河北省衡水金卷2017-2018学年高二下学期期中考试数学(理)---精校Word版含答案

合集下载

河北省衡水市高二下学期期中数学试卷(理科)

河北省衡水市高二下学期期中数学试卷(理科)

河北省衡水市高二下学期期中数学试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)某研究小组在一项实验中获得一组关于y,t之间的数据,将其整理后得到如上的散点图,下列函数中,最能近似刻画y与t之间关系的是()A .B .C .D .2. (2分)已知,且A中至少有一个奇数,则这样的集合A共有()A . 11个B . 12个C . 15个D . 16个3. (2分) (2016高二上·水富期中) 现要完成下列3项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查.②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈.③高新中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员2名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.较为合理的抽样方法是()A . ①简单随机抽样,②系统抽样,③分层抽样B . ①简单随机抽样,②分层抽样,③系统抽样C . ①系统抽样,②简单随机抽样,③分层抽样D . ①分层抽样,②系统抽样,③简单随机抽样4. (2分)设f(x)=x2﹣2x﹣3(x∈R),则在区间[﹣π,π]上随机取一个实数x,使f(x)<0的概率为()A .B .C .D .5. (2分) (2016高二上·枣阳期中) 在区间[0,2]上随机地取一个数x,则事件“﹣1≤log (x+ )≤1”发生的概率为()A .B .C .D .6. (2分)由一组样本数据(x1 , y1),(x2 , y2),…,(xn , yn),得到回归直线方程 =bx+a,那么下面说法不正确的是()A . 直线 =bx+a至少经过(x1 , y1),(x2 , y2),…,(xn , yn)中的一个点B . 直线 =bx+a必经过()C . 直线 =bx+a的斜率为D . 直线 =bx+a的纵截距为﹣b7. (2分)某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x﹣y|的值为()A . 1B . 2C . 3D . 48. (2分)已知总体容量为101,若用随机数表法抽取一个容量为20的样本,下面对总体中的个体编号正确的是()A . 1,2,3,…,100,101B . 0,1,2,…,100C . 01,O2,03.…,100,101D . 001,002,…,100,1019. (2分) (2016高二下·宁波期末) 把7个字符1,1,1,A,A,α,β排成一排,要求三个“1”两两不相邻,且两个“A“也不相邻,则这样的排法共有()A . 12种B . 30种C . 96种D . 144种10. (2分)(2017·浙江) 已知随机变量ξi满足P(ξi=1)=pi , P(ξi=0)=1﹣pi , i=1,2.若0<p1<p2<,则()A . E(ξ1)<E(ξ2),D(ξ1)<D(ξ2)B . E(ξ1)<E(ξ2),D(ξ1)>D(ξ2)C . E(ξ1)>E(ξ2),D(ξ1)<D(ξ2)D . E(ξ1)>E(ξ2),D(ξ1)>D(ξ2)11. (2分)如果随机变量§~N(—2,),且P(—3≤§≤—1)=0.4,则P(§≥—1)=()A . 0.7B . 0.6C . 0.3D . 0.212. (2分)已知数列对任意的p,q∈N*满足ap+q=ap+aq ,且a2=-6,那么a10=()A . -165B . -33C . -30D . -21二、填空题 (共4题;共4分)13. (1分) (2016高二下·海南期末) 设p为非负实数,随机变量ξ的分布列为:ξ012P﹣p p则D(ξ)的最大值为________.14. (1分)小明在微信中给朋友发拼手气红包,1毛钱分成三份(不定额度,每份至少1分),若这三个红包被甲、乙、丙三人抢到,则甲抢到5分钱的概率为________.15. (1分) (2016高二下·辽宁期中) 体育老师把9个相同的足球放入编号为1,2,3的三个箱中,要求每个箱子放球的个数不少于其编号,则不同的放球方法有________种.16. (1分) (2018·保定模拟) 甲、乙、丙三个各自独立地做同一道数学题,当他们都把自己的答案公布出来之后,甲说:我做错了; 乙说:丙做对了; 丙说:我做错了.在一旁的老师看到他们的答案并听取了他们的意见后说:“你们三个人中有一个人做对了,有一个说对了.” 请问他们三个人中做对了的是________三、 解答题 (共6题;共60分)17. (10分) (2016高三上·沙市模拟) 某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名高三学生的课外体育锻炼平均每天运动的时间进行调查,如表:(平均每天锻炼的时间单位:分钟)将学生日均课外课外体育运动时间在[40,60)上的学生评价为“课外体育达标”.(1) 请根据上述表格中的统计数据填写下面2×2列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“课外体育达标”与性别有关?参考公式:,其中n=a+b+c+d.参考数据:P(K2≥k0)0.100.050.0250.0100.0050.001k0 2.706 3.841 5.024 6.6357.87910.828(2)将上述调查所得到的频率视为概率.现在从该校高三学生中,抽取3名学生,记被抽取的3名学生中的“课外体育达标”学生人数为X,若每次抽取的结果是相互独立的,求X的数学期望和方差.18. (15分)为了调查甲、乙两个网站受欢迎的程度,随机选取了14天,统计上午8:00~10:00间各自的点击量,得如图所示的统计图,根据统计图:(1)甲、乙两个网站点击量的极差分别是多少?(2)甲网站点击量在[10,50]间的频率是多少?(3)甲、乙两个网站哪个更受欢迎?并说明理由.19. (10分) (2017高二下·夏县期末) 已知的展开式中前三项的系数成等差数列.(1)求的值;(2)求展开式中系数最大的项.20. (5分)(2018·凯里模拟) 某地有一企业2007年建厂并开始投资生产,年份代号为7,2008年年份代号为8,依次类推.经连续统计9年的收入情况如下表(经数据分析可用线性回归模型拟合与的关系):年份代号()789101112131415当年收入(千万元)131418202122242829(Ⅰ)求关于的线性回归方程;(Ⅱ)试预测2020年该企业的收入.(参考公式:,)21. (10分)(2020·甘肃模拟) 2018年1月26日,甘肃省人民政府办公厅发布《甘肃省关于餐饮业质量安全提升工程的实施意见》,卫生部对16所大学食堂的“进货渠道合格性”和“食品安全”进行量化评估.满10分者为“安全食堂”,评分7分以下的为“待改革食堂”.评分在4分以下考虑为“取缔食堂”,所有大学食堂的评分在7~10分之间,以下表格记录了它们的评分情况:(1)现从16所大学食堂中随机抽取3个,求至多有1个评分不低于9分的概率;(2)以这16所大学食堂评分数据估计大学食堂的经营性质,若从全国的大学食堂任选3个,记表示抽到评分不低于9分的食堂个数,求的分布列及数学期望.22. (10分)(2018·榆社模拟) 根据以往的经验,某建筑工程施工期间的降水量(单位:)对工期的影响如下表:根据某气象站的资料,某调查小组抄录了该工程施工地某月前20天的降水量的数据,绘制得到降水量的折线图,如下图所示.(1)根据降水量的折线图,分别求该工程施工延误天数的频率;(2)以(1)中的频率作为概率,求工期延误天数的分布列及数学期望与方差.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共60分) 17-1、17-2、18-1、18-2、18-3、19-1、19-2、20-1、21-1、21-2、22-1、22-2、。

