2018-2019学年最新北师大版七年级数学上册:期中模拟检测卷(有答案)-精编试题

合集下载

2019年北师大版八年级数学下册期中测试卷(含答案)

2019年北师大版八年级数学下册期中测试卷(含答案)

2018-2019学年八年级(下)期中数学试卷一、选择题:每题3分,共45分。

在每小题的四个选项中,只有一项是符合题目要求的,把正确答案的代号涂在答题卡上。

1.如果a>b,那么下列各式中正确的是()A.a﹣2<b﹣2B.<C.﹣2a<﹣2b D.﹣a>﹣b2.下列图形中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个3.如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是()A.a>0B.a<0C.a>﹣1D.a<﹣14.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A.8或10B.8C.10D.6或125.△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC 于点E,则PD+PE的长是()A.4.8B.4.8或3.8C.3.8D.56.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB 于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A.4cm B.3cm C.2cm D.1cm7.如图,在△ABC中,∠C=90°,点E是AC上的点,且∠1=∠2,DE垂直平分AB,垂足是D,如果EC=3cm,则AE等于()A.3cm B.4cm C.6cm D.9cm8.已知:如图,点D,E分别在△ABC的边AC和BC上,AE与BD相交于点F,给出下面四个条件:①∠1=∠2;②AD=BE;③AF=BF;④DF=EF,从这四个条件中选取两个,不能判定△ABC是等腰三角形的是()A.①②B.①④C.②③D.③④9.如图,三条公路把A、B、C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三个条公路的距离相等,则这个集贸市场应建在()A.在AC、BC两边高线的交点处B.在AC、BC两边中线的交点处C.在∠A、∠B两内角平分线的交点处D.在AC、BC两边垂直平分线的交点处10.如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为()A.30°B.36°C.45°D.70°11.已知不等式组的解集为﹣1<x<1,则(a+1)(b﹣1)值为()A.6B.﹣6C.3D.﹣312.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A.B.4C.D.513.如图,在平面直角坐标系中,点A的坐标为(0,3),△OAB沿x轴向右平移后得到的△O′A′B′,点A的对应点A′在直线y=x上,则点B与其对应点B′间的距离为()A.B.3C.4D.514.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC 于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC :S△ABC=1:3.A.1B.2C.3D.415.如图,在直角坐标系中,已知点A(﹣3,0)、B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4、…,△16的直角顶点的坐标为()A.(60,0)B.(72,0)C.(67,)D.(79,)二、填空题:每题3分,共18分,将答案填在题的横线上16.在平面直角坐标系中,若点P(2x+6,5x)在第四象限,则x的取值范围是.17.如图所示,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A落在CB的延长线上的点E处,则∠BDC的度数为度.18.已知等腰△OPQ的顶点P的坐标为(4,3),O为坐标原点,腰长OP=5,点Q位于y轴正半轴上,则点Q的坐标为.19.初三的几位同学拍了一张合影作为留念,已知拍一张底片需要5元,洗一张相片需要0.5元.拍一张照片,在每位同学得到一张相片的前提下,平均每人分摊的钱不足1.5元,那么参加合影的同学人数为.20.如图,在△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为10cm,那么△ABC 的周长为cm.21.如图,边长为1的等边△ABO在平面直角坐标系的位置如图所示,点O为坐标原点,点A在x 轴上,以点O为旋转中心,将△ABO按逆时针方向旋转60°,得到△OA′B′,则点A′的坐标为.三、解答题:共7小题,满分57分,解答应写出文字说明过程或演算步骤。

