中央处理器简介

合集下载

cpu的代数

cpu的代数

cpu的代数摘要:一、CPU 简介1.CPU 的定义与作用2.CPU 的发展历程二、CPU 代数的划分1.按年代划分2.按架构划分三、不同代数的CPU 特点及应用1.第一代CPU2.第二代CPU3.第三代CPU4.第四代CPU5.第五代CPU四、我国CPU 发展现状及挑战1.我国CPU 产业发展历程2.国产CPU 的优势与不足3.国产CPU 面临的挑战与机遇五、展望未来CPU 发展1.新一代CPU 技术的发展趋势2.CPU 在人工智能、大数据等领域的应用前景正文:CPU(中央处理器)是计算机的核心部件,负责执行各种指令,进行数据处理和运算。

自20 世纪40 年代计算机诞生以来,CPU 经历了漫长的发展过程,从最初的电子管到现在的集成电路,其性能和效率得到了极大的提升。

为了更好地了解CPU 的发展,我们可以将其划分为不同的代数。

首先是按年代划分,大致可以分为五代:第一代(1940s-1960s),第二代(1960s-1970s),第三代(1970s-1980s),第四代(1980s-1990s)和第五代(1990s 至今)。

其次是按架构划分,如x86、ARM、MIPS 等。

不同代数的CPU 具有各自的特点和应用领域。

第一代CPU 以电子管为主要元件,功耗大、性能低,主要用于科学计算和军事用途。

第二代CPU 采用晶体管,体积减小、功耗降低,开始进入商业市场。

第三代CPU 采用集成电路,性能进一步提高,逐渐普及至个人计算机领域。

第四代CPU 引入微处理器技术,实现了高度集成,推动了个人计算机的普及和发展。

第五代CPU 则以多核、低功耗、高性能为特点,广泛应用于桌面计算机、移动设备和服务器等领域。

在我国,CPU 产业经历了从引进、消化、吸收到自主创新的过程。

目前,我国已经具备了一定的CPU 设计和生产能力,但与国外先进水平相比,仍存在一定差距。

国产CPU 面临着技术研发、市场推广、生态建设等方面的挑战,但同时也迎来了国家政策支持、市场需求增长等机遇。

计算机基础知识什么是中央处理器(CPU)

计算机基础知识什么是中央处理器(CPU)

计算机基础知识什么是中央处理器(CPU)中央处理器(CPU)是现代计算机中最核心的组件之一,也是计算机基础知识中至关重要的一部分。

它被认为是计算机的"大脑",负责执行和控制各种计算、数据处理和运算任务。

本文将详细介绍中央处理器的定义、功能、组成以及其在计算机系统中的重要性。

一、中央处理器(CPU)的定义中央处理器(Central Processing Unit,简称CPU)是计算机的核心处理部件,通过执行指令来处理和控制计算机中的各种操作。