2017-2018学年高二下学期期中数学试卷(理科)Word版含解析

2017-2018学年高二下学期期中数学试卷(理科)Word版含解析

2017-2018学年高二下学期期中数学试卷(理科)一、选择题(每小题5分,共60分)1.复数z 1=(m 2﹣2m+3)+(m 2﹣m+2)i (m ∈R ),z 2=6+8i ,则m=3是z 1=z 2的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件2.用反证法证明命题:“若a ,b ∈N ,ab 能被3整除,那么a ,b 中至少有一个能被3整除”时,假设应为( )A .a ,b 都能被3整除B .a ,b 都不能被3整除C .a ,b 不都能被3整除D .a 不能被3整除3.定积分(x 2+sinx )dx 的值为( )A .+ B .﹣ C .﹣ D .+4.若复数z=(a ∈R ,i 是虚数单位)是纯虚数,则复数z 的共轭复数是( )A . iB .﹣ iC .3iD .﹣3i5.求曲线y 2=4x 与直线y=x 所围成的图形绕x 轴旋转一周所得旋转体的体积( )A .B .π C .π D .24π6.若复数z 满足|z+3+i|=,则|z|的最大值为( )A .3+B .+C .+D .37.已知=( )A . f′(x 0)B .f′(x 0)C .2f′(x 0)D .﹣f′(x 0)8.计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A ~F 共16个计数符号,这些符号与十进制的数的对应关系如表.例如,用十六进制表示E+D=1B ,则A ×C=( )A.6E B.78 C.5F D.C09.利用数学归纳法证明不等式+++…+>时,由k递推到k+1时,不等式左边应添加的式子是()A.B. +C.﹣D. +﹣10.设函数f(x)=x3+x2+,其中θ∈(﹣,),则导数f′(1)的取值范围是()A.(﹣,1] B.(﹣,1)C.(﹣,) D.(﹣,]11.函数f(x)是定义在R上的偶函数,且 f(2)=0,当x>0时,有xf′(x)﹣f(x)>0恒成立,则不等式f(x)<0的解集为()A.(﹣∞,﹣2)∪(2,+∞) B.(﹣∞,﹣2)∪(0,2)C.(﹣2,0)∪(0,2)D.(﹣2,0)∪(2,+∞)12.若函数f(x)的导函数f′(x)=x2﹣3x﹣10,则函数f(1﹣x)的单调递增区间是()A.(,+∞)B.(﹣,+∞)C.(﹣4,3)D.(﹣∞,﹣4)和(3,+∞)二、填空题(每小题5分,共20分)13.计算: +(3+i17)﹣= .14.在Rt△ABC中,两直角边分别为a、b,设h为斜边上的高,则=+,由此类比:三棱锥S﹣ABC中的三条侧棱SA、SB、SC两两垂直,且长度分别为a、b、c,设棱锥底面ABC 上的高为h,则.15.过点(1,0)且与曲线y=相切的直线的方程为.16.已知函数f(x)=x3+ax2+bx,(a,b∈R)的图象如图所示,它与直线y=0在原点处相切,此切线与函数图象所围区域(图中阴影部分)的面积为3,则a的值为.三、解答题(17题10分,其它每题12分)17.已知复数z+i,均为实数,且在复平面内,(z+ai)2的对应点在第四象限内,求实数a的取值范围.18.设函数f(x)=﹣x2+6ax+b,其中a,b∈R.(1)若函数f(x)在x=1处取得极值﹣,求a,b的值;(2)求函数f(x)的单调递增区间.19.设数列{an }的前n项和为Sn,且关于x的方程x2﹣anx﹣an=0有一根为Sn﹣1.(1)求出S1,S2,S3;(2)猜想{Sn}的通项公式,并用数学归纳法证明.20.设铁路AB长为100,BC⊥AB,且BC=30,为将货物从A运往C,现在AB上距点B为x的点M处修一公路至C,已知单位距离的铁路运费为2,公路运费为4.(1)将总运费y表示为x的函数;(2)如何选点M才使总运费最小.21.在两个正数a,b之间插入一个数x,可使得a,x,b成等差数列,若插入两个数y,z,可使得a,y,z,b成等比数列,求证:x+1≥.22.设函数f(x)=ax2lnx﹣(x﹣1)(x>0),曲线y=f(x)在点(1,0)处的切线方程为y=0.(1)求证:当x≥1时,f(x)≥(x﹣1)2;(2)若当x≥1时,f(x)≥m(x﹣1)2恒成立,求实数m的取值范围.2017-2018学年高二下学期期中数学试卷(理科)参考答案与试题解析一、选择题(每小题5分,共60分)1.复数z1=(m2﹣2m+3)+(m2﹣m+2)i(m∈R),z2=6+8i,则m=3是z1=z2的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】2L:必要条件、充分条件与充要条件的判断.【分析】由z1=z2,可得:m2﹣2m+3=6,m2﹣m+2=8,解得m,即可判断出结论.【解答】解:由z1=z2,可得:m2﹣2m+3=6,m2﹣m+2=8,解得m=3.∴m=3是z1=z2的充要条件.故选:C.2.用反证法证明命题:“若a,b∈N,ab能被3整除,那么a,b中至少有一个能被3整除”时,假设应为()A.a,b都能被3整除B.a,b都不能被3整除C.a,b不都能被3整除D.a不能被3整除【考点】R9:反证法与放缩法.【分析】“a,b中至少有一个能被3整除”的反面是:“a,b都不能被3整除”,故应假设 a,b都不能被3整除.【解答】解:反证法证明命题时,应假设命题的反面成立.“a,b中至少有一个能被3整除”的反面是:“a,b都不能被3整除”,故应假设 a,b都不能被3整除,故选 B.3.定积分(x2+sinx)dx的值为()A. +B.﹣C.﹣D. +【考点】67:定积分.【分析】根据定积分的运算,即可求得答案.【解答】解:(x2+sinx)dx=(x3﹣cosx)=(﹣)﹣(0﹣1)=+,(x2+sinx)dx=+,故选B.4.若复数z=(a∈R,i是虚数单位)是纯虚数,则复数z的共轭复数是()A. i B.﹣ i C.3i D.﹣3i【考点】A5:复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简z=,结合已知条件列出方程组,求解可得a的值,然后代入z=化简求出复数z,则复数z的共轭复数可求.【解答】解:∵z===是纯虚数,∴,解得a=6.∴z==.则复数z的共轭复数是:﹣3i.故选:D.5.求曲线y2=4x与直线y=x所围成的图形绕x轴旋转一周所得旋转体的体积()A.B.πC.πD.24π【考点】L5:旋转体(圆柱、圆锥、圆台).【分析】利用定积分求体积.【解答】解:解方程组得x=4,y=4.∴几何体的体积V=π(4x﹣x2)dx=π•(2x2﹣)|=.故选B.6.若复数z满足|z+3+i|=,则|z|的最大值为()A.3+B. +C. +D.3【考点】A4:复数的代数表示法及其几何意义.