北师大版初中数学七年级上册期末测试题(2018-2019学年四川省成都市

北师大版初中数学七年级上册期末测试题(2018-2019学年四川省成都市

2018-2019学年四川省成都市龙泉驿区七年级(上)期末数学试卷一、单选题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)﹣3的相反数是()A.﹣3B.C.3D.﹣2.(3分)已知∠1+∠2=90°,∠1=65°,则∠2的度数为()A.25°B.35°C.115°D.125°3.(3分)下面几何体的俯视图是()A.B.C.D.4.(3分)据统计,网络《洋葱数学》学习软件,注册用户已达1200万人,数据1200万用科学记数法表示为()A.1.2×103B.1.2×107C.1.2×108D.1.2万×104 5.(3分)下列调查中,适宜采用普查方式的是()A.了解一批节能灯的使用寿命B.调查我校七年级一个班级每天家庭作业所需时间C.考察人们保护环境的意识D.了解成都人对圣诞节的看法6.(3分)已知2a m b+4a2b n=6a2b,则m+n为()A.1B.2C.3D.47.(3分)如图,小刚将一副三角板摆成如图形状,如果∠DOC=120°,则∠AOB=()A.45°B.70°C.30°D.60°8.(3分)已知a是最大的负整数,b是绝对值最小的数,c是最小的正整数,则a+b+c等于()A.2B.﹣2C.0D.﹣69.(3分)3点30分,时钟的时针与分针的夹角为()A.75°B.90°C.115°D.60°10.(3分)如图,M,N是数轴上的两点,它们分别表示﹣4和2,P为数轴上另一点,PM =2PN,则点P表示的数是()A.1B.0C.8D.0或8二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)若|a﹣3|+(b+1)2=0,则2a﹣b的值是.12.(4分)如图的扇形统计图反映了小明家一年的开支情况,则此扇形统计图中“体育”部分所在的扇形的圆心角度数为度.13.(4分)计算33°52′+21°54′=.14.(4分)某商品八折后售价为40元,则原来标价是元.三、解答题(本大题共6个题,共54分,解答过程写在答题卡上)15.(10分)计算:(1)12﹣(﹣8)+(﹣7)﹣15;(2)﹣12﹣(﹣2)3÷+3×|1﹣(﹣2)2|.16.(10分)解方程:(1)3x﹣2(x+2)=2(2)﹣=117.(10分)解不等式或不等式组:(1)(2)18.(8分)先化简,再求值:2x2y+2xy﹣[3x2y﹣2(﹣3xy2+2xy)]﹣4xy2,其中x=2,y=﹣3.19.(8分)如图,已知∠AOB内部有三条射线,其中OE平分角∠BOC,OF平分∠AOC.(1)如图1,若∠AOB=120°,∠AOC=50°,求∠EOF的度数;(2)如图2,若∠AOB=α,∠AOC=β,求∠EOF的度数.20.(8分)列一元一次方程解应用题:学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共80千克,了解到这些蔬菜的种植成本共180元,还了解到如下信息:(1)求采摘的黄瓜和茄子各多少千克?(2)这些采摘的黄瓜和茄子可赚多少元?一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.(4分)已知x2+3x+5的值为11,则代数式3x2+9x+12的值为.22.(4分)已知两个关于x的方程x﹣2m=﹣3x+4和﹣4x=2﹣m﹣5x,它们的解互为相反数,则m的值为.23.(4分)已知三个有理数a,b,c的积是正数,其和为负数,当x=时,求代数式(2x2﹣5x)﹣2(3x﹣5+x2)的值为.24.(4分)下面的图表是我国数学家发明的“杨辉三角”,此图揭示了(a+b)n(n为非负整数)的展开式的项数及各项系数的有关规律.请你观察,并根据此规律写出:(a+b)5=.25.(4分)根据下面尺规作图步骤作答:(1)以A为端点向右作一条射线AB:(2)以A为圆心,长度a为半径作圆弧,与射线AB交于点C;(3)以C为圆心,长度a为半径作圆弧,与射线交于D(D点在C点右侧);(4)以D为圆心,长度b为半径作圆弧(b<2a),与射线AB交于点E.请用含a,b的代数式表示线段AE的长度为.二、解答题(本大题共3个小题,共30分,答案写在答题卡上)26.(10分)在“互联网+D胛P教学模式下”讲投“一元一次方程”章节时,某校七年级教师设计了如下四种预习方法:①教材预习②导学案预习③导学案+课外教辅资料预习④前置学习单+课前微课预习为达到良好的预习效果,七年级教师将上述预习方法作为调研内容发到全年级8个班420名同学手中,要求每位同学选出自己最喜欢的一种,他随机抽取了5个小组每组6人共30名学生的调查问卷,统计数据如下:(1)请根据上表的统计数据画出条形统计图;(2)计算扇形统计图中方法③的圆心角的度数是;(3)七年级同学中最喜欢的预习方法是哪一种?请估计全年级同学中选择这种预习方法的有多少人?27.(10分)在数学中,有许多关系都是在不经意间被发现的.当然,没有敏锐的观察力是做不到的.数学家们往往是这样来研究问题的:特值探究﹣猜想归纳﹣逻辑证明﹣总结应用.下面我们先来体验其中三步,找出代数式(a+b)(a﹣b)与a2﹣b2的关系.(1)特值探究:当a=2,b=0时,(a+b)(a﹣b)=;a2﹣b2=,当a=﹣5,b=3时,(a+b)(a﹣b)=;a2﹣b2=;(2)猜想归纳:观察(1)的结果,写出(a+b)(a﹣b)与a2﹣b2的关系:;(3)总结应用:利用你发现的关系,求:①若a2﹣b2=6,且a+b=2,则a﹣b=;②20192﹣20182=.28.(10分)小明的爸爸开了一家运动品商店,近期商店购进一批运动服,按进价提高40%后打八折出售,这时每套运动服的售价为140元.(1)求每套运动服的进价?(2)运动服卖出一半后,正好赶上双十一促销,商店决定将剩下的运动服每3套400元的价格出售,很快销售一空,后一半促销获利5000元,求小明的爸爸共购进多少套运动服?(3)最后,小明的爸爸决定将整批运动服的利润当做小明的教育基金存入银行,已知该银行3年期的固定储蓄年利率为2.7%,求3年后取出的本息和为多少元?2018-2019学年四川省成都市龙泉驿区七年级(上)期末数学试卷参考答案与试题解析一、单选题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)﹣3的相反数是()A.﹣3B.C.3D.﹣【分析】依据相反数的定义回答即可.【解答】解:﹣3的相反数是3.故选:C.【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.(3分)已知∠1+∠2=90°,∠1=65°,则∠2的度数为()A.25°B.35°C.115°D.125°【分析】如果两个角的和等于90°(直角),就说这两个角互为余角,据此可得∠2的度数.【解答】解:∵∠1+∠2=90°,∠1=65°,∴∠2=90°﹣65°=25°,故选:A.【点评】本题主要考查了余角,如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.3.(3分)下面几何体的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有看得到的棱都应表现在俯视图中.【解答】解:从上面看,这个几何体只有一层,且有3个小正方形,故选A.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4.(3分)据统计,网络《洋葱数学》学习软件,注册用户已达1200万人,数据1200万用科学记数法表示为()A.1.2×103B.1.2×107C.1.2×108D.1.2万×104【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:1200万=1.2×107.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.5.(3分)下列调查中,适宜采用普查方式的是()A.了解一批节能灯的使用寿命B.调查我校七年级一个班级每天家庭作业所需时间C.考察人们保护环境的意识D.了解成都人对圣诞节的看法【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似普查得到的调查结果.【解答】解:A、了解一批节能灯的使用寿命,具有破坏性,适合抽样调查,故A不符合题意;B、调查我校七年级一个班级每天家庭作业所需时间的调查适合普查,故B符合题意;C、考察人们保护环境的意识的调查范围广适合抽样调查,故C不符合题意;D、了解成都人对圣诞节的看法调查范围广适合抽样调查,故D不符合题意;故选:B.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.(3分)已知2a m b+4a2b n=6a2b,则m+n为()A.1B.2C.3D.4【分析】由2a m b+4a2b n=6a2b知2a m b与4a2b n是同类项,根据同类项的概念求出m、n的值,计算可得.【解答】解:∵2a m b+4a2b n=6a2b,∴2a m b与4a2b n是同类项,则m=2,n=1,∴m+n=3,故选:C.【点评】本题主要考查合并同类项,解题的关键是掌握同类项的概念与合并同类项的法则.7.(3分)如图,小刚将一副三角板摆成如图形状,如果∠DOC=120°,则∠AOB=()A.45°B.70°C.30°D.60°【分析】直接利用互余的性质进而结合已知得出答案.【解答】解:∵∠DOB=∠AOC=90°,∠DOC=120°,∴∠DOA=30°,故∠AOB=90°﹣30°=60°.故选:D.【点评】此题主要考查了互余的性质,正确得出∠DOA=30°是解题关键.8.(3分)已知a是最大的负整数,b是绝对值最小的数,c是最小的正整数,则a+b+c等于()A.2B.﹣2C.0D.﹣6【分析】根据题意确定出a,b,c的值,代入原式计算即可求出值.【解答】解:根据题意得:a=﹣1,b=0,c=1,则a+b+c=﹣1+0+1=0,故选:C.【点评】此题考查了有理数的加法,有理数,以及绝对值,熟练掌握运算法则是解本题的关键.9.(3分)3点30分,时钟的时针与分针的夹角为()A.75°B.90°C.115°D.60°【分析】根据时钟3时30分时,时针在3与4中间位置,分针在6上,可以得出分针与时针的夹角是2.5大格,每一格之间的夹角为30°,可得出结果.【解答】解:∵钟表上从1到12一共有12格,每个大格30°,∴时钟3时30分时,时针在3与4中间位置,分针在6上,可以得出分针与时针的夹角是2.5大格,∴分针与时针的夹角是2.5×30=75°.故选:A.【点评】此题主要考查了钟面角的有关知识,得出钟表上从1到12一共有12格,每个大格30°,是解决问题的关键.10.(3分)如图,M,N是数轴上的两点,它们分别表示﹣4和2,P为数轴上另一点,PM =2PN,则点P表示的数是()A.1B.0C.8D.0或8【分析】根据题意列方程即可得到结论.【解答】解:设点P表示的数是x,∵PM=2PN,∴|x+4|=2|x﹣2|,解得:x=0或8,故选:D.【点评】本题考查了数轴和一元一次方程的应用,主要利用了数轴上两点间的距离的表示方法,读懂题目信息,理解两点间的距离的表示方法是解题的关键.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)若|a﹣3|+(b+1)2=0,则2a﹣b的值是7.【分析】根据非负数的性质,可求出a、b的值,然后将代数式化简再代值计算.【解答】解:∵|a﹣3|+(b+1)2=0,∴a﹣3=0且b+1=0,则a=3、b=﹣1,∴2a﹣b=2×3﹣(﹣1)=6+1=7,故答案为:7.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.12.(4分)如图的扇形统计图反映了小明家一年的开支情况,则此扇形统计图中“体育”部分所在的扇形的圆心角度数为108度.【分析】首先求得体育所占的百分比,然后用求得的百分比乘以周角即可确定所在扇形的圆心角.【解答】解:∵体育所占百分比为:1﹣7%﹣28%﹣35%=30%,∴此扇形统计图中“体育”部分所在的扇形的圆心角度数为30%×360°=108°,故答案为:108.【点评】本题考查了扇形统计图的知识,解题的关键是读懂统计图,并从中整理出进一步解题的有关信息,难度不大.13.(4分)计算33°52′+21°54′=55°46′.【分析】相同单位相加,分满60,向前进1即可.【解答】解:33°52′+21°54′=54°106′=55°46′.【点评】计算方法为:度与度,分与分对应相加,分的结果若满60,则转化为1度.14.(4分)某商品八折后售价为40元,则原来标价是50元.【分析】设该商品原来的标价为x元,根据售价=标价×折扣率,即可求出关于x的一元一次方程,解之即可得出结论.【解答】解:设该商品原来的标价为x元,依题意,得:0.8x=40,解得:x=50.故答案为:50.【点评】本题考查了一元一次方程的应用以及有理数的混合运算,找准等量关系,正确列出一元一次方程是解题的关键.三、解答题(本大题共6个题,共54分,解答过程写在答题卡上)15.(10分)计算:(1)12﹣(﹣8)+(﹣7)﹣15;(2)﹣12﹣(﹣2)3÷+3×|1﹣(﹣2)2|.【分析】(1)按有理数加减法法则计算,可利用加法结合律把符号相同的数先相加.(2)按有理数混合运算法则计算,注意按运算顺序计算.【解答】解:(1)12﹣(﹣8)+(﹣7)﹣15=12+8﹣7﹣15=(12+8)+(﹣7﹣15)=20﹣22=﹣2(2)﹣12﹣(﹣2)3÷+3×|1﹣(﹣2)2|=﹣12﹣(﹣8)×+3×|1﹣4|=﹣12+10+3×|﹣3|=﹣12+10+9=7【点评】本题考查了有理数混合运算法则,为常考题型.必须正确理解法则并按先乘方、再乘除、最后加减的顺序运算进行计算.16.(10分)解方程:(1)3x﹣2(x+2)=2(2)﹣=1【分析】(1)依据解一元一次方程的步骤:去括号、移项、合并同类项、系数化为1可得;(2)依据解一元一次方程的步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:(1)3x﹣2(x+2)=2,3x﹣2x﹣4=2,3x﹣2x=2+4,x=6;(2)﹣=1,2(x+1)﹣3(2x﹣1)=6,2x+2﹣6x+3=6,2x﹣6x=6﹣2﹣3,﹣4x=1,x=﹣.【点评】此题考查了解一元一次方程,解题的关键是掌握解一元一次方程的步骤:去分母、去括号、移项、合并同类项、系数化为1.17.(10分)解不等式或不等式组:(1)(2)【分析】(1)去分母,去括号,移项,合并同类项,系数化成1即可;(2)先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:(1)去分母得:7(4﹣x)﹣21≥3(1﹣2x),28﹣7x﹣21≥3﹣6x,﹣7x+6x≥3﹣28+21,﹣x≥﹣4,x≤4;(2)∵解不等式①得:x<1,解不等式②得:x<,∴不等式组的解集是:x<1.【点评】本题考查了解一元一次不等式组和解一元一次不等式,能根据不等式的性质进行变形是解(1)的关键,能求出不等式组的解集是解(2)的关键.18.(8分)先化简,再求值:2x2y+2xy﹣[3x2y﹣2(﹣3xy2+2xy)]﹣4xy2,其中x=2,y=﹣3.【分析】直接去括号进而合并同类项,再把已知数据代入求出答案.【解答】解:2x2y+2xy﹣[3x2y﹣2(﹣3xy2+2xy)]﹣4xy2=2x2y+2xy﹣3x2y+2(﹣3xy2+2xy)﹣4xy2=2x2y+2xy﹣3x2y﹣6xy2+4xy﹣4xy2=﹣x2y﹣10xy2+6xy当x=2,y=﹣3时,原式=﹣4×(﹣3)﹣10×2×(﹣3)2+6×2×(﹣3)=12﹣180﹣36=﹣204.【点评】此题主要考查了整式的加减,正确合并同类项是解题关键.19.(8分)如图,已知∠AOB内部有三条射线,其中OE平分角∠BOC,OF平分∠AOC.(1)如图1,若∠AOB=120°,∠AOC=50°,求∠EOF的度数;(2)如图2,若∠AOB=α,∠AOC=β,求∠EOF的度数.【分析】(1)首先根据角平分线的定义求得∠COF,然后求得∠BOC的度数,根据角平分线的定义求得∠EOC,然后根据∠EOF=∠COF+∠EOC求解;(2)根据角平分线的定义可以得到∠COF=∠AOC,∠EOC=∠BOC,然后根据∠EOF=∠COF+∠EOC=∠AOC+∠BOC=(∠AOC+∠BOC)即可得到.【解答】解:(1)∵OF平分∠AOC,∴∠COF=∠AOC=×30°=15°,∵∠BOC=∠AOB﹣∠AOC=120°﹣30°=90°,OE平分∠BOC,∴∠EOC=∠BOC=45°,∴∠EOF=∠COF+∠EOC=60°;(2)∵OF平分∠AOC,∴∠COF=∠AOC,同理,∠EOC=∠BOC,∴∠EOF=∠COF+∠EOC=∠AOC+∠BOC=(∠AOC+∠BOC)=∠AOB=α.【点评】本题考查了角平分线的性质,以及角度的计算,正确理解角平分线的定义是关键.20.(8分)列一元一次方程解应用题:学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共80千克,了解到这些蔬菜的种植成本共180元,还了解到如下信息:(1)求采摘的黄瓜和茄子各多少千克?(2)这些采摘的黄瓜和茄子可赚多少元?【分析】(1)设采摘的黄瓜x千克,则茄子(80﹣x)千克,根据题意可得等量关系:黄瓜的成本+茄子的成本=180元,根据等量关系列出方程,再解即可;(2)根据(1)中的结果计算出黄瓜的利润和茄子的利润,再求和即可.【解答】解:(1)设采摘的黄瓜x千克,则茄子(80﹣x)千克,由题意得:2x+2.4(80﹣x)=180,解得:x=30,80﹣30=50(千克),答:采摘的黄瓜30千克,则茄子50千克;(2)(3﹣2)×30+(4﹣2.4)×50=30+80=110(元),答:采摘的黄瓜和茄子可赚110元.【点评】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.(4分)已知x2+3x+5的值为11,则代数式3x2+9x+12的值为30.【分析】把x2+3x+5=11代入代数式3x2+9x+12,求出算式的值是多少即可.【解答】解:∵x2+3x+5的值为11,∴3x2+9x+12=3(x2+3x+5)﹣3=3×11﹣3=33﹣3=30故答案为:30.【点评】此题主要考查了代数式求值问题,要熟练掌握,注意代入法的应用.22.(4分)已知两个关于x的方程x﹣2m=﹣3x+4和﹣4x=2﹣m﹣5x,它们的解互为相反数,则m的值为6.【分析】分别表示出两方程的解,根据解互为相反数求出m的值即可.【解答】解:方程x﹣2m=﹣3x+4,解得:x=,方程﹣4x=2﹣m﹣5x,解得:x=2﹣m,由两方程的解互为相反数,得到+2﹣m=0,解得:m=6;故答案为:6.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.23.(4分)已知三个有理数a,b,c的积是正数,其和为负数,当x=时,求代数式(2x2﹣5x)﹣2(3x﹣5+x2)的值为21.【分析】由三个有理数a,b,c的积是正数,它们的和是负数,确定出负因数的个数,然后求得x=﹣1,即可求得代数式的值.【解答】解:∵三个有理数a,b,c的积是正数,其和为负数,∴其中有两个负数.∴x=﹣1.将x=﹣1代入得:(2x2﹣5x)﹣2(3x﹣5+x2)=(2+5)﹣2×(﹣3﹣5+1)=7+14=21.【点评】本题主要考查的是整式的加减﹣化简求值,求代数式的值,求得a,b,c负数的个数是解题的关键.24.(4分)下面的图表是我国数学家发明的“杨辉三角”,此图揭示了(a+b)n(n为非负整数)的展开式的项数及各项系数的有关规律.请你观察,并根据此规律写出:(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5.【分析】先认真观察适中的特点,得出a的指数是从5到0,b的指数是从0到5,系数依次为1,5,10,10,5,1,得出答案即可.【解答】解:(a+b)5=a5+5a4b+10a3b2﹣10a2b3+5ab4﹣b5,故答案为:a5﹣5a4b+10a3b2﹣10a2b3+5ab4﹣b5.【点评】本题考查了完全平方公式的应用,解此题的关键是能读懂图形,有一点难度.25.(4分)根据下面尺规作图步骤作答:(1)以A为端点向右作一条射线AB:(2)以A为圆心,长度a为半径作圆弧,与射线AB交于点C;(3)以C为圆心,长度a为半径作圆弧,与射线交于D(D点在C点右侧);(4)以D为圆心,长度b为半径作圆弧(b<2a),与射线AB交于点E.请用含a,b的代数式表示线段AE的长度为2a﹣b或2a+b.【分析】根据要求画出图形,利用线段的和差定义解决问题即可.【解答】解:图形如图所示:由题意:AE=2a﹣b或2a+b,故答案为2a﹣b或2a+b.【点评】本题考查作图﹣复杂作图,解题的关键是理解题意,灵活运用所学知识解决问题注意一题多解.二、解答题(本大题共3个小题,共30分,答案写在答题卡上)26.(10分)在“互联网+D胛P教学模式下”讲投“一元一次方程”章节时,某校七年级教师设计了如下四种预习方法:①教材预习②导学案预习③导学案+课外教辅资料预习④前置学习单+课前微课预习为达到良好的预习效果,七年级教师将上述预习方法作为调研内容发到全年级8个班420名同学手中,要求每位同学选出自己最喜欢的一种,他随机抽取了5个小组每组6人共30名学生的调查问卷,统计数据如下:(1)请根据上表的统计数据画出条形统计图;(2)计算扇形统计图中方法③的圆心角的度数是108°;(3)七年级同学中最喜欢的预习方法是哪一种?请估计全年级同学中选择这种预习方法的有多少人?【分析】(1)根据题意画出条形统计图,(2)根据360°×③所占的百分比,就是圆心角的度数.(3)最喜欢的可看出是第④种,总人数乘以第④种的百分比就可以了.【解答】解:(1)条形统计图如图所示,(2)方法③的圆心角的度数=360°×=108°;故答案为:108°;(3)最喜欢的是第④种,420×=182答:选取这种方法的有182人.【点评】本题考查条形统计图和扇形统计图,条形统计图表现每组里面的具体数字,扇形统计图表现部分占整体的百分比.27.(10分)在数学中,有许多关系都是在不经意间被发现的.当然,没有敏锐的观察力是做不到的.数学家们往往是这样来研究问题的:特值探究﹣猜想归纳﹣逻辑证明﹣总结应用.下面我们先来体验其中三步,找出代数式(a+b)(a﹣b)与a2﹣b2的关系.(1)特值探究:当a=2,b=0时,(a+b)(a﹣b)=4;a2﹣b2=4,当a=﹣5,b=3时,(a+b)(a﹣b)=16;a2﹣b2=16;(2)猜想归纳:观察(1)的结果,写出(a+b)(a﹣b)与a2﹣b2的关系:(a+b)(a﹣b)=a2﹣b2;(3)总结应用:利用你发现的关系,求:①若a2﹣b2=6,且a+b=2,则a﹣b=3;②20192﹣20182=4037.【分析】(1)先代入,再求值即可;(2)根据(1)中的结果得出答案即可;(3)①先根据公式进行变形,再代入求出即可;②先根据公式进行变形,再求出即可.【解答】解:(1)当a=2,b=0时,(a+b)(a﹣b)=(2+0)×(2﹣0)=4;a2﹣b2=22﹣02=4,当a=﹣5,b=3时,(a+b)(a﹣b)=(﹣5+3)×(﹣5﹣3)=14,a2﹣b2=(﹣5)2﹣32=16,故答案为:4,4,16,16;(2)猜想归纳:观察(1)的结果,写出(a+b)(a﹣b)与a2﹣b2的关系:(a+b)(a﹣b)=a2﹣b2,故答案为:(a+b)(a﹣b)=a2﹣b2;(3)总结应用:①∵a2﹣b2=(a+b)(a﹣b)=6,a+b=2,∴a﹣b==3,故答案为:3;②20192﹣20182=(2019+2018)×(2019﹣2018)=4037,故答案为:4037.【点评】本题考查了有理数的混合运算和平方差公式,能根据求出的结果得出公式是解此题的关键.28.(10分)小明的爸爸开了一家运动品商店,近期商店购进一批运动服,按进价提高40%后打八折出售,这时每套运动服的售价为140元.(1)求每套运动服的进价?(2)运动服卖出一半后,正好赶上双十一促销,商店决定将剩下的运动服每3套400元的价格出售,很快销售一空,后一半促销获利5000元,求小明的爸爸共购进多少套运动服?(3)最后,小明的爸爸决定将整批运动服的利润当做小明的教育基金存入银行,已知该银行3年期的固定储蓄年利率为2.7%,求3年后取出的本息和为多少元?【分析】(1)设每套运动服的进价为x元,根据打折后每套运动服的售价为140元,即可得出关于x的一元一次方程,解之即可得出结论;(2)设小明的爸爸共购进y套运动服,根据后一半促销获利5000元,即可得出关于y 的一元一次方程,解之即可得出结论;(3)根据本息和=本金×(1+利润率×年限),即可求出结论.【解答】解:(1)设每套运动服的进价为x元,依题意,得:0.8×(1+40%)x=140,解得:x=125.答:每套运动服的进价为125元.(2)设小明的爸爸共购进y套运动服,依题意,得:(400﹣125×3)×=5000,解得:y=1200.答:小明的爸爸共购进1200套运动服.(3)[1200÷2×(140﹣125)+5000]×(1+2.7%×3)=15134(元).答:3年后取出的本息和为15134元.【点评】本题考查了一元一次方程的应用以及有理数的混合运算,找准等量关系,正确列出一元一次方程是解题的关键.第21页(共21页)。

北师大版2018~2019学年数学三年级第二学期期中模拟测试卷2(含答案)

北师大版2018~2019学年数学三年级第二学期期中模拟测试卷2(含答案)

北师大版2018~2019学年第二学期期中模拟测试卷2三年级数学总分:100 班级:姓名:题号一二三四五六总分得分一、动脑筋,填一填。

(30分)1、24×39的积是( )位数,积的末位数字是( )。

2、357除以6的商是( )位数,商的最高位数字是( )。

3、把288平均分成6份,每份是( );18个45相加的和是( )。

4、4□6÷4中,要使商的中间有0,□里最小可以填( ),最大可以填( )。

5、拉抽屉的运动是( )现象,乘坐海盗船时船的运动是( )现象。

6、为下面的英文字母和在镜中看到的形状连线。

7、下面括号里最大能填几?3×( ) < 98 ( ) × 5 < 457 6 ×( ) < 3027×( ) < 429 ( ) × 8 < 386 4 ×( ) < 1738、计算13×400时,可以先算( )×( ),等于( ),然后再在得数末尾添上( )个0 。

9、游乐园里排号玩摩天轮游戏,每辆缆车限坐4人,明明排号是18号,他应坐第( )辆缆车。

10、在○里填上“>”“<”或“=”。

35×17○35×18 550÷2÷5○550÷10 0÷137○0 +137 24×13○23×14 54×19+54○54×20 360÷6○180÷4二、慎重考虑,断一断。