它是一种集成电路芯片,通常由控制单元、运算单元和寄存器等组成。

二、中央处理器(CPU)的功能1. 执行指令:中央处理器根据计算机程序中的指令,逐步执行各项操作,包括算术逻辑运算、数据传输和存储等。

2. 控制系统:中央处理器负责控制计算机的各种操作,包括指令的执行顺序、数据的流动和外部设备的管理等。

3. 数据处理:中央处理器可以对数据进行各种处理和转换,实现计算、排序、筛选等功能。

4. 数据存储:中央处理器使用寄存器和高速缓存等存储器件,用于存储运算过程中的数据和指令。

5. 系统扩展:中央处理器支持各种接口和总线,可以连接外部设备和其他计算机组件,实现系统的扩展和协同工作。

三、中央处理器(CPU)的组成1. 控制单元(Control Unit):控制单元负责指令的解码和执行,控制数据的流动和操作的顺序。

2. 运算单元(Arithmetic Logic Unit,简称ALU):运算单元负责各种算术运算和逻辑运算,如加减乘除、位运算、比较运算等。

3. 寄存器(Registers):寄存器是中央处理器中的一种高速存储器件,用于存储操作中的数据和指令,包括通用寄存器、指令寄存器、程序计数器等。

4. 总线接口(Bus Interface):中央处理器通过总线接口与其他设备进行通信和数据传输。

5. 缓存(Cache):缓存是中央处理器与主存储器之间的高速存储器,用于提高数据的读取和写入速度。

CPU简介LYF

CPU简介LYF

双核心处理器的引入有效地提高了处理器的性能, 同时也很好的控制了处理器的功耗与发热。而相对单核 心处理器来说,双核的优势在于支持多线程的系统和软 件,这些系统与软件可以充分利用两个内核中的所有可 执行单元,理论上可以达到单核处理器性能的两倍。在 多媒体应用广泛的今天,双核心处理器确实有很大的实
用意义。而厂商同样看到了双核心处理器的无限商机,
CPU需要通过某个接口与主板连接才能进行工作。目
前,CPU采用的接口方式有引脚式、卡式、触点式、针脚
式等。而目前CPU的接口都是针脚式的,对应到主板上就 有相应的插槽类型。CPU接口类型不同,在插孔数、体积、 形状方面都有变化,所以不能互相接插。当前主流的接口 方式主要有:Socket AM2接口,Socket 478接口, Socket
送以及输入输出的控制。
CPU和外围芯片都是集成电路(Integrate Ciruit,IC) 器件。自从1971年Intel公司制造出4位微处理器芯片以来, CPU从Intel 4004,8088,80286一直发展到今天的P4,其性
能和功能都越来越强,结构越来越复杂,制造工艺也越来
越精细。
二. CPU的接口类型
比较高,非常超值,如图所示。
Athlon 64 X2 3600+处理器
千元以上的市场最值得购买的就是E6300了,E6300
实际主频为1.86 GHz,前端总线为1 066 MHz,二级缓存 容量为2 MB,外频为265.8 MHz,倍频为7,支持 MMX/SSE/SSE2/SSE3/SSE4/EM64T指令集。在媒体的测 试中,这款E6300在多项评测中都超过了AMD的旗舰产
目前双核心市场上主流的CPU产品有Pentium D,Pentium EE,酷睿和X2 K8。

cpu申报要素

cpu申报要素

cpu申报要素(原创实用版)目录1.CPU 简介2.CPU 申报要素3.CPU 申报要素的具体内容4.CPU 申报要素的重要性5.总结正文1.CPU 简介CPU,即中央处理器,是计算机系统中的核心部件,负责执行程序指令和处理数据。

CPU 由运算器、控制器、寄存器和高速缓存等组成,它的性能直接影响着计算机系统的整体性能。

2.CPU 申报要素在我国,CPU 产品需要进行申报,以便进行质量监督和市场管理。

CPU 申报要素是指在申报过程中需要提供的相关信息和资料,包括 CPU 的性能、功能、适用范围等。

3.CPU 申报要素的具体内容CPU 申报要素的具体内容包括以下几个方面:(1)CPU 的基本信息:包括 CPU 的型号、生产厂家、生产日期等。

(2)CPU 的性能指标:包括主频、核心数、缓存容量、制程工艺等。

(3)CPU 的功能特性:包括支持的指令集、多媒体处理能力、安全性等。

(4)CPU 的适用范围:包括适用的操作系统、应用领域等。

4.CPU 申报要素的重要性CPU 申报要素的重要性体现在以下几个方面:(1)保障产品质量:通过申报要素,可以对 CPU 的质量进行监督,确保产品的性能和稳定性。