【分析】由|z+3+i|=的几何意义,即复平面内的动点Z到定点P(﹣3,﹣1)的距离为画出图形,数形结合得答案.【解答】解:由|z+3+i|=的几何意义,复平面内的动点Z到定点P(﹣3,﹣1)的距离为,可作图象如图:∴|z|的最大值为|OP|+=.故选:B.7.已知=()A.f′(x0)B.f′(x)C.2f′(x)D.﹣f′(x)【考点】6F:极限及其运算.【分析】化简,根据极限的运算,即可求得答案.【解答】解:==+=2f′(x),),∴=2f′(x故选C.8.计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数的对应关系如表.例如,用十六进制表示E+D=1B,则A×C=()A.6E B.78 C.5F D.C0【考点】EM:进位制.【分析】本题需先根据十进制求出A与C的乘积,再把结果转化成十六进制即可.【解答】解:∵A×C=10×12=120,∴根据16进制120可表示为78.故选:B.9.利用数学归纳法证明不等式+++…+>时,由k递推到k+1时,不等式左边应添加的式子是()A.B. +C.﹣D. +﹣【考点】RG:数学归纳法.【分析】只须求出当n=k时,左边的代数式,当n=k+1时,左边的代数式,相减可得结果.【解答】解:当n=k时,左边的代数式为,当n=k+1时,左边的代数式为,故用n=k+1时左边的代数式减去n=k时左边的代数式的结果为:,故选:D.10.设函数f(x)=x3+x2+,其中θ∈(﹣,),则导数f′(1)的取值范围是()A.(﹣,1] B.(﹣,1)C.(﹣,) D.(﹣,]【考点】63:导数的运算.【分析】求导,当x=1时,f′(1)=+=sin(θ+),由θ∈(﹣,),即可求得θ+∈(﹣,),根据正弦函数的性质,即可求得导数f′(1)的取值范围.【解答】解:f(x)=x3+x2+,f′(x)=x2+x,f′(1)=+=sin(θ+),由θ∈(﹣,),则θ+∈(﹣,),则sin(θ+)∈(﹣,1],∴导数f′(1)的取值范围(﹣,1],故选A.11.函数f(x)是定义在R上的偶函数,且 f(2)=0,当x>0时,有xf′(x)﹣f(x)>0恒成立,则不等式f(x)<0的解集为()A.(﹣∞,﹣2)∪(2,+∞) B.(﹣∞,﹣2)∪(0,2)C.(﹣2,0)∪(0,2)D.(﹣2,0)∪(2,+∞)【考点】6A:函数的单调性与导数的关系.【分析】设g(x)=,根据函数的单调性和函数的奇偶性求出不等式的解集即可.【解答】解:设g(x)=,∴g′(x)=,∵当x>0时,有xf′(x)﹣f(x)>0恒成立,∴当x>0时,g′(x)>0∴g(x)在(0,+∞)递增,∵f(﹣x)=f(x),∴g(﹣x)==﹣g(x),∴g(x)是奇函数,∴g(x)在(﹣∞,0)递增,∵f(2)=0∴g(2)==0,当x>0时,f(x)<0等价于<0,∴g(x)<0=g(2),∴0<x<2,当x<0时,f(x)<0等价于>0,∴g(x)>0=g(﹣2),∴﹣2<x<0,不等式f(x)<0的解集为(﹣2,0)∪(0,2),故选:C.12.若函数f(x)的导函数f′(x)=x2﹣3x﹣10,则函数f(1﹣x)的单调递增区间是()A.(,+∞)B.(﹣,+∞)C.(﹣4,3)D.(﹣∞,﹣4)和(3,+∞)【考点】6B:利用导数研究函数的单调性.【分析】由f′(x)<0求出f(x)的减区间,利用对称性求得f(﹣x)的增区间,再由平移变换可得函数f(1﹣x)的单调递增区间.【解答】解:由f′(x)=x2﹣3x﹣10<0,得﹣2<x<5,∴函数f(x)的减区间为(﹣2,5),则函数y=f(﹣x)的增区间为(﹣5,2),而f(1﹣x)=f[﹣(x﹣1)]是把函数y=f(﹣x)向右平移1个单位得到的,∴函数f(1﹣x)的单调递增区间是(﹣4,3).故选:C.二、填空题(每小题5分,共20分)13.计算: +(3+i 17)﹣= 4+2i .【考点】A7:复数代数形式的混合运算. 【分析】利用复数的运算法则分别计算即可.【解答】解:原式=+(3+i )﹣=+3+i ﹣i 10=i+3+i+1 =4+2i ;故答案为:4+2i .14.在Rt △ABC 中,两直角边分别为a 、b ,设h 为斜边上的高,则=+,由此类比:三棱锥S ﹣ABC 中的三条侧棱SA 、SB 、SC 两两垂直,且长度分别为a 、b 、c ,设棱锥底面ABC上的高为h ,则+.【考点】F3:类比推理.【分析】立体几何中的类比推理主要是基本元素之间的类比:平面⇔空间,点⇔点或直线,直线⇔直线或平面,平面图形⇔平面图形或立体图形,故本题由平面上的直角三角形中的边与高的关系式类比立体中两两垂直的棱的三棱锥中边与高的关系即可. 【解答】解:∵PA 、PB 、PC 两两互相垂直,∴PA ⊥平面PBC . 设PD 在平面PBC 内部,且PD ⊥BC ,由已知有:PD=,h=PO=,∴,即.故答案为:.15.过点(1,0)且与曲线y=相切的直线的方程为 4x+y ﹣4=0 . 【考点】6H :利用导数研究曲线上某点切线方程.【分析】设出切点坐标,利用导数求出过切点的切线方程,再把已知点代入,求出切点横坐标,则切线方程可求.【解答】解:设切点为(),由y=,得y′=,∴,则切线方程为y﹣,把点(1,0)代入,可得,解得.∴切线方程为y﹣2=﹣4(x﹣),即4x+y﹣4=0.故答案为:4x+y﹣4=0.16.已知函数f(x)=x3+ax2+bx,(a,b∈R)的图象如图所示,它与直线y=0在原点处相切,此切线与函数图象所围区域(图中阴影部分)的面积为3,则a的值为.【考点】6G:定积分在求面积中的应用.【分析】题目中给出了函数图象与x轴围成的封闭图形的面积,所以我们可以从定积分着手,求出函数以及函数与x轴的交点,建立等式求解参数.【解答】解:由已知对方程求导,得:f′(x)=3x2+2ax+b.由题意直线y=0在原点处与函数图象相切,故f′(0)=0,代入方程可得b=0.故方程可以继续化简为:f(x)=x3+ax2=x2(x+a),令f(x)=0,可得x=0或者x=﹣a,可以得到图象与x轴交点为(0,0),(﹣a,0),由图得知a<0.故对﹣f(x)从0到﹣a求定积分即为所求面积,即:﹣a f(x)dx=3,﹣∫将 f(x)=x3+ax2代入得:﹣a(﹣x3﹣ax2)dx=3,∫求解,得a=﹣.故答案为:﹣.三、解答题(17题10分,其它每题12分)17.已知复数z+i,均为实数,且在复平面内,(z+ai)2的对应点在第四象限内,求实数a的取值范围.【考点】A4:复数的代数表示法及其几何意义;A5:复数代数形式的乘除运算.【分析】复数z+i,均为实数,可设z=x﹣i, =﹣i,可得﹣=0,z=﹣2﹣i.在复平面内,(z+ai)2=4﹣(a﹣1)2﹣4(a﹣1)i的对应点在第四象限内,可得4﹣(a ﹣1)2>0,﹣4(a﹣1)<0,解出即可得出.