(5分)1、0不能做除数。

( )2、两个因数同时扩大10倍,那么它们的积也扩大10倍。

( )3、两个因数末尾没有0,它们的积末尾也不会有0 。

( )4、两个两位数相乘,积不可能是五位数。

( )5、在除法计算时,如果有余数,余数不大于除数。

( )三、选一选。

(10分)1、624÷6 的商是( )。

北师大版数学七年级上册单元综合评估训练: 第二章《有理数及其运算》含解析答案

北师大版数学七年级上册单元综合评估训练: 第二章《有理数及其运算》含解析答案

北师大版数学七年级上册单元综合评估训练: 第二章《有理数及其运算》含解析答案一.选择题1.下列运算正确的是( )A .﹣3+5=﹣8B .﹣1﹣(+1)=0C .(﹣3)×2=﹣6D .(﹣3)2=﹣62.我国2018年第一季度GDP 总值初步核算大约为199000亿元,数据199000用科学记数法表示为( )A .1.99×104B .1.99×105C .0.199×105D .19.9×1043.下列各数中,其倒数最小的是( )A .﹣B .﹣2C .D .24.数轴上,到原点距离是8的点表示的数是( )A .8和﹣8B .0和﹣8C .0和8D .﹣4和45.下列说法,其中正确的个数是( )①整数和分数统称为有理数;②绝对值是它本身的数只有0;③两数之和一定大于每个加数;④如果两个数积为0,那么至少有一个因数为0;⑤0是最小的有理数,;⑥数轴上表示互为相反数的点位于原点的两侧;⑦几个有理数相乘,如果负因数的个数是奇数,那么积为负数,A .5个B .4个C .3个D .2个6.如图,若数轴上不重合的A 、B 两点到原点的距离相等,则点B 所表示的数为( )A .3B .2C .1D .07.我们约定a ⊕b =10a ×10b ,如2⊕3=102×103=105,那么3⊕8为( )A .24B .1024C .1011D .11108.如表,已知表格中竖直、水平、对角线上的三个数的和都相等,则m +n =( )A.1 B.2 C.5 D.79.关于与的说法,哪一项是正确的()A.n取任何数与始终都相等B.只有当n取整数时与相等C.只有当n取偶数时与相等D.只有当n取奇数时与相等10.(﹣8)2019+(﹣8)2018能被下列哪个数整除()A.3 B.5 C.7 D.9二.填空题11.已知b<0<a,且|a|>|b|,化简|b﹣a|﹣|a﹣b|的结果是.12.当时,|3﹣x|=x﹣3.13.|﹣3|﹣÷﹣×(﹣2)2=.14.若a、b互为相反数,c、d互为倒数,则的值为.15.若有理数a,b满足|a+|+b2=0,则a b=.16.如图,在数轴上,点A、B分别表示数1、﹣2x+3,则数轴上表示数﹣x+2的点应落在.(填“点A的左边”、“线段AB上”或“点B的右边”)三.解答题17.计算(1)﹣10﹣(﹣3)+(﹣5)(2)﹣2.5÷×(﹣)(3)(﹣2)2×5﹣(﹣2)3÷4(4)÷(﹣2)﹣×﹣÷418.有理数a、b、c在数轴上的位置如图,化简:|b﹣c|+|a﹣b|﹣|c﹣a|的值.19.某服装店购进10件羊毛衫,实际销售情况如下表所示:(售价超出成本为正,不足记为负)(1)若|2a+20|+(b﹣30)2=0,求a和b的值分别是多少?(2)在(1)的条件下,通过计算求出这家服装店在这次销售中盈利或者亏损多少元?20.高新一中新图书馆在“校园书香四溢”活动中迎来了借书高潮,上周借书记录如下表:(超过100册的部分记为正,少于100册的部分记为负)(1)上星期借书最多的一天比借书最少的一天多借出图书多少册?(2)上星期平均每天借出多少册书?21.观察下列两个等式:2﹣=2×+1,5﹣=5×+1,给出定义如下我们称使等式a﹣b=ab+1成立的一对有理数“a,b”为共生有理数对”,记为(a,b)(1)通过计算判断数对“﹣2,1,“4,”是不是“共生有理数对”;(2)若(6,a)是“共生有理数对”,求a的值;(3)若(m,n)是“共生有理数对”,则“﹣n,﹣m”“共生有理数对”(填“是”或“不是”),并说明理由;(4)如果(m,n)是“共生有理数对”(其中n≠1),直接用含n的代数式表示m.22.a是最大负整数,b是绝对值最小的有理数,c的倒数是c,求a2017+2018b+c2019.23.如图,在一条不完整的数轴上从左到右有点A,B.将线段AB沿数轴向右移动,移动后的线段记为A′B′,按要求完成下列各小题(1)若点A为数轴原点,点B表示的数是4,当点A′恰好是AB的中点时,数轴上点B′表示的数为.(2)设点A表示的数为m,点A′表示的数为n,当原点在线段A′B之间时,化简回|m|+|n|+|m﹣n|.参考答案一.选择题1.解:∵﹣3+5=2,故选项A错误;∵﹣1﹣(+1)=﹣1﹣1=﹣2,故选项B错误;∵(﹣3)×2=﹣6,故选项C正确;∵(﹣3)2=9,故选项D错误;故选:C.2.解:数据199000用科学记数法表示为1.99×105.故选:B.3.解:﹣的倒数为﹣2,﹣2的倒数为﹣,的倒数为2,2的倒数为,﹣2<﹣<<2.故选:A.4.解:数轴上距离原点是8的点有两个,表示﹣8的点和表示+8的点.故选:A.5.解:①整数和分数统称为有理数是正确的;②绝对值是它本身的数有正数和0,原来的说法是错误的;③两数之和可能小于每个加数,原来的说法是错误的;④如果两个数积为0,那么至少有一个因数为0是正确的;⑤没有最小的有理数,原来的说法是错误的;⑥数轴上表示互为相反数的点位于原点的两侧(0除外),原来的说法是错误的;⑦几个有理数(非0)相乘,如果负因数的个数是奇数,那么积为负数,原来的说法是错误的.故选:D.6.解:∵A、B两点到原点的距离相等,A为﹣2,则B为﹣2的相反数,即B表示2.故选:B.7.解:根据题中的新定义得:3⊕8=103×108=1011,故选:C.8.解:由题意得竖直、水平、对角线上的三个数的和都相等,则有3+1+n﹣(m+3)=﹣3+1+n﹣(4+1),整理得m=2,则有2﹣3+4=﹣3+1+n,解得n=5,∴m+n=5+2=7,故选:D.9.解:关于与,只有当n取偶数时与相等.故选:C.10.解:(﹣8)2019+(﹣8)2018=(﹣8)2018×(﹣8+1)=﹣7×(﹣8)2018,∴能被7整除;故选:C.二.填空题(共6小题)11.解:∵b<0<a,且|a|>|b|,∴b﹣a<0,a﹣b>0,则原式=a﹣b﹣a+b=0,故答案为:012.解:由题意可得3﹣x≤0,解得x≥3.故答案为≥3.13.解:|﹣3|﹣÷﹣×(﹣2)2=3﹣=3﹣2﹣3=﹣2,故答案为:﹣2.14.解:根据题意得:a+b=0,cd=1,则原式=0+3=3,故答案为:315.解:∵|a+|+b2=0,∴a=﹣,b=0.∴a b=(﹣)0=1.故答案为:1.16.解:由数轴上的点表示的数右边的总比左边的大,得:﹣2x+3>1,解得x<1;﹣x>﹣1.﹣x+2>﹣1+2,解得﹣x+2>1.所以数轴上表示数﹣x+2的点在A点的右边;作差,得:﹣2x+3﹣(﹣x+2)=﹣x+1,由x<1,得:﹣x>﹣1,﹣x+1>0,﹣2x+3﹣(﹣x+2)>0,∴﹣2x+3>﹣x+2,所以数轴上表示数﹣x+2的点在B点的左边.故数轴上表示数﹣x+2的点应落在线段AB上.故答案为:线段AB上.三.解答题(共7小题)17.解:(1)﹣10﹣(﹣3)+(﹣5)=﹣10+3+(﹣5)=﹣12;(2)﹣2.5÷×(﹣)=2.5××=1;(3)(﹣2)2×5﹣(﹣2)3÷4=4×5﹣(﹣8)÷4=20+2=22;(4)÷(﹣2)﹣×﹣÷4=﹣﹣=﹣==﹣=﹣. 18.解:由数轴可得,a <0<b <c ,∴b ﹣c <0,a ﹣b <0,c ﹣a >0,∴|b ﹣c |+|a ﹣b |﹣|c ﹣a |=﹣b +c ﹣a +b ﹣c +a=0.19.解:(1)因为|2a +20|+(b ﹣30)2=0,所以2a +20=0,b ﹣30=0,解得a =﹣10,b =30;(2)3×(﹣10)+2×(﹣20)+2×20+1×30+2×40=80(元),答:该这家服装店在这次销售中是盈利了,盈利80元.20.解:(1)18﹣(﹣12)=30(册).答:上星期借书最多的一天比借书最少的一天多借出图书30册;(2)18+(﹣6)+15+0+(﹣12)=15(册),15÷5=3(册),100+3=103(册).答:上星期平均每天借出103册书.21.解:(1)﹣2﹣1=﹣3,﹣2×1+1=1,∴﹣2﹣1≠﹣2×1+1,∴(﹣2,1)不是“共生有理数对”;∵4﹣=,,∴(4,)是共生有理数对;(2)由题意得:6﹣a=6a+1,解得a=;(3)是.理由:﹣n﹣(﹣m)=﹣n+m,﹣n•(﹣m)+1=mn+1,∵(m,n)是“共生有理数对”,∴m﹣n=mn+1,∴﹣n+m=mn+1,∴(﹣n,﹣m)是“共生有理数对”;故答案为:是;(4)∵(m,n)是“共生有理数对”,∴m﹣n=mn+1,即mn﹣m=﹣(n+1),∴(n﹣1)m=﹣(n+1),∴.22.解:根据题意得:a=﹣1,b=0,c=±1,当a=﹣1,b=0,c=﹣1,原式=﹣1+0﹣1=﹣2,当a=﹣1,b=0,c=1,原式=﹣1+0+1=0.23.解:(1)∵点B表示的数是4,当点A′恰好是AB的中点时,∴点A′表示的数为2,∴数轴上点B′表示的数为2+4=6.故答案为:6;(2)由题意知点A′在点A右侧,即m<n,则m﹣n<0.又原点在线段A'B之间,则点A'在原点的左侧,即m<0,n<0,|m|+|n|+|m﹣n|=﹣m﹣n﹣m+n=﹣2m.。