(2)方便消费者选择:申报要素可以让消费者了解 CPU 的性能、功能和适用范围,帮助消费者做出更明智的选择。

(3)促进行业健康发展:申报要素有利于政府和行业组织对 CPU 市场进行管理,促进行业的健康发展。

5.总结CPU 申报要素是对 CPU 产品进行质量监督和市场管理的重要手段,它有助于保障产品质量、方便消费者选择和促进行业健康发展。

第4章 中央处理器

第4章  中央处理器


2.控制器 控制器是整个计算机的控制、指挥部件,它控制 计算机各部分自动、协调地工作。控制器主要由程 序计数器PC、指令寄存器IR、指令译码器ID和控制 逻辑PLA等部件组成。 控制器是根据人们预先编写好的程序,依次从存 储器中取出各条指令,存入指令寄存器中,通过指 令译码器进行译码(分析)确定应该进行什么操作, 然后通过控制逻辑在规定的时间,向确定的部件发 出相应的控制信号,使运算器和存储器等各部件自 动而协调地完成该指令所规定的操作。当这一条指 令完成以后,再顺序地从存储器中取出下一条指令, 并照此同样地分析与执行该指令。如此重复,直到 完成所有的指令为止。

Βιβλιοθήκη 控制器应主要由下列部件组成: ⑴ 程序计数器PC 程序计数器PC中存放着下一条指令在内存中的地 址。控制器利用它来指示程序中指令的执行顺序。当 计算机运行时,控制器根据PC中的指令地址,从存 储器中取出将要执行的指令送到指令寄存器IR中进行 分析和执行。 ⑵ 指令寄存器IR 指令寄存器IR用于暂存从存储器取出的当前指令码, 以保证在指令执行期间能够向指令译码器ID提供稳定 可靠的指令码。 ⑶ 指令译码器ID 指令译码器ID用来对指令寄存器IR中的指令进行译 码分析,以确定该指令应执行什么操作。

4.6.4 一些其他指标
1.工作电压 2.总线宽度 3.制作工艺
4.引脚个数
5.封装技术
⑴通用寄存器
通用寄存器又称数据寄存器,既可作为16
位数据寄存器使用,也可作为两个8位数据 寄存器使用。当用作16位时,称为AX、BX、 CX、DX。当用作8位时,AH、BH、CH、 DH存放高字节,AL、BL、CL、DL存放低 字节,并且可独立寻址,这样,4个16位寄 存器就可当作8个8位寄存器来使用。

计算机组成原理第5章 中央处理器

计算机组成原理第5章 中央处理器

19
第二节 一、指令执行分析 任何一条指令的执行都要经过读取指令、分析 指令和执行指令三个阶段。指令执行过程一般可分 为:1)取指令 2 3 4 5
20
图5.5
流水处理
21
二、 计算机的功能是执行程序。执行程序时,计算 机操作由一系列指令周期组成,每个周期执行一条 机器指令,而每个指令周期又由若干个机器周期组 成,一种通常的办法是分解成取指、取操作数、执 行和中断,只有取指和执行周期总是必有的。 1 2 图
10
二、时序控制方式 计算机的基本任务是执行指令。执行一条指令 的过程是分为若干步来实现的,每一步对应某些微 操作。由于不同指令所对应的微操作及繁简程度大 不相同,因而每条指令和每个微操作所需的执行时 间也不相同,这就需要引入时序信号来对这些微操 作进行定时控制。时序控制方式,就是指微操作与 时序信号之间采取何种关系。按照同步或非同步的 关系,可将时序控制方式分为同步控制和异步控制
13
计算机从取指令到执行完指令所需要的时间称 为指令周期。不同的指令,其功能不同,其指令周 期长短也就可以不同。在系统中,通常不为指令周 期设置时间标志信号,因而也不将其作为时序的一 级。时序信号通常划分为三级,即机器周期、节拍
14
图5.2
时序系统结构框图
15
3) 异步控制方式中没有统一的时钟信号,各部件 按自身固有的速度工作,通过应答方式进行联络, 常见的应答信号有准备好(READY)或等待( WAIT
16
图5.3 多级时序
17
图5.4
异步应答流程
18
在CPU中,控制器的任务是决定在什么时间、 根据什么条件、发什么命令、做什么操作。因此, 产生微命令的基本依据是时间、指令代码、状态、 外部请求等。这些信息或作为逻辑变量,经组合逻 辑电路产生微命令序列;或形成相应的微程序地址, 通过执行微指令直接产生微命令序列。按照微命令 的产生方式,可将控制器分为组合逻辑控制器和微

cpu介绍

cpu介绍

【CPU 篇】CPU又称中央处理器,英文全称Central Processing Unit,它是一块超大规模集成电路芯片,内部是几千万个到数十亿个晶体管元件组成的十分复杂的电路,其中包括运算器、寄存器、控制器和总线(包括数据、控制、地址总线)等。