【解答】解:∵复数z+i,均为实数,设z=x﹣i, ==﹣i,∴﹣ =0,∴x=﹣2.∴z=﹣2﹣i.∵在复平面内,(z+ai)2=[﹣2+(a﹣1)i]2=4﹣(a﹣1)2﹣4(a﹣1)i的对应点在第四象限内,∴4﹣(a﹣1)2>0,﹣4(a﹣1)<0,解得:1<a<3.∴实数a的取值范围是(1,3).18.设函数f(x)=﹣x2+6ax+b,其中a,b∈R.(1)若函数f(x)在x=1处取得极值﹣,求a,b的值;(2)求函数f(x)的单调递增区间.【考点】6B:利用导数研究函数的单调性;6D:利用导数研究函数的极值.【分析】(1)求出f′(x )=x 2﹣(3a+2)x+6a ,由函数f (x )在x=1处取得极值﹣,列出方程组,能求出a ,b .(2)由f′(x )=x 2﹣3x+2,利用导数性质能求出函数f (x )的单调递增区间.【解答】解:(1)∵f (x )=﹣x 2+6ax+b ,其中a ,b ∈R ,∴f′(x )=x 2﹣(3a+2)x+6a ,∵函数f (x )在x=1处取得极值﹣,∴,解得a=,b=﹣1.(2)由(1)得f (x )=﹣+2x ﹣1,∴f′(x )=x 2﹣3x+2,由f′(x )=x 2﹣3x+2>0,得x >2或x <1,∴函数f (x )的单调递增区间为(﹣∞,1],[2,+∞).19.设数列{a n }的前n 项和为S n ,且关于x 的方程x 2﹣a n x ﹣a n =0有一根为S n ﹣1. (1)求出S 1,S 2,S 3;(2)猜想{S n }的通项公式,并用数学归纳法证明. 【考点】RG :数学归纳法;8E :数列的求和.【分析】(1)由题设求出S 1=,S 2=.S 3=.(2)由此猜想S n =,n=1,2,3,….然后用数学归纳法证明这个结论.【解答】解:(1)当n=1时,x 2﹣a 1x ﹣a 1=0有一根为S 1﹣1=a 1﹣1,于是(a 1﹣1)2﹣a 1(a 1﹣1)﹣a 1=0,解得a 1=.当n=2时,x 2﹣a 2x ﹣a 2=0有一根为S 2﹣1=a 2﹣,于是(a 2﹣)2﹣a 2(a 2﹣)﹣a 2=0,解得a 2=由题设(S n ﹣1)2﹣a n (S n ﹣1)﹣a n =0, S n 2﹣2S n +1﹣a n S n =0. 当n ≥2时,a n =S n ﹣S n ﹣1, 代入上式得S n ﹣1S n ﹣2S n +1=0.①得S 1=a 1=,S 2=a 1+a 2=+=.由①可得S 3=.(2)由(1)猜想S n =,n=1,2,3,….下面用数学归纳法证明这个结论. (i )n=1时已知结论成立.(ii )假设n=k 时结论成立,即S k =,当n=k+1时,由①得S k+1=,可得S k+1=,故n=k+1时结论也成立.综上,由(i )、(ii )可知S n =对所有正整数n 都成立.20.设铁路AB 长为100,BC ⊥AB ,且BC=30,为将货物从A 运往C ,现在AB 上距点B 为x 的点M 处修一公路至C ,已知单位距离的铁路运费为2,公路运费为4. (1)将总运费y 表示为x 的函数; (2)如何选点M 才使总运费最小.【考点】HT :三角形中的几何计算.【分析】(1)由题意,AB=100,BC ⊥AB ,BC=30,BM=x ,则AM=100﹣x .MC=,可得总运费y 表示为x 的函数;(2)根据(1)中的关系式,利用导函数单调性,可得最值.【解答】解:(1)由题意,AB=100,BC ⊥AB ,BC=30,BM=x ,则AM=100﹣x .MC=,∴总运费y=2×+4×MC=200﹣2x+4,.(2)由(1)可得y=200﹣2x+4,.则y′=﹣2+4××令y′=0.可得:2=4x,解得:x=10.当时,y′<0,则y在当单调递减.当时,y′>0,则y在单调递增.∴当x=10时,y取得最大值为200+60.∴选点M距离B点时才使总运费最小.21.在两个正数a,b之间插入一个数x,可使得a,x,b成等差数列,若插入两个数y,z,可使得a,y,z,b成等比数列,求证:x+1≥.【考点】8G:等比数列的性质.【分析】y,z为正数,可得≤,要证明x+1≥.(x>0).只要证明:2x≥y+z即可.根据a,x,b成等差数列,a,y,z,b成等比数列,a,b>0.可得2x=a+b,,z=.令=m>0, =n>0,可得2x≥y+z⇔m3+n3≥m2n+mn2⇔(m﹣n)2≥0,【解答】证明:∵y,z为正数,∴≤,要证明x+1≥.(x>0).只要证明:2x≥y+z即可.∵a,x,b成等差数列,a,y,z,b成等比数列,a,b>0,∴2x=a+b,,z=.令=m>0, =n>0,则2x≥y+z⇔m3+n3≥m2n+mn2.⇔(m﹣n)2≥0,上式显然成立,因此:x+1≥.22.设函数f(x)=ax2lnx﹣(x﹣1)(x>0),曲线y=f(x)在点(1,0)处的切线方程为y=0.(1)求证:当x≥1时,f(x)≥(x﹣1)2;(2)若当x≥1时,f(x)≥m(x﹣1)2恒成立,求实数m的取值范围.【考点】6H:利用导数研究曲线上某点切线方程;6E:利用导数求闭区间上函数的最值.【分析】(1)由题意求得a=1,得到函数解析式,构造函数g(x)=x2lnx+x﹣x2,(x≥1).利用导数可得函数在[1,+∞)上为增函数,可得g(x)≥g(1)=0,即f(x)≥(x﹣1)2;(2)设h(x)=x2lnx﹣x﹣m(x﹣1)2+1,求其导函数,结合(1)放缩可得h′(x)≥3(x ﹣1)﹣2m(x﹣1)=(x﹣1)(3﹣2m).然后对m分类讨论求解.【解答】(1)证明:由f(x)=ax2lnx﹣(x﹣1),得f′(x)=ax2lnx﹣(x﹣1)=2axlnx+ax ﹣1.∵曲线y=f(x)在点(1,0)处的切线方程为y=0,∴a﹣1=0,得a=1.则f(x)=x2lnx﹣x+1.设g(x)=x2lnx+x﹣x2,(x≥1).g′(x)=2xlnx﹣x+1,g″(x)=2lnx+1>0,∴g′(x)在[1,+∞)上为增函数,∴g′(x)≥g′(1)=0,则g(x)在[1,+∞)上为增函数,∴g(x)≥g(1)=0,即f(x)≥(x﹣1)2;(2)解:设h(x)=x2lnx﹣x﹣m(x﹣1)2+1,h′(x)=2xlnx+x﹣2m(x﹣1)﹣1,由(1)知,x2lnx≥(x﹣1)2+x﹣1=x(x﹣1),∴xlnx≥x﹣1,则h′(x)≥3(x﹣1)﹣2m(x﹣1)=(x﹣1)(3﹣2m).①当3﹣2m≥0,即m时,h′(x)≥0,h(x)在[1,+∞)上单调递增,∴h(x)≥h(1)=0成立;②当3﹣2m<0,即m>时,h′(x)=2xlnx+(1﹣2m)(x﹣1),h″(x)=2lnx+3﹣2m.令h″(x)=0,得>1,∴当x∈[1,x)时,h′(x)<h′(1)=0,)上单调递减,则h(x)<h(1)=0,不合题意.∴h(x)在[1,x综上,m.。

