学习目标,谈一下这节课的收获及困惑。

图 形 长方 形
正方 形 三角
形 等腰 三角 形 等边 三角 形 平行 四边 形 任意 梯形 等腰 梯形 圆 对称轴的条数
图(3) 图(4) 图(5)
图(2)。

相关文档
最新文档