它通过指令来进行运算和控制系统,它是整个系统的核心元件。

现在使用最多的CPU有Intel和AMD(Advance MicroDevices,Inc.)。

最初的是16位处理器,从386开始到了32位处理器,而且后来的32位处理器能够运行在16位处理器上运行的程序指令,就统称为x86系列处理器。

现在桌面上已经开始普遍使用64位(x64)处理器了。

一、CPU基础知识1、CPU核心简介核心(Die)又称为内核,是CPU最重要的组成部分。

CPU中心那块隆起的芯片就是核心,是由单晶硅以一定的生产工艺制造出来的,CPU所有的计算、接受/存储命令、处理数据都由核心执行。

各种CPU核心都具有固定的逻辑结构,一级缓存、二级缓存、执行单元、指令级单元和总线接口等逻辑单元都会有科学的布局。

为了便于CPU设计、生产、销售的管理,CPU制造商会对各种CPU核心给出相应的代号,这也就是所谓的CPU核心类型。

不同的CPU(不同系列或同一系列)都会有不同的核心类型(例如Pentium 4的Northwood,Willamette以及K6-2的CXT和K6-2+的ST-50以及最新酷睿2的Conroe等等),甚至同一种核心都会有不同版本的类型(例如Northwood核心就分为B0和C1等版本),核心版本的变更是为了修正上一版存在的一些错误,并提升一定的性能,而这些变化普通消费者是很少去注意的。

每一种核心类型都有其相应的制造工艺(例如0.25um、0.18um、0.13um、0.09um以及最新的65nm、45nm等)、核心面积(这是决定CPU成本的关键因素,成本与核心面积基本上成正比)、核心电压、电流大小、晶体管数量、各级缓存的大小、主频范围、流水线架构和支持的指令集(这两点是决定CPU实际性能和工作效率的关键因素)、功耗和发热量的大小、封装方式(例如S.E.P、PGA、FC-PGA、FC-PGA2等等)、接口类型(例如Socket 370,Socket A,Socket 478,Socket T,Slot 1,Socket 940,Socket AM2,LGA775等等)、前端总线频率(FSB)等等。

2-中央处理器

2-中央处理器

第一节 中央处理器基础知识一、中央处理器的概念中央处理器就是我们常说的CPU ,英文全名是Central Processing Unit ,中文也就是中央处理器。

中央处理器是由各种功能电路组成的指令处理系统,由数百万个晶体管所构成,其结构图2-1 Inter 公司的中央处理器奔腾III 系列中央处理器奔腾III(slot1)系列中央处理器 Celeron (赛扬)系列中央处理器 奔腾4系列中央处理器可分为控制单元,逻辑单元和存储单元三大部分,负责完成计算机各种指令的解释、执行及控制功能,是计算机系统的核心。

如果把计算机比作一个人,CPU 就是心脏。

二、CPU 主要的性能指标1. 主频、外频和倍频主频就是CPU 的时钟频率,也就是CPU 运算时的工作频率,它的英文全称是CPU Clock Speed ,单位是MHz (兆赫兹)。

一般说来,主频越高,CPU 的速度越快。

但是由于内部结构不同,时钟频率相同的CPU 的性能并不一样。

我们一般所说的CPU 频率就是指CPU 的主频。

外频就是系统总线的工作频率,是CPU 的基准频率,也叫前端总线频率,目前使用最广泛的是66MHz 和100MHz 。

CPU 的外频越高,CPU 与L2Cache 和系统内存交换速度也就越快。

图 2-2 AMD 公司的中央处理器K6系列中央处理器 K6-2系列中央处理器Duron 系列中央处理器Athlon 中央处理器倍频系数,也简称倍频,是CPU外频与主频相差的倍数。