2017—2018学年第二学期高二年级期中考试数学(理)试卷解析版

2017—2018学年第二学期高二年级期中考试数学(理)试卷解析版

2017~2018学年第二学期高二年级期中考试数学(理)试卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在复平面内,复数ii+310对应的点的坐标为( A )A .)3,1(B .)1,3(C .)3,1(-D .)1,3(-2.已知随机变量ξ服从正态分布),(2σμN ,若15.0)6()2(=>=<ξξP P ,则=<≤)42(ξP ( B )A .0.3B .0.35C .0.5D .0.7 3.设)(x f 在定义域内可导,其图象如图所示,则导函数)('x f 的图象可能是( B )4.用反证法证明命题:“若0)1)(1)(1(>---c b a ,则c b a ,,中至少有一个大于1”时,下列假设中正确的是( B )A .假设c b a ,,都大于1B .假设c b a ,,都不大于1C .假设c b a ,,至多有一个大于1D .假设c b a ,,至多有两个大于15.用数学归纳法证明3)12(12)1()1(2122222222+=+++-++-+++n n n n n 时,从)(*N k k n ∈=到1+=k n 时,等式左边应添加的式子是( B )A .222)1(k k +- B .22)1(k k ++ C .2)1(+k D.]1)1(2)[1(312+++k k6.3名志愿者完成4项工作,每人至少1项,每项由1人完成,则不同的安排方式共有( D )A .12种B .18种C .24种D .36种 7.在62)12(xx -的展开式中,含7x 的项的系数是( D ) A .60 B .160 C .180 D .2408.函数xe xf x2)(=的导函数是( C )A .xe xf 2'2)(= B .x e x f x 2'2)(= C .22')12()(x e x x f x -= D .22')1()(x e x x f x -=9.已知函数223)(a bx ax x x f +++=在1=x 处的极值为10,则数对),(b a 为( C )A .)3,3(-B .)4,11(-C .)11,4(-D .)3,3(-或)11,4(-10.若等差数列}{n a 公差为d ,前n 项和为n S ,则数列}{n S n 为等差数列,公差为2d.类似,若各项均为正数的等比数列}{n b 公比为q ,前n 项积为n T ,则等比数列}{n n T 公比为( C )A.2q B .2q C.q D.n q 11.将3颗骰子各掷一次,记事件A 表示“三个点数都不相同”,事件B 表示“至少出现一个3点”,则概率=)|(B A P ( C )A.21691 B.185 C.9160 D.2112.定义在R 上的偶函数)(x f 的导函数为)('x f ,若对任意实数x ,都有2)()(2'<+x xf x f 恒成立,则使1)1()(22-<-x f x f x 成立的实数x 的取值范围为( B )A .}1|{±≠x xB .),1()1,(+∞--∞C .)1,1(-D .)1,0()0,1( - 二、填空题(本大题共4小题,每小题5分,共20分)13.设),(~p n B ξ,若有4)(,12)(==ξξD E ,则=p 2/3 14.若函数32)1(21)(2'+--=x x f x f ,则=-)1('f -1 15.如图所示,阴影部分的面积是 32/316.已知函数)(x f 的定义域为]5,1[-,部分对应值如下表,)(x f 的导函数)('x f y =的图象如图所示,给出关于)(x f 的下列命题:②函数)(x f 在]1,0[是减函数,在]2,1[是增函数; ③当21<<a 时,函数a x f y -=)(有4个零点;④如果当],1[t x -∈时,)(x f 的最大值是2,那么t 的最小值为0. 其中所有正确命题是 ①③④ (写出正确命题的序号).三、解答题(本大题共6小题,共70分) 17.(本小题满分10分)设复数i m m m m z )23()32(22+++--=,试求实数m 的取值,使得 (1)z 是纯虚数; (2)z 对应的点位于复平面的第二象限. 解:(1)复数是一个纯虚数,实部等于零而虚部不等于0分5302303222 =∴⎪⎩⎪⎨⎧≠++=--m m m m m (2)当复数对应的点在第二象限时,分103102303222<<-∴⎪⎩⎪⎨⎧>++<--m m m m m 18.(本小题满分12分) 在数列}{n a 中,已知)(13,2*11N n a a a a n nn ∈+==+(1)计算432,,a a a 的值,并猜想出}{n a 的通项公式; (2)请用数学归纳法证明你的猜想. 解:(1)72123213112=+⨯=+=a a a ,19213,132********=+==+=a a a a a a于是猜想出分5562-=n a n (2)①当1=n 时,显然成立;②假设当)(*N k k n ∈=时,猜想成立,即562-=k a k 则当1+=k n 时,5)1(6216215623562131-+=+=+-⨯-=+=+k k k k a a a k k k , 即当1+=k n 时猜想也成立. 综合①②可知对于一切分12562,*-=∈n a N n n 19.(本小题满分12分)“莞马”活动中的α机器人一度成为新闻热点,为检测其质量,从一生产流水线上抽取20件该产品,其中合格产品有15件,不合格的产品有5件.(1)现从这20件产品中任意抽取2件,记不合格的产品数为X ,求X 的分布列及数学期望; (2)用频率估计概率,现从流水线中任意抽取三个机器人,记ξ为合格机器人与不合格机器人的件数差的绝对值,求ξ的分布列及数学期望. 解:(1)随机变量X 的可能取值为0,1,23821)0(22021505===C C C X P ,3815)1(22011515===C C C X P , 191)2(22001525===C C C X P , 所以随机变量X 的分布列为:分62192381380 =⨯+⨯+⨯=∴EX(2)合格机器人的件数可能是0,1,2,3,相应的不合格机器人的件数为3,2,1,0.所以ξ的可能取值为1,3,有题意知:1122213331319(1)()()()()444416P C C ξ==+=,3333331317(3)()()()()444416P C C ξ==+= 所以随机变量ξ的分布列为:分128163161)( =⨯+⨯=∴ξE 20.(本小题满分12分)编号为5,4,3,2,1的五位学生随意入座编号为5,4,3,2,1的五个座位,每位学生坐一个座位.设与座位编号相同的学生人数是X .(1)试求恰好有3个学生与座位编号相同的概率)3(=X P ; (2)求随机变量X 的分布列及均值.解:(1)恰好有3个学生与座位编号相同,这时另两个学生与座位编号不同,所以分412112010)3(5525 ====A C X P(2)随机变量X 的一切可能值为0,1,2,3,4,5. 且121)3(,00)4(,120112011)5(5555=========X P A X P A X P ; 83120459)1(,61120202)2(55155525========A C X P A C X P301112044)]5()4()3()2()1([1)0(===+=+=+=+=-==X P X P X P X P X P X P 随机变量X 的分布列为故分1211205041236281300)( =⨯+⨯+⨯+⨯+⨯+⨯=X E 21.(本小题满分12分)已知函数)(ln )(R a x ax x f ∈+=(1)若2=a ,求曲线)(x f y =在1=x 处的切线方程; (2)求)(x f 的单调区间;(3)设22)(2+-=x x x g ,若对任意),0(1+∞∈x ,均存在]1,0[2∈x ,使得)()(21x g x f <,求a 的取值范围. 解:(1)2),0(1)('=>+=a x x a x f )0(12)('>+=∴x xx f , 3)1('=∴f , 3=∴k又切点)2,1(,所以切线方程为)1(32-=-x y ,即:013=--y x 故曲线)(x f y =在1=x 处切线的切线方程为分4013 =--y x(2))0(11)('>+=+=x xax x a x f ①当0≥a 时,0)('>x f ,所以)(x f 的单调递增区间为分6),0( +∞②当0<a 时,由0)('=x f ,得ax 1-= 在区间)1,0(a -上0)('>x f ,在区间),1(+∞-a上,0)('<x f . 所以,函数)(x f 的单调递增区间为)1,0(a -,单调递减区间为分8),1( +∞-a(3)由已知,转化为]1,0[,1)1()(,)()(2max max ∈+-=<x x x g x g x f ,2)(max =∴x g 由(2)知,当0≥a 时,)(x f 在),0(+∞上单调递增,值域为R ,故不符合题意. (或者举出反例:存在23)(33>+=ae e f ,故不符合题意.)当0<a 时,)(x f 在)1,0(a -上单调递增,在),1(+∞-a上单调递减, 故)(x f 的极大值即为最大值,)ln(1)1()(max a af x f ---=-=, 所以2)ln(1<---a ,解得31e a -< 综上:分1213 ea -< 22.(本小题满分12分) 已知函数2()ln(1)f x ax x =++ (1)当14a =-时,求函数()f x 的极值; (2)若函数()f x 在区间[1)+∞,上为减函数,求实数a 的取值范围 (3)当[0)x ∈+∞,时,不等式()f x x ≤恒成立,求实数a 的取值范围. 解:(1))1()1(2)1)(2(1121)('->+-+-=++-=x x x x x x x f 令0)('>x f 得11<<-x ,令0)('<x f 得1>x .)(x f ∴在)1,1(-上是增函数,在),1(+∞上是减函数. 2ln 41)1()(+-==∴f x f 极大值,)(x f 无极小值分4(2)因为函数)(x f 在区间[1)+∞,上为减函数, 所以0112)('≤++=x ax x f 对任意的),1[+∞∈x 恒成立, 即)1(21+-≤x x a 对任意的),1[+∞∈x 恒成立,4121)211(2121)21(21)1(2122-=-+-≥-+-=+-x x x分841-≤∴a(3)因为当[0)x ∈+∞,时,不等式()f x x ≤恒成立, 即0)1ln(2≤-++x x ax 恒成立,令)0()1ln()(2≥-++=x x x ax x g , 转化为0)(max ≤x g 即可.1)]12(2[1112)('+-+=-++=x a ax x x ax x g 当0=a 时,1)('+-=x x x g ,0>x ,0)('<∴x g 即)(x g 在),0[+∞上单调递减,故0)0()(=≤g x g 成立. 当0>a 时,令0)('=x g 得,0=x 或121-=ax 若0121≤-a 即21≥a 时,),0(+∞∈x 有0)('>x g , 则)(x g 在),0[+∞上单调递增,0)0()(=≥g x g ,不满足题设; 若0121>-a 即210<<a 时,)121,0(-∈a x 有0)('<x g ,),121(+∞-∈ax 有0)('>x g , 则)(x g 在)121,0(-a 上单调递减,在),121(+∞-a上单调递增,无最大值,不满足题设; 当0<a 时,0>x ,0)('<∴x g即)(x g 在),0[+∞上单调递减,故0)0()(=≤g x g 成立. 综上:实数a 的取值范围为分12]0,( -∞。