2018-2019学年北师大版广东省深圳市罗湖区七年级第二学期期中数学试卷 含解析

2018-2019学年北师大版广东省深圳市罗湖区七年级第二学期期中数学试卷 含解析

2018-2019学年七年级第二学期期中数学试卷一、选择题1.计算23x x g 结果是( ) A .52xB .5xC .6xD .8x2.下面的四个图形中,1∠与2∠是对顶角的是( )A .B .C .D .3.一本笔记本5元,买x 本共付y 元,则5和y 分别是( ) A .常量,常量B .变量,变量C .常量,变量D .变量,常量4.某种植物细胞的直径约为0.00012mm ,用科学记数法表示这个数为( )mm . A .41.210⨯B .31210-⨯C .31.210-⨯D .41.210-⨯5.下列运算正确的是( )A .22423m m m +=B .224()mn mn = C .22248m m m =g D .532m m m ÷= 6.下列运算中正确的是( ) A .222()a b a b +=+ B .22()()4a b a b ab +=-+C .(1)(2)2a b ab +-=-D .22()()a b b a a b +-=-7.下列说法中,正确的是( ) A .两条不相交的直线叫做平行线 B .一条直线的平行线有且只有一条C .在同一平面内,若直线//a b ,//a c ,则//b cD .若两条线段不相交,则它们互相平行8.如图,测量运动员跳远成绩选取的是AB 的长度,其依据是( )A.两点确定一条直线B.两点之间直线最短C.两点之间线段最短D.垂线段最短9.小芳离开家不久,发现把作业忘在家里,于是返回家里找到了作业本再去学校;在如图所示的三个图象中,能近似地刻画小芳离开家的距离与时间的关系的图象是()A.①B.②C.③D.三个图象都不对10.小明和小华是同班同学,也是邻居,某日早晨,小明7:00先出发去学校,走了一段后,在途中停下吃了早晨,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公交汽车到了学校.如图是他们从家到学校已走的路程s(米)和小明所用时间t(分钟)的关系图.则下列说法中正确的个数是()①小明吃早晨用时5分钟;②小华到学校的平均速度是240米/分;③小明跑步的平均速度是100米/分;④小华到学校的时间是7:05.A.1 B.2 C.3 D.411.已知直线//a b ,将一块含45︒角的直角三角板(90)C ∠=︒按如图所示的位置摆放,若160∠=︒,则2∠的度数是( )A .70︒B .75︒C .80︒D .85︒12.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如利用图1可以得到222()2a b a ab b +=++,那么利用图2所得到的数学等式是( )A .2222()a b c a b c ++=++B .2222()222a b c a b c ab ac bc ++=+++++C .2222()a b c a b b ab ac bc ++=+++++D .2()222a b c a b c ++=++二、填空题(本题共4小题,每小题3分,共12分) 13.若226x x m ++是一个完全平方式,则m 的值是 .14.如果一个角的补角是150︒,那么这个角的余角的度数是 度.15.如果每盒圆珠笔有12支,售价18元,用y (元)表示圆珠笔的售价,x 表示圆珠笔的支数,那么y 与x 之间的关系应该是 . 16.若2(3)()15x x n x mx ++=+-,则m n 的值为 .三、解答题(本题共7小题,其中第17题8分,第18题6分,第19题6分,第20题8分,第21题8分,第22题7分,第23题9分) 17.计算:(1)01(2)2|2|--+--(2)2201820172019-⨯(要求用公式简便计算)18.先化简,再求值:22(2)(2)(2)8a b a b a b b -+--+,其中2a =-,12b =. 19.在方格纸上过C 作线段CE AB ⊥,过D 作线段//DF AB ,且E 、F 在格点上.20.如图1,直线//a b ,100P ∠=︒,155∠=︒,求2∠的度数.现提供下面的解法,请填空,括号里标注理由.解:如图2,过点P 作直线c 平行于直线a , //a c Q (已知)1∴∠=又//a b Q (已知) //c b ∴2∴∠=1234∴∠+∠=∠+∠而34100APB ∠+∠=∠=︒(已知) 12100∴∠+∠=︒(等量代换) 155∠=︒Q2∴∠= ︒- ︒= ︒21.某洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y (升)与时间x (分钟)之间的关系如折线图所示,根据图象解答下列问题:(1)洗衣机的进水时间是分钟,清洗时洗衣机中的水量是升.(2)进水时y与x之间的关系式是.(3)已知洗衣机的排水速度是每分钟18升,如果排水时间为2分钟,排水结束时洗衣机中剩下的水量是升.22.将长为20cm,宽为8cm的长方形白纸,按如图所示的方式粘合起来,粘合部分的宽为3cm.纸条的总长度()y cm与白纸的张数x(张)的关系可以用下表表示:白纸张数x(张)1 2 3 4 5 ⋯纸条长度()y cm20 a54 71 b⋯(1)表格中:a=,b=(2)直接写出y与x的关系式;(3)要使粘合后的长方形周长为2028cm,则需要用多少张这样的白纸?23.用四个完全相同的直角三角形(如图1)拼成一大一小两个正方形(如图2),直角三角形的两直角边分别是a、()b a b>,斜边长为7cm,请解答:(1)图2中间小正方形的周长,大正方形的边长为.(2)用两种方法表示图2正方形的面积.(用含a,b,)c S=.(3)利用(2)小题的结果写出a、b、c三者之间的一个等式.(4)根据第(3)小题的结果,解决下面的问题:已知直角三角形的两条腿直角边长分为是8a=,6b=,求斜边c的值、参考答案一、选择题1.计算23x x g结果是()A.52x B.5x C.6x D.8x【分析】直接利用同底数幂的乘法运算法则计算得出答案.解:235=g.x x x故选:B.2.下面的四个图形中,1∠是对顶角的是()∠与2A.B.C.D.【分析】根据对顶角的定义作出判断即可.解:根据对顶角的定义可知:只有C图中的1∠与2∠是对顶角,其它都不是.故选:C.3.一本笔记本5元,买x本共付y元,则5和y分别是()A.常量,常量B.变量,变量C.常量,变量D.变量,常量【分析】在一个变化的过程中,数值发生变化的量称为变量,数值始终不变的量称为常量,所以5和y分别是常量,变量,据此判断即可.解:一本笔记本5元,买x本共付y元,则5和y分别是常量,变量.故选:C.4.某种植物细胞的直径约为0.00012mm,用科学记数法表示这个数为()mm.A.4⨯D.4⨯1.210-1.210-⨯C.31.210⨯B.31210-【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n⨯,与较大数a-的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:4=⨯,0.00012 1.210-故选:D .5.下列运算正确的是( )A .22423m m m +=B .224()mn mn = C .22248m m m =g D .532m m m ÷= 【分析】直接利用合并同类项法则以及积的乘方运算法则、 整式的乘除运算分别计算得出答案 .解:A 、22223m m m +=,故此选项错误;B 、2224()mn m n =,故此选项错误;C 、23248m m m =g ,故此选项错误;D 、532m m m ÷=,正确 .故选:D .6.下列运算中正确的是( ) A .222()a b a b +=+ B .22()()4a b a b ab +=-+C .(1)(2)2a b ab +-=-D .22()()a b b a a b +-=-【分析】根据整式的混合运算顺序和运算法则计算可得. 解:A .222()2a b a ab b +=++,此选项错误; B .22()()4a b a b ab +=-+,此选项正确; C .(1)(2)22a b ab a b +-=-+-,此选项错误;D .22()()a b b a a b +-=-+,此选项错误;故选:B .7.下列说法中,正确的是( ) A .两条不相交的直线叫做平行线 B .一条直线的平行线有且只有一条C .在同一平面内,若直线//a b ,//a c ,则//b cD .若两条线段不相交,则它们互相平行【分析】根据平行线的定义、性质、判定方法判断,排除错误答案.解:A 、平行线的定义:在同一平面内,两条不相交的直线叫做平行线.故错误;B、过直线外一点,有且只有一条直线与已知直线平行.故错误;C、在同一平面内,平行于同一直线的两条直线平行.故正确;D、根据平行线的定义知是错误的.故选:C.8.如图,测量运动员跳远成绩选取的是AB的长度,其依据是()A.两点确定一条直线B.两点之间直线最短C.两点之间线段最短D.垂线段最短【分析】利用垂线段最短求解.解:该运动员跳远成绩的依据是:垂线段最短;故选:D.9.小芳离开家不久,发现把作业忘在家里,于是返回家里找到了作业本再去学校;在如图所示的三个图象中,能近似地刻画小芳离开家的距离与时间的关系的图象是()A.①B.②C.③D.三个图象都不对【分析】根据题意可以写出各段中距离随时间的变化如何变化,从而可以解答本题.解:由题意可得,小芳从离开家到发现作业本忘在家里这段中,距离随着时间的增加而增大,小芳发现作业本忘在家里到回到家中这段中,距离随着时间的增大而减小,小芳回到家里到找到作业本这段中,距离随着时间的增加不变,小芳找到作业本到继续去学校这段中,距离随着时间的增加而增大,故选:C.10.小明和小华是同班同学,也是邻居,某日早晨,小明7:00先出发去学校,走了一段后,在途中停下吃了早晨,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公交汽车到了学校.如图是他们从家到学校已走的路程s (米)和小明所用时间t (分钟)的关系图.则下列说法中正确的个数是( ) ①小明吃早晨用时5分钟;②小华到学校的平均速度是240米/分; ③小明跑步的平均速度是100米/分; ④小华到学校的时间是7:05.A .1B .2C .3D .4【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.解:由图象可得,小明吃早晨用时1385-=分钟,故①正确,小华到学校的平均速度是:1200(138)240⨯-=米/分,故②正确, 小明跑步的平均速度是:(1200500)(2013)100-÷-=米/分,故③正确, 小华到学校的时间是7:13,故④错误, 故选:C .11.已知直线//a b ,将一块含45︒角的直角三角板(90)C ∠=︒按如图所示的位置摆放,若160∠=︒,则2∠的度数是( )A .70︒B .75︒C .80︒D .85︒【分析】给图中各角标上序号,由三角形外角的性质及对顶角相等可求出5∠的度数,由5∠的度数结合邻补角互补可求出3∠的度数,由直线//a b 利用“两直线平行,同位角相等”可得出2375∠=∠=︒,此题得解.解:给图中各角标上序号,如图所示.54B ∠=∠+∠Q ,4160∠=∠=︒,45B ∠=︒,54560105∴∠=︒+︒=︒.35180∠+∠=︒Q ,375∴∠=︒.Q 直线//a b ,2375∴∠=∠=︒,故选:B .12.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如利用图1可以得到222()2a b a ab b +=++,那么利用图2所得到的数学等式是( )A .2222()a b c a b c ++=++B .2222()222a b c a b c ab ac bc ++=+++++C .2222()a b c a b b ab ac bc ++=+++++D .2()222a b c a b c ++=++【分析】依据正方形的面积2()a b c =++;正方形的面积222222a b c ab ac bc =+++++,可得等式.解:Q 正方形的面积2()a b c =++;正方形的面积222222a b c ab ac bc =+++++. 2222()222a b c a b c ab ac bc ∴++=+++++.故选:B .二、填空题(本题共4小题,每小题3分,共12分)13.若226x x m ++是一个完全平方式,则m 的值是 3± .【分析】利用完全平方公式的结构特征判断即可m 的值即可.解:226x x m ++Q 是一个完全平方式,29m ∴=,解得:3m =±,则m 的值是3±,故答案为:3±14.如果一个角的补角是150︒,那么这个角的余角的度数是 60 度.【分析】首先求得这个角的度数,然后再求这个角的余角.解:18015030︒-︒=︒,903060︒-︒=︒.故答案为:60︒.15.如果每盒圆珠笔有12支,售价18元,用y (元)表示圆珠笔的售价,x 表示圆珠笔的支数,那么y 与x 之间的关系应该是 32y x = . 【分析】首先求出每支平均售价,即可得出y 与x 之间的关系.解:Q 每盒圆珠笔有12支,售价18元,∴每只平均售价为:18 1.512=(元), y ∴与x 之间的关系是:32y x =. 故答案为:32y x =. 16.若2(3)()15x x n x mx ++=+-,则m n 的值为25 . 【分析】先计算2(3)()(3)3x x n x n x n ++=+++,然后根据22(3)3)15x n x n x mx +++=+-,利用待定系数法求出m 、n 的值.解:2(3)()(3)3x x n x n x n ++=+++Q ,22(3)3)15x n x n x mx ∴+++=+-,3n m ∴+=,315n =-,2m ∴=-,5n =-,21(5)25m n -∴=-=, 故答案为125. 三、解答题(本题共7小题,其中第17题8分,第18题6分,第19题6分,第20题8分,第21题8分,第22题7分,第23题9分)17.计算:(1)01(2)2|2|--+--(2)2201820172019-⨯(要求用公式简便计算)【分析】(1)先根据零指数幂、负整数指数幂、绝对值分别计算求出即可;(2)根据平方差公式即可求出答案.解:(1)原式111222=+-=-; (2)2201820172019-⨯22018(20181)(20181)=--+222201820181=-+1=.18.先化简,再求值:22(2)(2)(2)8a b a b a b b -+--+,其中2a =-,12b =. 【分析】原式利用平方差公式,以及完全平方公式化简,去括号合并得到最简结果,把a 与b 的值代入计算即可求出值.解:原式2222244484a b a ab b b ab =--+-+=,当2a =-,12b =时,原式4=-. 19.在方格纸上过C 作线段CE AB ⊥,过D 作线段//DF AB ,且E 、F 在格点上.【分析】直接利用网格结合垂线的定义以及平行线的关系得出答案.解:如图所示:CE,DF即为所求.20.如图1,直线//∠的度数.现提供下面的解法,请填P∠=︒,求2a b,100∠=︒,155空,括号里标注理由.解:如图2,过点P作直线c平行于直线a,Q(已知)//a c∴∠=31∠又//Q(已知)a b∴c b//∴∠=21234∴∠+∠=∠+∠而34100∠+∠=∠=︒(已知)APB∴∠+∠=︒(等量代换)12100∠=︒Q155∴∠=︒-︒=︒2【分析】利用平行线的判定和性质解决问题即可.解:如图2,过点P作直线c平行于直线a,Q(已知)a c//∴∠=∠13又//Q(已知)a bc b∴(平行于同一条直线的两条直线平行)//∴∠=∠,24∴∠+∠=∠+∠(等式性质)1234而34100APB∠+∠=∠=︒(已知)∴∠+∠=︒(等量代换)12100Q∠=︒155∴∠=︒-︒=︒21005545故答案为:3∠,平行于同一条直线的两条直线平行,等式性质,100,55,45.21.某洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如折线图所示,根据图象解答下列问题:(1)洗衣机的进水时间是 4 分钟,清洗时洗衣机中的水量是升.(2)进水时y与x之间的关系式是.(3)已知洗衣机的排水速度是每分钟18升,如果排水时间为2分钟,排水结束时洗衣机中剩下的水量是升.【分析】(1)根据函数图象可以得到洗衣机的进水时间和清洗时洗衣机中的水量;(2)根据函数图象中的数据可以得到进水时y与x之间的关系式;(3)根据题意,可以得到排水结束时洗衣机中的水量.解:(1)由图象可得,洗衣机的进水时间是4分钟,清洗时洗衣机中的水量是40升,故答案为:4,40;(2)设进水时y与x之间的关系式是y kx=,440k=,得10k=,即进水时y与x之间的关系式是10y x=,故答案为:10y x=;(3)排水结束时洗衣机中剩下的水量是:4018240364-⨯=-=(升),故答案为:4.22.将长为20cm,宽为8cm的长方形白纸,按如图所示的方式粘合起来,粘合部分的宽为3cm.纸条的总长度()y cm与白纸的张数x(张)的关系可以用下表表示:白纸张数x(张)1 2 3 4 5 ⋯纸条长度()y cm20 a54 71 b⋯(1)表格中:a=37 ,b=(2)直接写出y与x的关系式;(3)要使粘合后的长方形周长为2028cm,则需要用多少张这样的白纸?【分析】(1)根据图形可知每增加一张白纸,长度就增加17cm可求a、b的值;(2)x张白纸粘合起来时,纸条长度()y cm在20cm的基础上增加了(1)x-个17cm的长度,依此可得y与x的关系式;(3)依据长方形的周长公式,可得粘合起来总长度为2028(8)2cm-,将1006y=代入(2)中所求的关系式,列方程求得x的值即可.解:(1)白纸张数为2时,纸条长度201737a=+=;白纸张数为5时,纸条长度2041788b=+⨯=;故答案为:37;88.(2)由题意知y与x的关系式为:2017(1)y x=+-,化简,得173y x=+;(3)粘合后的长方形周长为2028cm 时,2028810062y =-=, 当1006y =时,1731006x +=,解得:59x =,所以,需要用59张这样的白纸. 23.用四个完全相同的直角三角形(如图1)拼成一大一小两个正方形(如图2),直角三角形的两直角边分别是a 、()b a b >,斜边长为7cm ,请解答:(1)图2中间小正方形的周长 4c ,大正方形的边长为 .(2)用两种方法表示图2正方形的面积.(用含a ,b ,)c S = .(3)利用(2)小题的结果写出a 、b 、c 三者之间的一个等式 .(4)根据第(3)小题的结果,解决下面的问题:已知直角三角形的两条腿直角边长分为是8a =,6b =,求斜边c 的值、【分析】(1)根据正方形周长公式即可解答;(2)根据正方形的面积公式以及三角形的面积公式即可解答;(3)根据完全平方公式可得222a b c +=;(4)根据(3)的结论计算即可.解:(1)图2中间小正方形的周长4c ,大正方形的边长为44a b +, 故答案为:4c ;44a b +;(2)图2正方形的面积2()S a b =+或22S ab c =+, 故答案为:2()a b +或22ab c +;(3)222()2a b a ab b +=++Q ,222∴+=.a b c故答案为:222+=a b c(4)2222286100=+=+=Q,c a b∴=(负值不合题意,舍去).10c。

北师大版数学七年级上册同步练习:4.1 线段、射线、直线(有答案)

北师大版数学七年级上册同步练习:4.1 线段、射线、直线(有答案)

2018-2019学年度北师大版数学七年级上册同步练习4.1 线段、射线、直线学校:___________姓名:___________班级:___________一.选择题(共12小题)1.给出下列图形,其表示方法不正确的是()A.B.C.D.2.射线OA与OB是同一条射线,画图正确的是()A.B.C. D.3.如图所示,该条直线上的线段有()A.3条 B.4条 C.5条 D.6条4.下列说法正确的是()A.线段AB与线段BA是同一条线段B.射线OA与射线AO是同一条射线C.直线AB和直线L是同一条直线D.高楼顶上的射灯发出的光是一条直线5.如图所示,不同的线段的条数是()A.4条 B.5条 C.10条D.12条6.如图,对于直线AB,线段CD,射线EF,其中能相交的图是()A.B.C. D.7.观察下列图形,第一个图2条直线相交最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交最多有6个交点,…,像这样,则20条直线相交最多交点的个数是()A.171 B.190 C.210 D.3808.已知如图,则下列叙述不正确的是()A.点O不在直线AC上B.射线AB与射线BC是指同一条射线C.图中共有5条线段D.直线AB与直线CA是指同一条直线9.下列语句正确的是()A.延长线段AB到C,使BC=ACB.反向延长线段AB,得到射线BAC.取直线AB的中点D.连接A、B两点,并使直线AB经过C点10.观察图形,下列说法正确的个数是()(1)直线BA和直线AB是同一条直线;(2)AB+BD>AD;(3)射线AC和射线AD是同一条射线;(4)三条直线两两相交时,一定有三个交点.A.1个 B.2个 C.3个 D.4个11.工人师傅在给小明家安装晾衣架时,一般先在阳台天花板上选取两个点,然后再进行安装.这样做的数学原理是()A.过一点有且只有一条直线B.两点之间,线段最短C.连接两点之间的线段叫两点间的距离D.两点确定一条直线12.过平面上四个点中的任意两点画直线,可以画出的直线共有()A.1条 B.4条C.一条或四条D.1条或4条或6条二.填空题(共5小题)13.在一面墙上用一根钉子钉木条时,木条总是来回晃动;用两根钉子钉木条时,木条就会固定不动,用数学知识解释这两种生活现象为.14.表反映了平面内直线条数与它们最多交点个数的对应关系:按此规律,6条直线相交,最多有个交点;n条直线相交,最多有个交点.(n为正整数)15.经过同一平面内的A,B,C三点中的任意两点,可以作出条直线.16.下列说法中正确的有(把正确的序号填到横线上).①延长直线AB到C;②延长射线OA到C;③延长线段OA到C;④经过两点有且只有一条线段;⑤射线是直线的一半.17.直线l上有A、B、C三点,若AB=4,BC=2,则线段AC的长为.三.解答题(共2小题)18.如图,已知四点A、B、C、D,请用尺规作图完成.(保留画图痕迹)(1)画直线AB;(2)画射线AC;(3)连接BC并延长BC到E,使得CE=AB+BC;(4)在线段BD上取点P,使PA+PC的值最小.19.观察图①,由点A和点B可确定条直线;观察图②,由不在同一直线上的三点A、B和C最多能确定条直线;(1)动手画一画图③中经过A、B、C、D四点的所有直线,最多共可作条直线;(2)在同一平面内任三点不在同一直线的五个点最多能确定条直线、n 个点(n≥2)最多能确定条直线.参考答案一.选择题(共12小题)1.B.2.B.3.D.4.A.5.C.6.B.7.B.8.B.9.B.10.C.11.D.12.D.二.填空题(共5小题)13.两点确定一条直线.14.15,.15.1或3.16.③.17.6或2.三.解答题(共2小题)18.解:如图所画:(1)(2)(3)(4).19.解:①由点A和点B可确定1条直线;②由不在同一直线上的三点A、B和C最多能确定3条直线;经过A、B、C、D四点最多能确定6条直线;直在同一平面内任三点不在同一直线的五个点最多能确定10条线、根据1个点、两个点、三个点、四个点、五个点的情况可总结出n个点(n≥2)时最多能确定:条直线.故答案为:1;3,6,10,.。