例如当某CPU的外频为120MHz,主频是360MHz时,CPU的倍频系数即为3。

主频、外频、倍频系数三者的关系是:主频= 外频x倍频系数。

例如Intel Celeron 300A CPU 的主频为300MHz,其外频为66MHz,则使用时应将倍频系数设置为4.5,即66.67 x 4.5 = 300 MHz。

当外频改为100MHz时,如CPU的倍频系数仍设为4.5,则主频将达到450MHz。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中央处理器intel和AMD主流CPU和CPU插槽,点击查看大图[编辑本段]简介CPU是中央处理单元(Central Process Unit)的缩写,它可以被简称做微处理器。

(Microprocessor),不过经常被人们直接称为处理器(processor)。

不要因为这些简称而忽视它的作用,CPU是计算机的核心,其重要性好比心脏对于人一样。

实际上,处理器的作用和大脑更相似,因为它负责处理、运算计算机内部的所有数据,而主板芯片组则更像是心脏,它控制着数据的交换。

CPU的种类决定了你使用的操作系统和相应的软件。

CPU主要由运算器、控制器、寄存器组和内部总线等构成,是PC的核心,再配上储存器、输入/输出接口和系统总线组成为完整的PC。

CPU的基本结构、功能及参数CPU主要由运算器、控制器、寄存器组和内部总线等构成。

寄存器组用于在指令执行过后存放操作数和中间数据,由运算器完成指令所规定的运算及操作。

CPU主要的性能指标有:1.主频主频也叫时钟频率,单位是MHz,用来表示CPU的运算速度。

CPU的主频=外频×倍频系数。

很多人认为主频就决定着CPU的运行速度,这不仅是个片面的,而且对于服务器来讲,这个认识也出现了偏差。

至今,没有一条确定的公式能够实现主频和实际的运算速度两者之间的数值关系,即使是两大处理器厂家Intel和AMD,在这点上也存在着很大的争议,我们从Intel的产品的发展趋势,可以看出Intel很注重加强自身主频的发展。

像其他的处理器厂家,有人曾经拿过一块1G的全美达来做比较,它的运行效率相当于2G的Intel处理器。

所以,CPU的主频与CPU实际的运算能力是没有直接关系的,主频表示在CPU 内数字脉冲信号震荡的速度。

在Intel的处理器产品中,我们也可以看到这样的例子:1 GHz Itanium芯片能够表现得差不多跟2.66 GHz Xeon/Opteron一样快,或是1.5 GHz Itanium 2大约跟4 GHz Xeon/Opteron一样快。

CPU的运算速度还要看CPU的流水线的各方面的性能指标。

当然,主频和实际的运算速度是有关的,只能说主频仅仅是CPU性能表现的一个方面,而不代表CPU的整体性能。

2.外频外频是CPU的基准频率,单位也是MHz。

CPU的外频决定着整块主板的运行速度。

说白了,在台式机中,我们所说的超频,都是超CPU的外频(当然一般情况下,CPU的倍频都是被锁住的)相信这点是很好理解的。

但对于服务器CPU 来讲,超频是绝对不允许的。

前面说到CPU决定着主板的运行速度,两者是同步运行的,如果把服务器CPU超频了,改变了外频,会产生异步运行,(台式机很多主板都支持异步运行)这样会造成整个服务器系统的不稳定。