河北省衡水市高二下学期期中数学试卷(理科)

河北省衡水市高二下学期期中数学试卷(理科)

河北省衡水市高二下学期期中数学试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)按照下列三种化合物的结构式及分子式的规律,写出后一种化合物的分子式是().A . C4H9B . C4H10C . C4H11D . C6H122. (2分)函数f(x)的图象如图所示,下列数值排序正确的是()A . 0<f′(3)<f′(4)<f(4)﹣f(3)B . 0<f′(3)<f(4)﹣f(3)<f′(4)C . 0<f′(4)<f′(3)<f(4)﹣f(3)D . 0<f(4)﹣f(3)<f′(3)<f′(4)3. (2分) (2017高二下·河口期末) 已知函数则的值为:()A .B . 4C . 2D .4. (2分) (2017高二下·榆社期中) 复数z= 的共轭复数的虚部为()A . ﹣4iB . ﹣4C . 4iD . 45. (2分)不等式|x+3|+|x﹣1|≥a2﹣3a对任意实数x恒成立,则实数a的取值范围为()A . (﹣∞,﹣2]∪[4,+∞)B . [﹣1,4]C . [1,2]D . (﹣∞,1]∪[2,+∞)6. (2分) (2017高二下·西安期中) 已知曲线C:f(x)=x3+1,则与直线垂直的曲线C的切线方程为()A . 3x﹣y﹣1=0B . 3x﹣y﹣3=0C . 3x﹣y﹣1=0或3x﹣y+3=0D . 3x﹣y﹣1=0或3x﹣y﹣3=07. (2分)设函数,则满足的实数a的有()A . 3个B . 2个C . 1个D . 0个8. (2分)(2012·福建) 若复数z满足zi=1﹣i,则z等于()A . ﹣1﹣IB . 1﹣IC . ﹣1+ID . 1+i(x∈R)的导函数,f(0)=1,且,9. (2分) (2017高三上·赣州期末) 设函数f'(x)是函数f(x)则4f(x)>f'(x)的解集为()A .B .C .D .10. (2分) (2016高三上·辽宁期中) 设f(x)是定义在(﹣π,0)∪(0,π)的奇函数,其导函数为f'(x),且,当x∈(0,π)时,f'(x)sinx﹣f(x)cosx<0,则关于x的不等式的解集为()A .B .C .D .11. (2分)某种细菌经60分钟培养,可繁殖为原来的2倍.10个细菌经过7小时培养,细菌能达到的个数是()A . 640B . 1280C . 2560D . 512012. (2分)(2018·枣庄模拟) 已知函数,若有两个零点,则的取值范围是()A .B .C .D .二、填空题 (共4题;共13分)13. (1分)复数z1=cosθ+i,z2=sinθ﹣i,则|z1﹣z2|的最大值为________.14. (1分)已知函数f(x)=x3+2xf′(﹣1),则函数f(x)在区间[﹣2,3]的值域是________.15. (1分) (2015高二下·郑州期中) (﹣2x)dx=________.16. (10分) (2018高三上·重庆月考) 已知函数.(1)解不等式;(2)已知,若关于x的不等式恒成立,求实数a的取值范围.三、解答题: (共6题;共50分)17. (5分) (2019高二下·宁夏月考) 已知复数其中i为虚数单位.(Ⅰ)当实数m取何值时,复数z是纯虚数;(Ⅱ)若复数z在复平面上对应的点位于第四象限,求实数m的取值范围.18. (10分)(2019·长沙模拟) 设函数 .(1)求函数的极值点个数;(2)若,证明 .19. (5分)(2017·盐城模拟) 已知a,b,c为正实数,且a+b+c=3,证明: + + ≥3.20. (10分) (2017高二下·邯郸期末) 已知f(x)=ax2﹣2lnx,x∈(0,e],其中e是自然对数的底.(1)若f(x)在x=1处取得极值,求a的值;(2)求f(x)的单调区间.21. (10分) (2016高二下·威海期末) 已知数列{an}满足(an+1﹣1)(an﹣1)= (an﹣an+1),a1=2,若bn= .(1)证明:数列{bn}是等差数列;(2)令cn= ,{cn}的前n项和为Tn,用数学归纳法证明Tn≥ (n∈N*).22. (10分)(2018·商丘模拟) 已知函数 .(1)如图,设直线将坐标平面分成四个区域(不含边界),若函数的图象恰好位于其中一个区域内,判断其所在的区域并求对应的的取值范围;(2)当时,求证:且,有 .参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共13分)13-1、14-1、15-1、16-1、16-2、三、解答题: (共6题;共50分) 17-1、18-1、18-2、19-1、20-1、20-2、21-1、21-2、22-1、22-2、。