【北师大版】初一数学上期中第一次模拟试题(附答案)

【北师大版】初一数学上期中第一次模拟试题(附答案)

一、选择题1.某养殖场2018年年底的生猪出栏价格是每千克a 元.受市场影响,2019年第一季度出栏价格平均每千克下降了15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )A .(1-15%)(1+20%)a 元B .(1-15%)20%a 元C .(1+15%)(1-20%)a元 D .(1+20%)15%a 元 2.单项式21412n a b --与83m ab 是同类项,则57(1)(1)n m +-=( ) A .14 B .14- C .4 D .-43.我们知道,用字母表示的代数式是具有一般意义的.请仔细分析下列赋予3a 实际意义的例子中不正确的是( )A .若葡萄的价格是3 元/kg ,则3a 表示买a kg 葡萄的金额B .若a 表示一个等边三角形的边长,则3a 表示这个等边三角形的周长C .某款运动鞋进价为a 元,若这款运动鞋盈利50%,则销售两双的销售额为3a 元D .若3和a 分别表示一个两位数中的十位数字和个位数字,则3a 表示这个两位数 4.下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x +C .()232x x ++D .()36x x ++5.式子5x x-是( ). A .一次二项式B .二次二项式C .代数式D .都不是 6.多项式33x y xy +-是( )A .三次三项式B .四次二项式C .三次二项式D .四次三项式 7.数学考试成绩85分以上为优秀,以85分为标准,老师将某一小组五名同学的成绩记为+9、-4、+11、-7、0,这五名同学的实际成绩最高的应是( )A .94分B .85分C .98分D .96分8.下列说法正确的是( )A .近似数1.50和1.5是相同的B .3520精确到百位等于3600C .6.610精确到千分位D .2.708×104精确到千分位 9.一件商品原售价为2000元,销售时先提价10%;再降价10%,现在的售价与原售价相比( )A .提高20元B .减少20元C .提高10元D .售价一样10.如果a ,b ,c 为非零有理数且a + b + c = 0,那么a b c abc a b c abc+++的所有可能的值为(A .0B .1或- 1C .2或- 2D .0或- 211.下列说法中错误的有( )个①绝对值相等的两数相等.②若a ,b 互为相反数,则a b=﹣1.③如果a 大于b ,那么a 的倒数小于b 的倒数.④任意有理数都可以用数轴上的点来表示.⑤x 2﹣2x ﹣33x 3+25是五次四项.⑥两个负数比较大小,绝对值大的反而小.⑦一个数的相反数一定小于或等于这个数.⑧正数的任何次幂都是正数,负数的任何次幂都是负数.A .4个B .5个C .6个D .7个12.据中国电子商务研究中心() 发布2017《年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资,数据1159.56亿元用科学记数法可表示为( )A .81159.5610⨯元B .1011.595610⨯元C .111.1595610⨯元D .81.1595610⨯元二、填空题13.在同一平面中,两条直线相交有一个交点,三条直线两两相交最多有3个交点,四条直线两两相交最多有6个交点……由此猜想,当相交直线的条数为n 时,最多可有的交点数m 与直线条数n 之间的关系式为:m =_____.(用含n 的代数式填空)14.若212m m a b -是一个六次单项式,则m 的值是______. 15.如图所示,图①是一个三角形,分别连接三边中点得图②,再分别连接图②中的小三角形三边中点,得图③……按此方法继续下去.在第n 个图形中有______个三角形(用含n 的式子表示)16.已知()()2420b k k a k =--≠,用含有b 、k 的代数式表示a ,则a =______.17.绝对值小于2018的所有整数之和为________.18.大肠杆菌每过20分钟便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成_____个.19.截至2020年7月2日,全球新冠肺炎确诊病例已超过1051万例,其中数据1051万用科学记数法表示为_____.20.一个数的25是165-,则这个数是______. 三、解答题21.高速公路养护小组,乘车沿东西方向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+17,-9,+7,-15,-3,+11,-6,-8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远? (2)若汽车耗油量为0.2升/千米,则这次养护共耗油多少升?22.老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:+3(x ﹣1)=x 2﹣5x +1.(1)求所挡的二次三项式;(2)若x =﹣2,求所挡的二次三项式的值.23.已知a+b =2,ab =2,求32231122a b a b ab ++的值. 24.计算(1)3124623⎛⎫⎛⎫-÷-+⨯- ⎪ ⎪⎝⎭⎝⎭ (2)()()34011 1.950.50|5|5---+-⨯⨯--+.25.已知数轴上的点A ,B ,C ,D 所表示的数分别是a ,b ,c ,d ,且()()22141268+++=----a b c d .(1)求a ,b ,c ,d 的值; (2)点A ,C 沿数轴同时出发相向匀速运动,103秒后两点相遇,点A 的速度为每秒4个单位长度,求点C 的运动速度;(3)A ,C 两点以(2)中的速度从起始位置同时出发,向数轴正方向运动,与此同时,D 点以每秒1个单位长度的速度向数轴正方向开始运动,在t 秒时有2BD AC =,求t 的值;(4)A ,C 两点以(2)中的速度从起始位置同时出发相向匀速运动,当点A 运动到点C 起始位置时,迅速以原来速度的2倍返回;到达出发点后,保持改后的速度又折返向点C 起始位置方向运动;当点C 运动到点A 起始位置时马上停止运动.当点C 停止运动时,点A 也停止运动.在此运动过程中,A ,C 两点相遇,求点A ,C 相遇时在数轴上对应的数(请直接写出答案).26.给定一列分式:3x y ,52x y -,73x y ,94x y-,…(其中0x ≠). (1)把任意一个分式除以前面一个分式,你发现了什么规律?(2)根据你发现的规律,试写出给定的那列分式中的第7个分式和第8个分式.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1-15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可.【详解】第三季度初这家养殖场的生猪出栏价格是每千克(1-15%)(1+20%)a元.故选:A.【点睛】本题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键.2.B解析:B【分析】直接利用同类项的概念得出n,m的值,即可求出答案.【详解】21412na b--与83mab是同类项,∴21184nm-=⎧⎨=⎩解得:121mn⎧=⎪⎨⎪=⎩则()()5711n m+-=14-故答案选B.【点睛】本题考查的知识点是同类项,解题的关键是熟练的掌握数轴同类项.3.D解析:D【分析】根据单价×数量=总价,等边三角形周长=边长×3,售价=进价+利润,两位数的表示=十位数字×10+个位数字进行分析即可.【详解】A、根据“单价×数量=总价”可知3a表示买a kg葡萄的金额,此选项不符合题意;B 、由等边三角形周长公式可得3a 表示这个等边三角形的周长,此选项不符合题意;C 、由“售价=进价+利润”得售价为1.5a 元,则2×1.5a =3a (元),此选项不符合题意;D 、由题可知,这个两位数用字母表示为10×3+a =30+a ,此选项符合题意.故选:D .【点睛】本题主要考查了列代数式,解题的关键是掌握代数式的书写规范和实际问题中数量间的关系.4.B解析:B【分析】依题意可得S S S =-阴影大矩形小矩形、S S S =+阴影正方形小矩形、S S S =+阴影小矩形小矩形,分别可列式,列出可得答案.【详解】解:依图可得,阴影部分的面积可以有三种表示方式:()()322S S x x x -=++-大矩形小矩形;()232S S x x +=++正方形小矩形;()36S S x x +=++小矩形小矩形.故选:B.【点睛】本题考查多项式乘以多项式及整式的加减,关键是熟练掌握图形面积的求法,还有本题中利用割补法来求阴影部分的面积,这是一种在初中阶段求面积常用的方法,需要熟练掌握. 5.C解析:C【分析】根据代数式以及整式的定义即可作出判断.【详解】 式子5x x-分母中含有未知数,因而不是整式,故A 、B 错误,是代数式,故C 正确. 故选:C .【点睛】 本题考查了代数式的定义,就是利用运算符号把数或字母连接而成的式子,单独的数或字母都是代数式.6.D解析:D【分析】根据多项式的项及次数的定义确定题目中的多项式的项和次数就可以了.【详解】解:由题意,得该多项式有3项,最高项的次数为4,该多项式为:四次三项式.故选:D .【点睛】本题考查了多项式,正确把握多项式的次数与系数确定方法是解题的关7.D解析:D【分析】根据85分为标准,以及记录的数字,求出五名学生的实际成绩,即可做出判断.【详解】解:根据题意得:859=94,854=81,8511=96,857=78,850=85+-+--即五名学生的实际成绩分别为:94;81;96;78;85,则这五名同学的实际成绩最高的应是96分.故选D .【点睛】本题考查了正数和负数的识别,有理数的加减的应用,正确理解正负数的意义是解题的关键.8.C解析:C【分析】相似数和原值是不相同的;3520精确到百位是3500;2.708×104精确到十位.【详解】A 、近似数1.50和1.5是不同的,A 错B 、3520精确到百位是3500,B 错D 、2.708×104精确到十位.【点睛】本题考察相似数的定义和科学计数法.9.B解析:B【分析】根据题意可列式现在的售价为()()2000110110⨯+%⨯-%,即可求解.【详解】解:根据题意可得现在的售价为()()20001101101980⨯+%⨯-%=(元),所以现在的售价与原售价相比减少20元,故选:B .【点睛】本题考查有理数运算的实际应用,根据题意列出算式是解题的关键.10.A解析:A【分析】根据题意确定出a,b,c中负数的个数,原式利用绝对值的代数意义化简,计算即可得到结果.【详解】解:∵a、b、c为非零有理数,且a+b+c=0∴a、b、c只能为两正一负或一正两负.①当a、b、c为两正一负时,设a、b为正,c为负,原式=1+1+(-1)+(-1)=0,②当a、b、c为一正两负时,设a为正,b、c为负原式1+(-1)+(-1)+1=0,综上,a b c abca b c abc+++的值为0,故答案为:0.【点睛】此题考查了绝对值,有理数的混合运算,熟练掌握运算法则是解本题的关键.11.C解析:C【分析】分别根据有理数、绝对值、相反数的定义及数轴的特点对各小题进行逐一判断.【详解】解:①绝对值相等的两数相等或互为相反数,故本小题错误;②若a,b互为相反数,则ab=-1在a、b均为0的时候不成立,故本小题错误;③∵如果a=2,b=0,a>b,但是b没有倒数,∴a的倒数小于b的倒数不正确,∴本小题错误;④任意有理数都可以用数轴上的点来表示,故本小题正确;⑤x2-2x-33x3+25是三次四项,故本小题错误;⑥两个负数比较大小,绝对值大的反而小,故本小题正确;⑦负数的相反数是正数,大于负数,故本小题错误;⑧负数的偶次方是正数,故本小题错误,所以④⑥正确,其余6个均错误.故选C.【点睛】本题考查的是有理数、绝对值、相反数的定义及数轴的特点,熟知以上知识是解答此题的关键.12.C解析:C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】1159.56亿=115956000000,所以1159.56亿用科学记数法表示为1.15956×1011,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题13.【分析】根据题意3条直线相交最多有3个交点4条直线相交最多有6个交点5条直线相交最多有10个交点而3=1+26=1+2+310=1+2+3+4故可猜想n条直线相交最多有1+2+3+…+(n-1)=个解析:()12 n n-【分析】根据题意,3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点.而3=1+2,6=1+2+3,10=1+2+3+4,故可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12n n-个交点.【详解】解:∵3条直线相交最多有3个交点,4条直线相交最多有6个交点.而3=1+2,6=1+2+3,10=1+2+3+4,∴可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12 n n-个交点.即()12n nm-=故答案为:()12n n-.【点睛】本题主要考查了相交线,图形的规律探索,此题着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊向一般猜想的方法.14.2【分析】根据一个单项式中所有字母的指数的和叫做单项式的次数可得2m+m=6再解即可【详解】由题意得解得故答案为:2【点睛】此题主要考查了单项式的次数关键是掌握单项式的相关定义解析:2【分析】根据一个单项式中所有字母的指数的和叫做单项式的次数可得2m+m=6,再解即可.【详解】由题意,得26m m +=,解得2m =.故答案为:2【点睛】此题主要考查了单项式的次数,关键是掌握单项式的相关定义.15.【分析】分别数出图①图②图③中的三角形的个数可以发现:第几个图形中三角形的个数就是4与几的乘积减去3如图③中三角形的个数为9=4×3-3按照这个规律即可求出第n 各图形中有多少三角形【详解】分别数出图 解析:()43n -【分析】分别数出图①、图②、图③中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去3.如图③中三角形的个数为9=4×3-3.按照这个规律即可求出第n 各图形中有多少三角形.【详解】分别数出图①、图②、图③中的三角形的个数,图①中三角形的个数为1=4×1-3;图②中三角形的个数为5=4×2-3;图③中三角形的个数为9=4×3-3;…可以发现,第几个图形中三角形的个数就是4与几的乘积减去3.按照这个规律,如果设图形的个数为n ,那么其中三角形的个数为4n-3.故答案为4n-3.【点睛】此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题.16.【分析】将已给的式子作恒等式进行变形表示a 由于k≠0先将式子左右同时除以(-4k )再移项系数化1即可表示出a 【详解】∵k≠0∴原式两边同时除以(-4x )得∴∴故答案为【点睛】本题考查的是代数式的表示 解析:2248b k k+【分析】将已给的式子作恒等式进行变形表示a,由于k≠0,先将式子左右同时除以(-4k),再移项、系数化1,即可表示出a.【详解】∵k≠0,∴原式两边同时除以(-4x)得,22 4bk a k=--∴224ba kk=+,∴2224828b k b kak k+=+=,故答案为2248b kk+.【点睛】本题考查的是代数式的表示,能够进行合理变形是解题的关键.17.0【分析】根据绝对小于2018可得许多互为相反数的数根据互为相反数的和等于可得答案【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2解析:0【分析】根据绝对小于2018,可得许多互为相反数的数,根据互为相反数的和等于,可得答案.【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2017=0,故答案为0.【点睛】本题考查了有理数的加法,先根据绝对值小于2018写出各数,再根据有理数的加法,得出答案.18.512【解析】分析:由于3小时有9个20分而大肠杆菌每过20分便由1个分裂成2个那么经过第一个20分钟变为2个经过第二个20分钟变为22个然后根据有理数的乘方定义可得结果详解:∵3小时有9个20分而解析:512【解析】分析:由于3小时有9个20分,而大肠杆菌每过20分便由1个分裂成2个,那么经过第一个20分钟变为2个,经过第二个20分钟变为22个,然后根据有理数的乘方定义可得结果.详解:∵3小时有9个20分,而大肠杆菌每过20分便由1个分裂成2个,那么经过第一个20分钟变为2个,经过第二个20分钟变为22个,⋯经过第九个20分钟变为29个,即:29=512个.所以,经过3小时后这种大肠杆菌由1个分裂成512个.故答案为512.点睛:乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.19.051×107【分析】绝对值大于10的数用科学记数法表示一般形式为a×10nn 为整数位数减1【详解】解:1051万=10510000=1051×107故答案为:1051×107【点睛】本题考查了科学解析:051×107【分析】绝对值大于10的数用科学记数法表示一般形式为a×10n,n为整数位数减1.【详解】解:1051万=10510000=1.051×107.故答案为:1.051×107.【点睛】本题考查了科学记数法-表示较大的数,科学记数法中a的要求和10的指数n的表示规律为关键,20.−8【分析】把这个数看成单位1它的对应的数量是求这个数用除法【详解】()÷=−8故答案为−8【点睛】此题考查有理数的除法解题关键在于这个数看成单位1解析:−8【分析】把这个数看成单位“1”,它的25对应的数量是165-,求这个数用除法【详解】(165-)÷25=−8.故答案为−8.【点睛】此题考查有理数的除法,解题关键在于这个数看成单位“1”三、解答题21.(1)最后到达的地方在出发点的东边,距出发点15千米;(2)这次养护共耗油19.4升.【分析】(1)求出这一组数的和,结果是正数则在出发点的东边,是负数则在出发点的西侧;(2)所走的路程是这组数据的绝对值的和,然后乘以0.2,即可求得耗油量.【详解】解:(1)17﹣9+7﹣15﹣3+11﹣6﹣8+5+16,=17+7+11+5+16-(9+15+3+6+8),=15.答:最后到达的地方在出发点的东边,距出发点15千米;(2)(17971531168516)0.2++-+++-+-+++-+-++++⨯,=97×02,=19.4(升).答:这次养护共耗油19.4升.【点睛】本题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.也考查了有理数的加减运算.22.(1)x2﹣8x+4;(2)24【分析】(1)根据“已知两个加数的和与其中的一个加数,求另一个加数用减法”,列出代数式并合并即可;(2)把x=-2代入(1)的结果,计算即可.【详解】(1)x2﹣5x+1﹣3(x﹣1)=x2﹣5x+1﹣3x+3=x2﹣8x+4;∴所挡的二次三项式为x2﹣8x+4.(2)当x=﹣2时,x2﹣8x+4=(﹣2)2﹣8×(﹣2)+4=4+16+4=24.【点睛】本题考查了整式的加减.根据加数与和的关系,列出求挡住的二次三项式的式子是解决本题的关键.23.4【分析】根据因式分解,首先将整式提取公因式12ab,在采用完全平方公式合,在代入计算即可.【详解】解:原式=12a3b+a2b2+12ab3=12ab (a 2+2ab +b 2) =12ab (a +b )2, ∵a +b =2,ab =2,∴原式=12×2×4=4. 【点睛】本题主要考查因式分解的代数计算,关键在于整式的因式分解.24.(1)14;(2)0【分析】(1)先计算乘法和除法,再计算加法;(2)分别计算乘方、乘法和绝对值,再计算加法和减法.【详解】解:(1)原式=2124633⎛⎫⎛⎫-⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭()162=+-14=;(2)原式011055=-++-+=0.【点睛】本题考查有理数的混合运算.(1)中注意要先把除法化为乘法再计算;(2)中注意多个有理数相乘时,只要有一个因数为0,那么积就为0.25.(1)14a =-,12b =-,6c =,8d =;(2)点C 的运动速度为每秒2个单位;(3)4t =或20;(4)23-,223-,10-. 【分析】(1)根据平方数和绝对值的非负性计算即可;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==,即可得解; (3)根据题意分别表示出AC ,BD ,在进行分类讨论计算即可;(4)根据点A ,C 相遇的时间不同进行分类讨论并计算即可;【详解】(1)∵()()22141268+++=----a b c d ,∴()()221412+6+80+++--=a b c d , ∴14a =-,12b =-,6c =,8d =;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==,解得:2x =,∴点C 的运动速度为每秒2个单位;(3)t 秒时,点A 数为144t -+,点B 数为-12,点C 数为62t +,点D 数为8t +,∴()62144202AC t t t =+--+=-,()81220BD t t =+--=+,∵2BD AC =, ∴①2020t -≥时,()2022202t t +=-,解得:4t =; ②20-2t <0时,即t >10,()202220t t +=-,解得:20t =; ∴4t =或20.(4)C 点运动到A 点所需时间为()614102s --=,所以A ,C 相遇时间10t ≤,由(2)得103t =时,A ,C 相遇点为102144-33-+⨯=,A 到C 再从C 返回到A ,用时()()()6146147.548s ----+=; ①第一次从点C 出发时,若与C 相遇,根据题意得()852t t ⨯-=,203t =<10,此时相遇数为20226233-⨯=-;②第二次与C 点相遇,得()()87.52614t t ⨯-+=--,解得8t =<10,此时相遇点为68210-⨯=-; ∴A ,C 相遇时对应的数为:23-,223-,10-. 【点睛】本题主要考查了数轴的动点问题,准确分析计算是解题的关键. 26.(1)任意一个分式除以前面一个分式,都得2x y -.(2)第7个分式为157x y,第8个分式为178x y-. 【分析】(1)分别算出第二个与第一个,第三个与第二个,第四个与第三个分式的除法结果,即可发现规律;(2)根据题中所给的式子找出分子、分母的指数变化规律、再找出符号的正负交替变化规律,根据规律写出所求的式子.【详解】解:(1)5352223x x x y x y y y x y, 757223235x x x y x y y y x y,979324347x x x y x y y y x y, …… ∴任意一个分式除以前面一个分式,都得2x y-. (2)∵由式子3579234x x x x y y y y,-,,- …,发现分母上是y 1,y 2,y 3,y 4,……所以第7个式子分母上是y 7,第8个分母上是y 8;分子上是x 3,x 5,x 7,x 9,……所以第7个式子分子上是x 15,第8个分子上是x 17,再观察符号发现,第偶数个为负,第奇数个为正,∴第7个分式为157x y,第8个分式为178x y -. 【点睛】本题考查式子的规律,根据题意分别找出分子和分母及符号的变化规律是解答此题的关键.。