目前的绝大部分电脑系统中外频也是内存与主板之间的同步运行的速度,在这种方式下,可以理解为CPU的外频直接与内存相连通,实现两者间的同步运行状态。

外频与前端总线(FSB)频率很容易被混为一谈,下面的前端总线介绍我们谈谈两者的区别。

3.前端总线(FSB)频率前端总线(FSB)频率(即总线频率)是直接影响CPU与内存直接数据交换速度。

有一条公式可以计算,即数据带宽=(总线频率×数据位宽)/8,数据传输最大带宽取决于所有同时传输的数据的宽度和传输频率。

比方,现在的支持64位的至强Nocona,前端总线是800MHz,按照公式,它的数据传输最大带宽是6.4GB/秒。

外频与前端总线(FSB)频率的区别:前端总线的速度指的是数据传输的速度,外频是CPU与主板之间同步运行的速度。

也就是说,100MHz外频特指数字脉冲信号在每秒钟震荡一千万次;而100MHz前端总线指的是每秒钟CPU可接受的数据传输量是100MHz×64bit÷8bit/Byte=800MB/s。

其实现在―HyperTransport‖构架的出现,让这种实际意义上的前端总线(FSB)频率发生了变化。

之前我们知道IA-32架构必须有三大重要的构件:内存控制器Hub (MCH) ,I/O控制器Hub和PCI Hub,像Intel很典型的芯片组Intel 7501、Intel7505芯片组,为双至强处理器量身定做的,它们所包含的MCH为CPU提供了频率为533MHz的前端总线,配合DDR内存,前端总线带宽可达到4.3GB/秒。

但随着处理器性能不断提高同时给系统架构带来了很多问题。

而―HyperTransport‖构架不但解决了问题,而且更有效地提高了总线带宽,比方AMD Opteron处理器,灵活的HyperTransport I/O总线体系结构让它整合了内存控制器,使处理器不通过系统总线传给芯片组而直接和内存交换数据。

这样的话,前端总线(FSB)频率在AMD Opteron 处理器就不知道从何谈起了。

4、CPU的位和字长位:在数字电路和电脑技术中采用二进制,代码只有―0‖和―1‖,其中无论是―0‖或是―1‖在CPU中都是一―位‖。

字长:电脑技术中对CPU在单位时间内(同一时间)能一次处理的二进制数的位数叫字长。

所以能处理字长为8位数据的CPU通常就叫8位的CPU。

同理32位的CPU就能在单位时间内处理字长为32位的二进制数据。

字节和字长的区别:由于常用的英文字符用8位二进制就可以表示,所以通常就将8位称为一个字节。

字长的长度是不固定的,对于不同的CPU、字长的长度也不一样。

8位的CPU一次只能处理一个字节,而32位的CPU一次就能处理4个字节,同理字长为64位的CPU一次可以处理8个字节。

5.倍频系数倍频系数是指CPU主频与外频之间的相对比例关系。

在相同的外频下,倍频越高CPU的频率也越高。

但实际上,在相同外频的前提下,高倍频的CPU本身意义并不大。

这是因为CPU与系统之间数据传输速度是有限的,一味追求高倍频而得到高主频的CPU就会出现明显的―瓶颈‖效应—CPU从系统中得到数据的极限速度不能够满足CPU运算的速度。

一般除了工程样版的Intel的CPU都是锁了倍频的,而AMD 之前都没有锁,现在AMD推出了黑盒版CPU(即不锁倍频版本,用户可以自由调节倍频,调节倍频的超频方式比调节外频稳定得多。

)6.缓存缓存大小也是CPU的重要指标之一,而且缓存的结构和大小对CPU速度的影响非常大,CPU内缓存的运行频率极高,一般是和处理器同频运作,工作效率远远大于系统内存和硬盘。

实际工作时,CPU往往需要重复读取同样的数据块,而缓存容量的增大,可以大幅度提升CPU内部读取数据的命中率,而不用再到内存或者硬盘上寻找,以此提高系统性能。

但是由于CPU芯片面积和成本的因素来考虑,缓存都很小。

L1Cache(一级缓存)是CPU第一层高速缓存,分为数据缓存和指令缓存。

内置的L1高速缓存的容量和结构对CPU的性能影响较大,不过高速缓冲存储器均由静态RAM组成,结构较复杂,在CPU管芯面积不能太大的情况下,L1级高速缓存的容量不可能做得太大。