河北省衡水中学滁州分校2017-2018学年高二下学期开学考试数学理试题 含答案 精品

河北省衡水中学滁州分校2017-2018学年高二下学期开学考试数学理试题 含答案 精品

启用前绝密河北省衡水中学滁州分校2017-2018学年下学期开学考试高二(理科)数学注意事项:1.你现在拿到的这份试卷是满分150分,作答时间为120分钟 2.答题前请在答题卷上填写好自己的姓名、班级、考号等信息 3.请将答案正确填写在答题卡上第I 卷(选择题60分)一、选择题(本大题共12个小题,每小题5分,共60分。

)1.已知m 为正数,则“1m >”是“11lg 1m m+< ”的 ( ) A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 2. 由命题“存在,使”是假命题,得的取值范围是,则实数的值是( )A. 2B.C. 1D.3. 如图,空间四边形OABC 中,点,M N 分别在,OA BC 上, 2OM MA =,BN CN =,则MN = ( )A.121232OA OB OC -+ B. 211322OA OB OC -++ C. 111222OA OB OC +- D. 221332OA OB OC +-4. 设点P 为双曲线22221x y a b-=(0a >, 0b >)上一点, 12,F F 分别是左右焦点,I 是12PF F ∆的内心,若1IPF ∆, 2IPF ∆, 12IF F ∆的面积123,,S S S 满足()1232S S S -=,则双曲线的离心率为( )A. 2B.C. 4D.5.如图,面ACD α⊥,B 为AC 的中点, 2,60,AC CBD P α=∠=为内的动点,且P 到直线BD APC ∠的最大值为( )A. 30°B. 60°C. 90°D. 120°6.如图,在长方体ABCD A B C D '-'''中,点,P Q 分别是棱,BC CD 上的动点,4,3,BC CD CC '===直线CC '与平面'PQC 所成的角为030,则PQC ∆'的面积的最小值是( )A.B. 8C.D. 10 7.如图,60°的二面角的棱上有,A B 两点,直线,AC BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知4,6,8AB AC BD ===,则CD 的长为( )A. B. 7C. D. 98.已知,,,A B C D 是同一球面上的四个点,其中ABC ∆是正三角形, AD ⊥平面ABC , 26AD AB ==,则该球的表面积为( )A. 48πB.C. 24πD. 16π9.若直线()2y k x =-与曲线y = )A. k 有最大值3,最小值3- B. k 有最大值12,最小值12-C. k 有最大值0,最小值D. k 有最大值0,最小值12-10.在四面体ABCD 中, ,E G 分别是,CD BE 的中点,若AG xAB yAD zAC =++,则x y z ++=( )A.13 B. 12C. 1D. 211.若直线()220,0ax by a b +-=>始终平分圆224280x y x y +---=的周长,则12a b+的最小值为A. 1B. 5C.D. 3+12.如图,在长方体1111ABCD A BC D -中, 1AB =, BC =,点M 在棱1CC 上,且1MD MA ⊥,则当1MAD ∆的面积最小时,棱1CC 的长为A.B. C. 2 D. 第II 卷(非选择题 90分)二、填空题(本大题共4个小题,每小题5分,共20分。

河北衡水市安平中学2017-2018学年高二下学期期中考试理科数学试题(解析版)

河北衡水市安平中学2017-2018学年高二下学期期中考试理科数学试题(解析版)

安平中学2017-2018学年第二学期期中考试高二数学(理科)试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.1.若随机变量ξ的分布列如下表所示,则p1=( )A. 0B.C.D. 1【答案】B【解析】【分析】由分布列的性质:所有随机变量对应概率的和为列方程求解即可.【详解】因为所有随机变量对应概率的和为,所以,,解得,故选B.【点睛】本题主要考查分布列的性质,意在考查对基本性质的掌握情况,属于简单题.2. 若随机变量X~B(n,0.6),且E(X)=3,则P(X=1)的值是()A. 2×0.44B. 2×0.45C. 3×0.44D. 3×0.64【答案】C【解析】试题分析:根据随机变量符合二项分布,根据期望值求出n的值,写出对应的自变量的概率的计算公式,代入自变量等于1时的值.解:∵随机变量X服从,∵E(X)=3,∴0.6n=3,∴n=5∴P(X=1)=C51(0.6)1(0.4)4=3×0.44故选C.考点:二项分布与n次独立重复试验的模型.3.3.下列说法正确的是( )A. 相关关系是一种不确定的关系,回归分析是对相关关系的分析,因此没有实际意义B. 独立性检验对分类变量关系的研究没有100%的把握,所以独立性检验研究的结果在实际中也没有多大的实际意义C. 相关关系可以对变量的发展趋势进行预报,这种预报可能是错误的D. 独立性检验如果得出的结论有99%的可信度就意味着这个结论一定是正确的【答案】C相关关系虽然是一种不确定关系,但是回归分析可以在某种程度上对变量的发展趋势进行预报,这种预报在尽量减小误差的条件下可以对生产与生活起到一定的指导作用;独立性检验对分类变量的检验也是不确定的,但是其结果也有一定的实际意义,故正确答案为C.4.4.已知回归直线方程,其中且样本点中心为,则回归直线方程为()A. B. C. D.【答案】C【解析】【分析】根据回归直线方程,将样本点的中心坐标代入,即可求得回归直线方程.【详解】回归直线方程为,样本点的中心为,,,回归直线方程,故选C.【点睛】本题主要考查回归方程的性质以及求回归方程的方法,属于简单题. 回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.5.5.已知随机变量X服从正态分布N(μ,σ2),且P(μ-2σ<X<μ+2σ)=0.954 4,P(μ-σ<X<μ+σ)=0.6826.若μ=4,σ=1,则P(5<X<6)=( )A. 0.135 9B. 0.135 8C. 0.271 8D. 0.271 6【解析】【分析】根据变量符合正态分布和所给的和的值,结合原则,得到,两个式子相减,根据对称性得到结果.【详解】随机变量符合正态分布,,,,,,故选A.【点睛】本题主要考查正态分布的性质,属于中档题.有关正态分布应用的题考查知识点较为清晰,只要熟练掌握正态分布的性质,特别是状态曲线的对称性以及各个区间概率之间的关系,问题就能迎刃而解.6.6.如图所示,表示3种开关,若在某段时间内它们正常工作的概率分别为0.9,0.8,0.7,那么此系统的可靠性为()A. 0.504B. 0.994C. 0.496D. 0.06【答案】B【解析】试题分析:系统正常工作的概率为,即可靠性为0.994.故选B.考点:相互独立事件同时发生的概率.【名师点睛】1.对于事件A,B,若A的发生与B的发生互不影响,则称A,B相互独立;2.若A与B相互独立,则P(B|A)=P(B),P(AB)=P(B|A)×P(A)=P(A)×P(B)3.若A与B相互独立,则A与,与B,与也都相互独立.4.若P(AB)=P(A)P(B),则称A,B相互独立.7.7.如图所示的5个数据,去掉后,下列说法错误的是()A. 相关系数变大B. 残差平和变大C. 变大D. 解释变量与预报变量的相关性变强【答案】B【解析】分析:由散点图知,去掉后,与的线性相关加强,由相关系数,相关指数及残差平方和与相关性的关系得出选项.详解:由散点图知,去掉后,与的线性相关加强,且为正相关,所以r变大,变大,残差平方和变小.故选B.点睛:本题考查刻画两个变量相关性强弱的量:相关系数r,相关指数R2及残差平方和,属基础题.8. 已知随机变量X~B(6,0.4),则当η=-2X+1时,D(η)=()A. -1.88B. -2.88C. 5. 76D. 6.76【答案】C【解析】试题分析:因为随机变量X~B(6,0.4),所以,.故选C.考点:1、离散型随机变量的分布列(二项分布);2、离散型随机变量函数的方差.9.9.一名篮球运动员投篮一次得3分的概率为a,得2分的概率为b,不得分的概率为c(a,b,c∈(0,1)),已知他投篮一次得分的均值为2(不计其他得分情况),则ab的最大值为( )A. B. C. D.【答案】D【解析】试题分析:由题意,投篮一次得3分的概率为a,得2分的概率为b,不得分的概率为c(a、b、c∈(0,1)),∴3a+2b=2,∴2≥2,∴ab≤(当且仅当a=,b=时取等号)∴ab的最大值为.故答案:D.考点:离散型随机变量的期望与方差.10.10.下列说法:①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适;②用相关指数可以刻画回归的效果,值越小说明模型的拟合效果越好;③比较两个模型的拟合效果,可以比较残差平方和大小,残差平方和越小的模型拟合效果越好.其中说法正确的是( )A. ①②B. ②③C. ①③D. ①②③【答案】C【解析】①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适,正确.②相关指数来刻画回归的效果,值越大,说明模型的拟合效果越好,因此②不正确.③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好,正确.综上可知:其中正确命题的是①③.故答案为C11.11.将三颗骰子各掷一次,设事件“三个点数都不相同”,“至少出现一个6点”,则概率等于()A. B. C. D.【答案】A【解析】试题分析:∵P(A|B)=P(AB)÷P(B),P(AB)=P(B)=1-P(.B)=1-∴P(A/B)=P(AB)÷P(B)=考点:条件概率与独立事件12.12.同时抛掷5枚质地均匀的硬币80次,设5枚硬币正好出现2枚正面向上,3枚反面向上的次数为X,则X 的均值是( )A. 20B. 25C. 30D. 40【答案】B【解析】抛掷一次正好出现3枚反面向上,2枚正面向上的概率为,所以X~B.故E(X)=80×=25.二、填空题(本大题共4小题,每小题5分,共20分).13.13.打靶时,甲每打10次可中靶8次,乙每打10次可中靶7次,若两人同时射一个目标,则他们都中靶的概率是.【答案】【解析】试题分析:依题意可知甲中靶与乙中靶是相互独立事件,且他们中靶的概率分布为0.8,0.7。