2018-2019学年人教新版北京师大附属实验中学七年级第二学期期中数学试卷 含解析

2018-2019学年人教新版北京师大附属实验中学七年级第二学期期中数学试卷 含解析

2018-2019学年七年级第二学期期中数学试卷一、选择题1.在平面直角坐标系中,点(1,2)-在( )A .第一象限B .第二象限C .第三象限D .第四象限2.下列等式正确的是( )A .2(3)3-=-B .14412=±C .82-=-D .255-=-3.下列实数中,是无理数的是( )A .3.14159265B .36C .7D .2274.如图,下列能判定//AB CD 的条件有( )个.(1)180B BCD ∠+∠=︒;(2)12∠=∠;(3)34∠=∠; (4)5B ∠=∠.A .4个B .3 个C .2 个D .1个5.若m n >,则下列不等式不一定成立的是( )A .22m n +>+B .22m n >C .22m n ->-D .22m n >6.下列运算正确的是( )A .22x x x =gB .22()xy xy =C .236()x x =D .224x x x +=7.如图,一把矩形直尺沿直线断开并错位,点E 、D 、B 、F 在同一条直线上,若125ADE ∠=︒,则DBC ∠的度数为( )A .55︒B .65︒C .75︒D .125︒8.下列命题中假命题的是( )A .同旁内角互补,两直线平行B .如果两条直线都与第三条直线平行,那么这两条直线也互相平行C .在同一平面内,过一点有且只有一条直线与已知直线垂直D .在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也互相垂直9.数轴上表示1,2的点分别为A ,B ,点A 是BC 的中点,则点C 所表示的数是( )A .21-B .12-C .22-D .22-10.如图(1)所示为长方形纸带,将纸带沿EF 折叠成图;(2)再沿BF 折叠成图;(3)继续沿EF 折叠成图(4)按此操作,最后一次折叠后恰好完全盖住EFG ∠,整个过程共折叠了9次,问图(1)中DEF ∠的度数是( )A .20︒B .19︒C .18︒D .15︒二、填空题(本大题共10小题,共20分)11.把命题“邻补角互补”改写成“如果⋯,那么⋯”的形式 .12.若某一个正数的平方根是23m +和1m +,则m 的值是 .13.若2m a =,8n a =,则2m n a += .14.若点(2,1)P m m -+在x 轴上,点P 坐标为 .15.如图,C 岛在A 岛的北偏东50︒方向,C 岛在B 岛的北偏西40︒方向,则从C 岛看A 、B 两岛的视角ACB ∠等于 度.16.如图,要把池中的水引到D 处,可过D 点引DC AB ⊥于C ,然后沿DC 开渠,可使所开渠道最短,试说明设计的依据: .17.如图,将一副三角板和一张对边平行的纸条按如图方式摆放,两个三角板的一直角边重合,含30︒角的直角三角板的斜边与纸条一边重合,含45︒角的三角板的一个顶点在纸条的另一边上,则1∠的度数是 .18.若不等式2(3)1x +>的最小整数解是方程23x ax -=的解,则a 的值为 .19.如图,在直角三角形ABC 中,90C ∠=︒,4AC =,将ABC ∆沿CB 向右平移得到DEF ∆,若平移距离为3,则阴影部分的面积等于 .20.如图在平面直角坐标系中,一动点从原点O 出发,按向上、向右、向下、向右的方向依次平移,每次移动一个单位,得到点1(0,1)A ,2(1,1)A ,3(1,0)A ,4(2,0)A ,⋯,那么点14A 的坐标为 ,点2019A 的坐标为 .三、解答题(本大题共8小题,共50分)21.计算:(138|32252--(2)2723()()a a a a -+÷-22.解下列不等式(组),并把(2)的解集表示在数轴上.(1)3(2)92(1)x x +---…(2)523(2)12123x xx x +<+⎧⎪--⎨⎪⎩…23.已知AD BC ⊥,FG BC ⊥,垂足分别为D 、G ,且12∠=∠,求证BDE C ∠=∠. 证明:AD BC ⊥Q ,FG BC ⊥ (已知),90ADC FGC ∴∠=∠=︒ .//AD FG ∴ .13∴∠=∠又12∠=∠Q ,(已知),32∴∠=∠ .//ED AC ∴ .BDE C ∴∠=∠ .24.如图,这是某市部分建筑分布简图,请以火车站的坐标为(1,2)-,市场的坐标为(3,5)建立平面直角坐标系,并分别写出超市、体育场和医院的坐标.25.某商场购进A 、B 两种型号的智能扫地机器人共60个,这两种机器人的进价、售价如表所示.类型价格A 型B 型进价(元/个) 2000 2600售价(元/个)2800 3700(1)若恰好用掉14.4万元,那么这两种机器人各购进多少个?(2)在每种机器人销售利润不变的情况下,若该商场计划销售这批智能扫地机器人的总利润不少于53000元,问至少需购进B型智能扫地机器人多少个?26.如图,(1,0)A-,(1,4)C,点B在x轴上,且3AB=.(1)求点B的坐标;(2)求ABC∆的面积;(3)在y轴上是否存在P,使以A、B、P三点为顶点的三角形的面积为10?若存在,请求出点P的坐标;若不存在,请说明理由.27.先阅读第(1)题的解法,再解答第(2)题:(1)已知a,b是有理数,并且满足等式253233a b a=+,求a,b的值.解:因为253233a b a-=-,即253(2)33a b a-=-所以2523b aa-=⎧⎪⎨-=⎪⎩解得23136ab⎧=-⎪⎪⎨⎪=⎪⎩(2)已知x,y是有理数,并且x,y满足等式221742x y++=+x y的值.28.如图,已知//AM BN,60A∠=︒.点P是射线AM上一动点(与点A不重合),BC、BD分别平分ABP∠和PBN∠,分别交射线AM于点C,D.(1)求CBD∠的度数;(2)当点P运动时,APB∠与ADB∠之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.(3)当点P运动到使ACB ABD∠=∠时,ABC∠的度数是.四、填空题(本题共6分)29.阅读理解:我们把对非负实数x “四舍五入”到个位的值记为《x 》,即当n 为非负整数时,若1122n x n -<+…,则《x 》n =.例如《0.67》1=,《2.49》2=,⋯⋯请解决下列问题:(1)2》= ;(2)若《21x -》5=,则实数x 的取值范围是 ;(3)①《2x 》2=《x 》;②当m 为非负整数时,《2m x +》m =+《2x 》;③满足《x 》32x =的非负实数x 只有两个.其中结论正确的是 (填序号)五、材料阅读题(本题共6分)30.材料一:中国象棋体现了我国古人的智慧和传统文化的精髓.中国象棋棋盘中蕴含着平面直角坐标系.如图是中国象棋棋盘的一半,棋子“马”走的规则是每步走“日”字形.例如:图中“马”所在的位置可以直接走到点A 、B 处;材料二:一动点沿着数轴向右平移3个单位,再向左平移2个单位,相当于向右平移1个单位,用实数加法表示为3(2)1+-=.若坐标平面上的点作如下平移:沿x 轴方向平移的数量为a (向右为正,向左为负,平移||a 个单位),沿y 轴方向平移的数量为b (向上为正,向下为负,平移||b 个单位),则把有序数对{a ,}b 叫做这一平移的“平移量”.“平移量” {a ,}b 与“平移量” {c ,}d 的加法运算法则为{a ,}{b c +,}{d a c =+,}b d +. 下面在图中的象棋棋盘上建立直角坐标系,设“帅”位于点(0,0),“相”位于点(4,2). 请解决下列问题:(1)图中“马”所在的点的坐标为 .(2)根据材料一和材料二,在整个直角坐标系中,不是棋子“马”的一步“平移量”的是 .(可多选,填选项前的字母)A .{1,2}B .{2-,1}C .{1,1}D -.{2-,1}E -.{3,1}-(3)设“马”的初始位置如图中所示,如果现在命令“马“每一步只能向右和向上前进(例如图中的“马”只能走到点A 、B 处),在整个坐标系中,试问:①“马”能否走到点C ?答: ;(填“能”或“不能” )②“马”能否走到点(2018,2019)和点(2020,2021)?若能,则需要几步?为什么?若不能,请说明理由.六、几何探究题(本题共8分)31.“一带一路”让中国和世界联系更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图所示,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视若灯A转动的速度是每秒2︒,灯B转动的速度是每秒1︒.假定主道路是平行的,即//PQ MN,且∠∠=.BAM BAN:2:1(1)填空:BAN∠=︒;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)若两灯同时开始转动,两灯射出的光束交于点C,且120∠=︒,则在灯B射线到ACB达BQ之前,转动的时间为秒.参考答案一、选择题1.在平面直角坐标系中,点(1,2)-在( )A .第一象限B .第二象限C .第三象限D .第四象限【分析】根据各象限内点的坐标特征解答即可.解:点(1,2)-在第二象限.故选:B .2.下列等式正确的是( )A 3=-B 12=±C 2=-D .5=-【分析】原式利用平方根定义及二次根式的性质判断即可得到结果.解:A 、原式|3|3=-=,错误;B 、原式12=,错误;C 、原式没有意义,错误;D 、原式5=-,正确,故选:D .3.下列实数中,是无理数的是( )A .3.14159265BCD .227【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解:A 、3.1415926是有限小数是有理数,选项错误.B 6=,是整数,是有理数,选项错误;C 是无理数,选项正确;D 、227是分数,是有理数,选项错误; 故选:C .4.如图,下列能判定//AB CD 的条件有( )个.(1)180B BCD ∠+∠=︒;(2)12∠=∠;(3)34∠=∠; (4)5B ∠=∠.A .4个B .3 个C .2 个D .1个【分析】在复杂的图形中具有相等关系或互补关系的两角首先要判断它们是否是同位角、内错角或同旁内角,被判断平行的两直线是否由“三线八角”而产生的被截直线. 解:(1)利用同旁内角互补判定两直线平行,故(1)正确;(2)利用内错角相等判定两直线平行,12∠=∠Q ,//AD BC ∴,而不能判定//AB CD ,故(2)错误;(3)利用内错角相等判定两直线平行,故(3)正确;(4)利用同位角相等判定两直线平行,故(4)正确.故选:B .5.若m n >,则下列不等式不一定成立的是( )A .22m n +>+B .22m n >C .22m n ->-D .22m n >【分析】根据不等式的性质,可得答案.解:A 、两边都加2,不等号的方向不变,故A 成立,B 、两边都乘2,不等号的方向不变,故B 成立;C 、两边都除以2-,不等号的方向改变,故C 不成立;D 、当1m n >>时,22m n >成立,当01m <<,1n <-时,22m n <,故D 不一定成立, 故选:D .6.下列运算正确的是( )A .22x x x =gB .22()xy xy =C .236()x x =D .224x x x +=【分析】根据同底数幂的除法,底数不变指数相减,合并同类项,系数相加字母和字母的指数不变,同底数幂的乘法,底数不变指数相加,幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.解:A 、23x x x =g 同底数幂的乘法,底数不变指数相加,故本选项错误;B 、222()xy x y =,幂的乘方,底数不变指数相乘,故本选项错误;C 、236()x x =,幂的乘方,底数不变指数相乘,故本选项正确;D 、2222x x x +=,故本选项错误.故选:C .7.如图,一把矩形直尺沿直线断开并错位,点E 、D 、B 、F 在同一条直线上,若125ADE ∠=︒,则DBC ∠的度数为( )A .55︒B .65︒C .75︒D .125︒【分析】由125ADE ∠=︒,根据邻补角的性质,即可求得ADB ∠的度数,又由//AD BC ,根据两直线平行,内错角相等,即可求得DBC ∠的度数.解:125ADE ∠=︒Q ,18055ADB ADE ∴∠=︒-∠=︒,//AD BC Q ,55DBC ADB ∴∠=∠=︒.故选:A .8.下列命题中假命题的是( )A .同旁内角互补,两直线平行B .如果两条直线都与第三条直线平行,那么这两条直线也互相平行C .在同一平面内,过一点有且只有一条直线与已知直线垂直D .在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也互相垂直【分析】利用平行线的性质、平行公理及两直线的位置关系分别判断后即可确定正确的选项.解:A 、同旁内角互补,两直线平行是平行线的判定定理,正确,是真命题; B 、如果两条直线都与第三条直线平行,那么这两条直线也互相平行,正确,是真命题; C 、在同一平面内,过一点有且只有一条直线与已知直线垂直,正确,是真命题; D 、在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也互相平行,错误,是假命题,故选:D .9.数轴上表示1,2的点分别为A ,B ,点A 是BC 的中点,则点C 所表示的数是( )A .21-B .12-C .22-D .22-【分析】首先根据数轴上1,2的对应点分别是点A 和点B ,可以求出线段AB 的长度,然后根据中点的性质即可解答.解:Q 数轴上1,2的对应点分别是点A 和点B , 21AB ∴=-,A Q 是线段BC 的中点, CA AB ∴=,∴点C 的坐标为:1(21)22--=-.故选:C .10.如图(1)所示为长方形纸带,将纸带沿EF 折叠成图;(2)再沿BF 折叠成图;(3)继续沿EF 折叠成图(4)按此操作,最后一次折叠后恰好完全盖住EFG ∠,整个过程共折叠了9次,问图(1)中DEF ∠的度数是( )A .20︒B .19︒C .18︒D .15︒【分析】根据最后一次折叠后恰好完全盖住EFG ∠;整个过程共折叠了9次,可得CF 与GF 重合,依据平行线的性质,即可得到DEF ∠的度数. 解:设DEF α∠=,则EFG α∠=, Q 折叠9次后CF 与GF 重合, 99CFE EFG α∴∠=∠=,如图(2),//CF DE Q , 180DEF CFE ∴∠+∠=︒,9180αα∴+=︒, 18α∴=︒,即18DEF ∠=︒. 故选:C .二、填空题(本大题共10小题,共20分)11.把命题“邻补角互补”改写成“如果⋯,那么⋯”的形式 如果两个角是邻补角.那么它们(这两个角)互补 .【分析】分清题目的已知与结论,即可解答.解:把命题“邻补角互补”改写为“如果⋯那么⋯”的形式是:如果两个角是邻补角.那么它们(这两个角)互补,故答案为:如果两个角是邻补角.那么它们(这两个角)互补. 12.若某一个正数的平方根是23m +和1m +,则m 的值是 3.【分析】根据平方根互为相反数,可得平方根的和为0,根据解一元一次方程,可得m 的值,根据平方运算,可得答案. 解:正数a 的平方根是23m +和1m +, 2310m m ∴+++=,43m =--. 故答案为:43-.13.若2m a =,8n a =,则2m n a += 32 .【分析】根据幂的乘方,可得同底数幂的乘法,根据同底数幂的乘法,可得答案. 解:222(2)24832m n m n +==⨯=g , 故答案为:32.14.若点(2,1)P m m -+在x 轴上,点P 坐标为 (3,0) . 【分析】根据x 轴上点的纵坐标为0列出方程求解即可. 解:Q 点(2,1)P m m -+在x 轴上, 10m ∴+=,解得1m =-,22(1)213m ∴-=--=+=,∴点P坐标为(3,0).故答案为:(3,0).15.如图,C岛在A岛的北偏东50︒方向,C岛在B岛的北偏西40︒方向,则从C岛看A、B两岛的视角ACB∠等于90 度.【分析】根据方位角的概念和平行线的性质,结合三角形的内角和定理求解.解:CQ岛在A岛的北偏东50︒方向,∴∠=︒,DAC50Q岛在B岛的北偏西40︒方向,C∴∠=︒,CBE40Q,DA EB//DAB EBA∴∠+∠=︒,180∴∠+∠=︒,CAB CBA90ACB CAB CBA∴∠=︒-∠+∠=︒.180()90故答案为:90.16.如图,要把池中的水引到D处,可过D点引DC AB⊥于C,然后沿DC开渠,可使所开渠道最短,试说明设计的依据:垂线段最短.【分析】根据垂线段的性质,可得答案.解:要把池中的水引到D处,可过D点引DC AB⊥于C,然后沿DC开渠,可使所开渠道最短,试说明设计的依据:垂线段最短. 故答案为:垂线段最短.17.如图,将一副三角板和一张对边平行的纸条按如图方式摆放,两个三角板的一直角边重合,含30︒角的直角三角板的斜边与纸条一边重合,含45︒角的三角板的一个顶点在纸条的另一边上,则1∠的度数是 15︒ .【分析】过A 点作//AB a ,利用平行线的性质得//AB b ,所以12∠=∠,3430∠=∠=︒,加上2345∠+∠=︒,易得115∠=︒. 解:如图,过A 点作//AB a , 12∴∠=∠, //a b Q , //AB b ∴, 3430∴∠=∠=︒,而2345∠+∠=︒, 215∴∠=︒, 115∴∠=︒.故答案为15︒.18.若不等式2(3)1x +>的最小整数解是方程23x ax -=的解,则a 的值为2. 【分析】求得x 的取值范围来确定x 的最小整数解;然后将x 的值代入已知方程列出关于系数a 的一元一次方程,通过解该方程即可求得a 的值. 解:2(3)1x +>解得52x >-,其最小整数解为2-,因此2(2)23a ⨯-+=,解得72a =. 故答案为:72. 19.如图,在直角三角形ABC 中,90C ∠=︒,4AC =,将ABC ∆沿CB 向右平移得到DEF ∆,若平移距离为3,则阴影部分的面积等于 12 .【分析】利用平移的性质得3BE AD ==,//AD BE ,则可判断四边形ABED 为平行四边形,然后根据平行四边形的面积公式计算.解:ABC ∆Q 沿CB 向右平移3个单位得到DEF ∆, 3BE AD ∴==,//AD BE , ∴四边形ABED 为平行四边形, ∴阴影部分的面积4312=⨯=.故答案为12.20.如图在平面直角坐标系中,一动点从原点O 出发,按向上、向右、向下、向右的方向依次平移,每次移动一个单位,得到点1(0,1)A ,2(1,1)A ,3(1,0)A ,4(2,0)A ,⋯,那么点14A 的坐标为 (7,1) ,点2019A 的坐标为 .【分析】根据图象可得移动4次图象完成一个循环,从而可得出点14A 、2019A 的坐标. 解:14432÷=⋯Q ,20194504..3÷=则14A 的坐标是(321⨯+,1)(7=,1).2019A 的坐标是(50421⨯+,0)(1008=,0). 故答案为:(7,1);(1008,0).三、解答题(本大题共8小题,共50分) 21.计算:(1)38|32|252+--+ (2)2723()()a a a a -+÷-【分析】(1)根据立方根的定义,绝对值的定义,算术平方根的定义分别化简计算即可; (2)根据幂的乘方与积的乘方以及同底数幂的除法分别化简即可求解. 