一般服务器CPU的L1缓存的容量通常在32—256KB。

L2Cache(二级缓存)是CPU的第二层高速缓存,分内部和外部两种芯片。

内部的芯片二级缓存运行速度与主频相同,而外部的二级缓存则只有主频的一半。

L2高速缓存容量也会影响CPU的性能,原则是越大越好,以前家庭用CPU容量最大的是512KB,现在笔记本电脑中也可以达到2M,而服务器和工作站上用CPU的L2高速缓存更高,可以达到8M以上。

L3Cache(三级缓存),分为两种,早期的是外置,现在的都是内置的。

而它的实际作用即是,L3缓存的应用可以进一步降低内存延迟,同时提升大数据量计算时处理器的性能。

降低内存延迟和提升大数据量计算能力对游戏都很有帮助。

而在服务器领域增加L3缓存在性能方面仍然有显著的提升。

比方具有较大L3缓存的配置利用物理内存会更有效,故它比较慢的磁盘I/O子系统可以处理更多的数据请求。

具有较大L3缓存的处理器提供更有效的文件系统缓存行为及较短消息和处理器队列长度。

其实最早的L3缓存被应用在AMD发布的K6-III处理器上,当时的L3缓存受限于制造工艺,并没有被集成进芯片内部,而是集成在主板上。

在只能够和系统总线频率同步的L3缓存同主内存其实差不了多少。

后来使用L3缓存的是英特尔为服务器市场所推出的Itanium处理器。

接着就是P4EE和至强MP。

Intel还打算推出一款9MB L3缓存的Itanium2处理器,和以后24MB L3缓存的双核心Itanium2处理器。

但基本上L3缓存对处理器的性能提高显得不是很重要,比方配备1MB L3缓存的Xeon MP处理器却仍然不是Opteron的对手,由此可见前端总线的增加,要比缓存增加带来更有效的性能提升。

7.CPU扩展指令集CPU依靠指令来计算和控制系统,每款CPU在设计时就规定了一系列与其硬件电路相配合的指令系统。

指令的强弱也是CPU的重要指标,指令集是提高微处理器效率的最有效工具之一。

从现阶段的主流体系结构讲,指令集可分为复杂指令集和精简指令集两部分,而从具体运用看,如Intel的MMX(Multi Media Extended)、SSE、SSE2(Streaming-Single instruction multiple data-Extensions 2)、SEE3和AMD 的3DNow!等都是CPU的扩展指令集,分别增强了CPU的多媒体、图形图象和Internet等的处理能力。

我们通常会把CPU的扩展指令集称为‖CPU的指令集‖。

SSE3指令集也是目前规模最小的指令集,此前MMX包含有57条命令,SSE包含有50条命令,SSE2包含有144条命令,SSE3包含有13条命令。

目前SSE3也是最先进的指令集,英特尔Prescott处理器已经支持SSE3指令集,AMD会在未来双核心处理器当中加入对SSE3指令集的支持,全美达的处理器也将支持这一指令集。

8.CPU内核和I/O工作电压从586CPU开始,CPU的工作电压分为内核电压和I/O电压两种,通常CPU的核心电压小于等于I/O电压。

其中内核电压的大小是根据CPU的生产工艺而定,一般制作工艺越小,内核工作电压越低;I/O电压一般都在1.6~5V。

低电压能解决耗电过大和发热过高的问题。

9.制造工艺制造工艺的微米是指IC内电路与电路之间的距离。

制造工艺的趋势是向密集度愈高的方向发展。

密度愈高的IC电路设计,意味着在同样大小面积的IC中,可以拥有密度更高、功能更复杂的电路设计。

现在主要的180nm、130nm、90nm、65nm、45nm。

最近官方已经表示有32nm的制造工艺了。

10.指令集(1)CISC指令集CISC指令集,也称为复杂指令集,英文名是CISC,(Complex Instruction Set Computer的缩写)。

相关文档
最新文档