解:(1)原式232520=+--+=;(2)原式2662a a a a =+-=.22.解下列不等式(组),并把(2)的解集表示在数轴上. (1)3(2)92(1)x x +---… (2)523(2)12123x x x x +<+⎧⎪--⎨⎪⎩„【分析】(1)去括号,移项,合并同类项,系数化为1,求得不等式的解集即可. (2)分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可. 【解答】(1)解:去括号,得36922x x +--+…,移项,得32296x x ++-…, 合并同类项,得55x …, 系数化为1,得1x …, (2)解:()523212123x x x x ⎧+<+⎪⎨--⎪⎩①②„,解不等式①,得2x <; 解不等式②,得1x -…,所以不等式组的解集为12x -<„, 不等式组的解集在数轴上的表示如下:23.已知AD BC ⊥,FG BC ⊥,垂足分别为D 、G ,且12∠=∠,求证BDE C ∠=∠. 证明:AD BC ⊥Q ,FG BC ⊥ (已知),90ADC FGC ∴∠=∠=︒ 垂直的定义 . //AD FG ∴ . 13∴∠=∠又12∠=∠Q ,(已知), 32∴∠=∠ . //ED AC ∴ . BDE C ∴∠=∠ .【分析】由条件可证明//AD FG ,可得到13∠=∠,结合条件可得//DE AC ,可得到BDE C ∠=∠,依此填空即可.【解答】证明:AD BC ⊥Q ,FG BC ⊥ (已知), 90ADC FGC ∴∠=∠=︒(垂直的定义). //AD FG ∴(同位角相等,两直线平行). 13∴∠=∠ (两直线平行,同位角相等), 又12∠=∠Q ,(已知), 32∴∠=∠(等量代换). //ED AC ∴(内错角相等,两直线平行). BDE C ∴∠=∠(两直线平行,同位角相等)故答案为:垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,同位角相等.24.如图,这是某市部分建筑分布简图,请以火车站的坐标为(1,2)-,市场的坐标为(3,5)建立平面直角坐标系,并分别写出超市、体育场和医院的坐标.【分析】根据火车站的坐标为(1,2)-,市场的坐标为(3,5)可建立平面直角坐标系,再根据坐标系得出所求点的坐标.解:建立平面直角坐标系如下:由图可知超市的坐标为(1,2)-.-,医院的坐标为(3,0)-,体育场的坐标为(5,5)25.某商场购进A、B两种型号的智能扫地机器人共60个,这两种机器人的进价、售价如表所示.类型A型B型价格进价(元/个)2000 2600售价(元/个)2800 3700(1)若恰好用掉14.4万元,那么这两种机器人各购进多少个?(2)在每种机器人销售利润不变的情况下,若该商场计划销售这批智能扫地机器人的总利润不少于53000元,问至少需购进B型智能扫地机器人多少个?【分析】(1)设购进A型智能扫地机器人x个,购进B型智能扫地机器人y个,根据总价=单价⨯数量结合购进A、B两种型号的智能扫地机器人60个共花费14.4万元,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进B型智能扫地机器人m个,则购进A型智能扫地机器人(60)-个,根据总利m润=单台利润⨯购进数量结合总利润不少于53000元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,取其中最小的整数即可得出结论.解:(1)设购进A型智能扫地机器人x个,购进B型智能扫地机器人y个,根据题意得:60 20002600144000x yx y+=⎧⎨+=⎩,解得:2040xy=⎧⎨=⎩.答:购进A型智能扫地机器人20个,购进B型智能扫地机器人40个.(2)设购进B型智能扫地机器人m个,则购进A型智能扫地机器人(60)m-个,根据题意得:(37002600)(28002000)(60)53000m m-+--…,解得:503 m….mQ为整数,17m∴….答:至少需购进B型智能扫地机器人17个.26.如图,(1,0)A-,(1,4)C,点B在x轴上,且3AB=.(1)求点B的坐标;(2)求ABC∆的面积;(3)在y轴上是否存在P,使以A、B、P三点为顶点的三角形的面积为10?若存在,请求出点P的坐标;若不存在,请说明理由.【分析】(1)分点B在点A的左边和右边两种情况解答;(2)利用三角形的面积公式列式计算即可得解;(3)利用三角形的面积公式列式求出点P到x轴的距离,然后分两种情况写出点P的坐标即可.解:(1)点B在点A的右边时,132-+=,点B在点A的左边时,134--=-,所以,B的坐标为(2,0)或(4,0)-;(2)ABC∆的面积1346 2=⨯⨯=;(3)设点P到x轴的距离为h,则13102h⨯=,解得203h=,点P在y轴正半轴时,20(0,)3P,点P在y轴负半轴时,20(0,)3P-,综上所述,点P的坐标为20(0,)3或20(0,)3-.27.先阅读第(1)题的解法,再解答第(2)题:(1)已知a,b是有理数,并且满足等式253233a b a=+,求a,b的值.解:因为253233a b a-=-,即253(2)33a b a-=-所以2523b aa-=⎧⎪⎨-=⎪⎩解得23136ab⎧=-⎪⎪⎨⎪=⎪⎩(2)已知x,y是有理数,并且x,y满足等式221742x y++=+x y的值.【分析】观察(1)中的解题过程,将(2)中已知等式变形求出x与y的值,即可求出原式的值.解:(2)整理得:(2)21742x y y ++=+,可得2174x y y +=⎧⎨=⎩, 解得:94x y =⎧⎨=⎩,则原式321=-=.28.如图,已知//AM BN ,60A ∠=︒.点P 是射线AM 上一动点(与点A 不重合),BC 、BD 分别平分ABP ∠和PBN ∠,分别交射线AM 于点C ,D .(1)求CBD ∠的度数;(2)当点P 运动时,APB ∠与ADB ∠之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.(3)当点P 运动到使ACB ABD ∠=∠时,ABC ∠的度数是 30︒ .【分析】(1)先根据平行线的性质,得出120ABN ∠=︒,再根据BC 、BD 分别平分ABP ∠和PBN ∠,即可得出CBD ∠的度数;(2)根据平行线的性质得出APB PBN ∠=∠,ADB DBN ∠=∠,再根据BD 平分PBN ∠,即可得到2PBN DBN ∠=∠进而得出2APB ADB ∠=∠;(3)根据ACB CBN ∠=∠,ACB ABD ∠=∠,得出CBN ABD ∠=∠,进而得到ABC DBN ∠=∠,根据60CBD ∠=︒,120ABN ∠=︒,可求得ABC ∠的度数.解:(1)//AM BN Q ,180A ABN ∴∠+∠=︒,60A ∠=︒Q ,120ABN ∴∠=︒,BC Q 、BD 分别平分ABP ∠和PBN ∠,12CBP ABP ∴∠=∠,12DBP NBP ∠=∠, 1602CBD ABN ∴∠=∠=︒;(2)不变化,2APB ADB ∠=∠,证明://AM BN Q ,APB PBN ∴∠=∠,ADB DBN ∠=∠,又BD Q 平分PBN ∠,2PBN DBN ∴∠=∠,2APB ADB ∴∠=∠;(3)//AD BN Q ,ACB CBN ∴∠=∠,又ACB ABD ∠=∠Q ,CBN ABD ∴∠=∠,ABC DBN ∴∠=∠,由(1)可得,60CBD ∠=︒,120ABN ∠=︒, 1(12060)302ABC ∴∠=︒-︒=︒, 故答案为:30︒.四、填空题(本题共6分)29.阅读理解:我们把对非负实数x “四舍五入”到个位的值记为《x 》,即当n 为非负整数时,若1122n x n -<+…,则《x 》n =.例如《0.67》1=,《2.49》2=,⋯⋯请解决下列问题:(1)2》= 1 ;(2)若《21x -》5=,则实数x 的取值范围是 ;(3)①《2x 》2=《x 》;②当m 为非负整数时,《2m x +》m =+《2x 》;③满足《x 》32x =的非负实数x 只有两个.其中结论正确的是 (填序号)【分析】(1)根据题意判断即可;(2)我们可以根据题意所述利用不等式解答;(3)根据题意可以判断题目中各个结论是否正确,从而可以解答本题.解:(1)》1=.故答案为:1;(2)若《21x -》5=,则11521522x --<+„,解得111344x <„. 故答案为:111344x <„; (3)《2x 》2=《x 》,例如当0.3x =时,《2x 》1=,2《x 》0=,故①错误; 当m 为非负整数时,不影响“四舍五入”,故《2m x +》m =+《2x 》,故②正确; 《x 》32x =,则31312222x x -<+„,解得11x -<„,故③错误. 故答案为:②五、材料阅读题(本题共6分)30.材料一:中国象棋体现了我国古人的智慧和传统文化的精髓.中国象棋棋盘中蕴含着平面直角坐标系.如图是中国象棋棋盘的一半,棋子“马”走的规则是每步走“日”字形.例如:图中“马”所在的位置可以直接走到点A 、B 处;材料二:一动点沿着数轴向右平移3个单位,再向左平移2个单位,相当于向右平移1个单位,用实数加法表示为3(2)1+-=.若坐标平面上的点作如下平移:沿x 轴方向平移的数量为a (向右为正,向左为负,平移||a 个单位),沿y 轴方向平移的数量为b (向上为正,向下为负,平移||b 个单位),则把有序数对{a ,}b 叫做这一平移的“平移量”.“平移量” {a ,}b 与“平移量” {c ,}d 的加法运算法则为{a ,}{b c +,}{d a c =+,}b d +. 下面在图中的象棋棋盘上建立直角坐标系,设“帅”位于点(0,0),“相”位于点(4,2). 请解决下列问题:(1)图中“马”所在的点的坐标为 (3,0)- .(2)根据材料一和材料二,在整个直角坐标系中,不是棋子“马”的一步“平移量”的是 .(可多选,填选项前的字母)A .{1,2}B .{2-,1}C .{1,1}D -.{2-,1}E -.{3,1}-(3)设“马”的初始位置如图中所示,如果现在命令“马“每一步只能向右和向上前进(例如图中的“马”只能走到点A 、B 处),在整个坐标系中,试问:①“马”能否走到点C?答:;(填“能”或“不能”)②“马”能否走到点(2018,2019)和点(2020,2021)?若能,则需要几步?为什么?若不能,请说明理由.【分析】(1)根据“帅”,“相”的位置确定“马”的位置;(2)由于马走“日”,因此马的平移向量左或右平移1,则相应的上或下平移2;平移向量左或右平移2,则相应的上或下平移1,由此可判断所给平移量;(3)①马可以先走到A,再走到C;也可以先走到B,再走到C;②设马沿着平移量(2,1)移动n次,沿着平移量(1,2)移动m次,则马沿着平移量++移动;走到点(2018,2019)时,向右移动2021,马向上移动2019,可得n m m n(2,2)m n+=,22019+=;走到点(2020,2021)时,向右移动2023,马向上移动2021,22021n m可得22023+=.m nn m+=,22021解:(1)由“帅”位于点(0,0),“相”位于点(4,2),-;∴“马”坐标为(3,0)(2)由于马走“日”,因此马的平移向量左或右平移1,则相应的上或下平移2;平移向量左或右平移2,则相应的上或下平移1,∴、B、D可以是“马”的一步“平移量”,A故答案为C、E.(3)①马可以先走到A,再走到C;也可以先走到B,再走到C;故答案为能;②由题意可知“马”的走法只有两种平移量(2,1)或(1,2),设马沿着平移量(2,1)移动n次,沿着平移量(1,2)移动m次,则马沿着平移量(2,2)++移动,n m m n如图马的初始位置是(3,0)-,走到点(2018,2019)时,向右移动2021,马向上移动2019,+=,m n∴+=,22019n m2202120173m ∴=(不合题意), ∴马走不到(2018,2019);走到点(2020,2021)时,向右移动2023,马向上移动2021,22023n m ∴+=,22021m n +=,673m ∴=,675n =,∴能走到点(2020,2021),需要沿着平移量(2,1)移动675次,沿着平移量(1,2)移动673次.六、几何探究题(本题共8分)31.“一带一路”让中国和世界联系更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图所示,灯A 射线从AM 开始顺时针旋转至AN 便立即回转,灯B 射线从BP 开始顺时针旋转至BQ 便立即回转,两灯不停交叉照射巡视若灯A 转动的速度是每秒2︒,灯B 转动的速度是每秒1︒.假定主道路是平行的,即//PQ MN ,且:2:1BAM BAN ∠∠=.(1)填空:BAN ∠= 60 ︒;(2)若灯B 射线先转动30秒,灯A 射线才开始转动,在灯B 射线到达BQ 之前,A 灯转动几秒,两灯的光束互相平行?(3)若两灯同时开始转动,两灯射出的光束交于点C ,且120ACB ∠=︒,则在灯B 射线到达BQ 之前,转动的时间为 秒.【分析】(1)根据180BAM BAN ∠+∠=︒,:2:1BAM BAN ∠∠=,即可得到BAN ∠的度数;(2)设A 灯转动t 秒,两灯的光束互相平行,分两种情况进行讨论:当090t <<时,根据21(30)t t =+g ,可得30t =;当90150t <<时,根据1(30)(2180)180t t ++-=g ,可得110t =;(3)分两种情形,根据平行线的性质,构建方程解决问题即可.解:(1)180BAM BAN ∠+∠=︒Q ,:2:1BAM BAN ∠∠=,1180603BAN ∴∠=︒⨯=︒, 故答案为:60;(2)设A灯转动t秒,两灯的光束互相平行,①当090<<时,如图1,tPQ MNQ,//∴∠=∠,PBD BDAQ,//AC BD∴∠=∠,CAM BDA∴∠=∠CAM PBD∴=+g,21(30)t t解得30t=;②当90150<<时,如图2,t//Q,PQ MN∴∠+∠=︒,180PBD BDAAC BDQ,//∴∠=∠CAN BDA∴∠+∠=︒180PBD CANg,∴++-=1(30)(2180)180t t解得110t=,综上所述,当30t=秒或110秒时,两灯的光束互相平行;(3)设灯A射线转动时间为t秒,Q,∠=︒-1802CAN t∴∠=,CBP t又120Q∠=︒ACB∴∠=∠+∠=︒=︒-+,1201802ACB CBN CBP t t解得:60t=,此时AC与AB共线,不符合题意,如图4中,当120∠=︒时,ACBQ,∠=∠+∠ABC MAC QBC∴︒=︒-+︒-,t t 1203602180∴=,t140故答案为:140.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上学期期中模拟检测题
时间:120分钟 满分:120分
一、选择题(每小题3分,共30分)
1.在1,-2,0,5
3这四个数中,最大的数是( )
A.-2
B.0
C.5
3
D.1
2.2017年11月8日-10日,美国总统特朗普对我国进行国事访向,访问期间,中美两国企业签约项目总金额达2500亿美元,这里“2500亿”用科学记数法表示为( )
A.2.5×103
B.2.5×1011
C.0.25×1012
D.2500×108
3.如图为某市2018年1月7日的天气预报图,则这天的温差是( )
A.-12℃
B.8℃
C.-8℃
D.12℃
4.如图是由4个大小相同的正方体组合而成的几何体,则从正面看得到的图形是( )
5.下列各式计算正确的是( ) A.-7-2×5=-45 B.3÷54×4
5
=3
C.-22-(-3)3=22
D.2×(-5)-5÷⎝ ⎛⎭
⎪⎫-12=0 6.用一个平面去截一个圆锥,截面图形不可能是( )
7.已知1≤x≤3,则|x +1|+|x -4|的值为( ) A.-3 B.5 C.2x -3 D.-5
8.若M =4x 2-5x +11,N =3x 2-5x +10,则M 和N 的大小关系是( ) A.M >N B.M =N C.M <N D.无法确定
9.小明在超市买回若干个相同的纸杯,他把纸杯整齐地叠放在一起.如图①,3个纸杯的高度为11cm ,
如图②,5个纸杯的高度为13cm.若把n 个这样的杯子叠放在一起,则高度为( )
A.(n +10)cm
B.(n +8)cm
C.(2n +5)cm
D.(2n +3)cm 10.已知a 、b 在数轴上的位置如图所示,则下列各式正确的是( )
A.ab 〉0
B.a -b 〉0
C.a 2b 〉0
D.|b|〈|a| 二、填空题(每小题3分,共18分)
11.单项式-5x 2yz 的系数是 ,次数是 .
12.中国新闻网报道:2022年北京冬奥会的配套设施——“京张高铁”(北京至张家口高速铁路)将于2019年底全线通车,届时,北京至张家口高铁将实现1小时直达.目前,北京至张家口的列车里程约200
千米,列车的平均时速为v 千米/时,那么北京至张家口“京张高铁”运行的时间比现在列车运行的时间少 小时(用含v 的式子表示).
13.在如图所示的展开图中分别填上数字1,2,3,4,5,6,使得折叠成正方体后,相对面上的数字之和相等,则a = ,b = ,c = .
第13题图 第16题图
14.若m 、n 互为相反数,则54(3m -2n)-2⎝ ⎛⎭⎪⎫5
4m -158n = .
15.已知|a|=5,|b|=8.若a
b
〈0,则a -b = .
16.如图是一个包装盒从不同方向看到的图形,则这个包装盒的表面积是 (结果保留π). 三、解答题(共72分) 17.(12分)计算:
(1)-3.25-⎝ ⎛⎭⎪⎫-19+(-6.75)+179; (2)100+16÷(-2)4-15-|-100|;
(3)⎝ ⎛⎭⎪⎫-122-3×⎝ ⎛⎭
⎪⎫23-⎪⎪⎪⎪⎪⎪13-12.
18.(8分)已知(3x +1)2+|y -1|=0,求代数式4⎝ ⎛⎭
⎪⎫x -12y -[2y +3(x +y)+3xy]的值.
19.(8分)如图,这是一个由小正方体搭成的几何体从上面看得到的平面图形,小正方形中的数字表示该位置的小正方体的个数.请你画出从它的正面和左面看所得到的平面图形.
20.(10分)某人用400元购买了8套儿童服装,准备以一定的价格出售,如果每套儿童服装以55元的价格为标准,超出的记作正数,不足的记作负数,记录(单位:元)如下:+2,-3,+2,+1,-2,-1,0,-2.当他卖完这8套儿童服装后是盈利还是亏损?盈利(或亏损)多少?
21.(10分)如图,将面积为a 2的小正方形和面积为b 2的大正方形放在同一水平面上(b >a >0). (1)用a 、b 表示阴影部分的面积;
(2)计算当a =3,b =5时,阴影部分的面积.
22.(12分)如图所示,在数轴上有三个点A,B,C,回答下列问题.
(1)A,C两点间的距离是多少?
(2)若E点与B点的距离是8,则E点表示的数是多少?
(3)若F点与A点的距离是a(a>0),请你求出F点表示的数是多少(用字母a表示)?
23.(12分)探究题.
用棋子摆成的“T”字形图案如图所示:
(1)填写下表:
(2)写出第n个
(3)第20个“T”字形图案共有棋子多少个?
参考答案与解析
1.C
2.B
3.B
4.C
5.D
6.A
7.B
8.A
9.B 10.B 11.-5 4 12.⎝
⎛⎭

⎫200v -1 13.6 2 4 14.0 15.13或-13
16.600πcm 2 解析:因为圆柱的直径为20cm ,高为20cm ,所以表面积为π×20×20+π×⎝ ⎛⎭
⎪⎫12×202×2
=400π+200π=600π(cm 2).
17.解:(1)原式=-8.(4分)(2)原式=4
5.(8分)
(3)原式=1
4
.(12分)
18.解:由题意可知3x +1=0,y -1=0,解得x =-13,y =1.(4分)故原式=x -7y -3xy =-19
3.(8
分)
19.解:如图所示.(8分)
20.解:由题意,得55×8+2+(-3)+2+1+(-2)+(-1)+0+(-2)-400=37(元),(6分)所以他卖完这8套儿童服装后是盈利,盈利37元.(10分)
21.解:(1)阴影部分的面积为12b 2+1
2
a(a +b).(5分)
(2)当a =3,b =5时,12b 2+12a(a +b)=12×25+12×3×(3+5)=492,即阴影部分的面积为49
2.(10分)
22.解:(1)2-(-3)=5,所以A 、C 两点之间的距离是5.(4分) (2)-2+8=6,-2-8=-10,所以E 点表示的数是6或-10.(8分) (3)F 点表示的数是-3+a 或-3-a.(12分) 23.解:(1)11 14 32(3分) (2)3n +2.(8分)
(3)当n =20时,3n +2=3×20+2=62(个).所以第20个“T”字形图案共有棋子62个.(12分)。

相关文档
最新文档