2017-2018学年高二下学期期中考试数学(理)试题 word版含答案

2017-2018学年高二下学期期中考试数学(理)试题 word版含答案

2017-2018学年度高二年级期中考试数学(理科)试卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设正弦函数y =sinx 在x =0和x =π2附近的瞬时变化率为k1、k2,则k1、k2的大小关系为( )A .k1>k2B .k1<k2C .k1=k2D .不确定2.命题“对任意x R ∈,都有20x ≥”的否定为( )A .对任意x R ∈,使得20x <B .不存在x R ∈,使得20x <C .存在0x R ∈,都有200x ≥D .存在0x R ∈,都有200x <3.设z 是复数,则下列命题中的假命题是( )A .若20z ≥, 则z 是实数B .若20z <, 则z 是虚数C .若z 是虚数, 则20z ≥D .若z 是纯虚数, 则20z <4.一物体以速度v =(3t2+2t)m/s 做直线运动,则它在t =0s 到t =3s 时间段内的位移是( )A .31mB .36mC .38mD .40m5.3.复数31iz i +=-(i 为虚数单位)在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限6.对于命题p 和q ,若p 且q 为真命题,则下列四个命题:①p 或¬q 是真命题;②p 且¬q 是真命题;③¬p 且¬q 是假命题;④¬p 或q 是假命题.其中真命题是( )A .①②B .③④C .①③D .②④7.三次函数f(x)=mx3-x 在(-∞,+∞)上是减函数,则m 的取值范围是( )A .m<0B .m<1C .m≤0D .m≤18.已知抛物线y =-2x2+bx +c 在点(2,-1)处与直线y =x -3相切,则b +c 的值为( )A .20B .9C .-2D .29.设f(x)=cos 2tdt ,则f =( )A.1B.sin 1C.sin 2D.2sin 410.“ a=b ”是“直线与圆22()()2x a y b -++=相切的 ( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件11.设函数f(x)的图象如图,则函数y =f ′(x)的图象可能是下图中的( )12.若关于x 的不等式x3-3x2-9x +2≥m 对任意x ∈[-2,2]恒成立,则m 的取值范围是( )A .(-∞,7]B .(-∞,-20]C .(-∞,0]D .[-12,7]二、填空题(本大题共4个小题,每小题5分,共20分,将正确答案填在题中横线上)13.若曲线f(x)=x4-x 在点P 处的切线垂直于直线x -y =0,则点P 的坐标为________14.f(x)=ax3-2x2-3,若f′(1)=2,则a 等于________.15.220(4)x x dx --=⎰_______________.16.已知z C ,且|z|=1,则|z-2i|(i 为虚数单位)的最小值是________三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤)17. (本题满分10分) (1) 求导数22sin(25)y x x =+ (2)求定积分:10(1)x x dx +⎰18. (本题满分12分)设:x2-8x-9≤0,q :,且非p 是非q 的充分不必要条件,求实数m 的取值范围.19.(本题满分12分)已知z 为复数,i z +和i z-2均为实数,其中i 是虚数单位. (Ⅰ)求复数z 和||z ;(Ⅱ)若immzz27111+--+=在第四象限,求m的范围.20.(本题满分12分)已知函数f(x)=-x3+3x2+a.(1)求f(x)的单调递减区间;(2)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.21.(本题满分12分) 设y=f(x)是二次函数,方程f(x)=0有两个相等的实根,且f′(x)=2x+4.(1)求y=f(x)的表达式;(2)求直线y=2x+4与y=f(x)所围成的图形的面积.22.(本题满分12分) 设函数f(x)=x2+ax+b,g(x)=ex(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,4),且在点P处有相同的切线y=4x+4.(1)求a,b,c,d的值.(2)若存在x≥-2时,f(x)≤k-g(x),求k的取值范围.20[解析] (1)f ′(x)=-3x2+6x.令f ′(x)<0,解得x<0,或x>2,∴函数f(x)的单调递减区间为(-∞,0)和(2,+∞).(2)∵f(-2)=8+12+a=20+a,f(2)=-8+12+a=4+a,∴f(-2)>f(2).∵在(0,2)上f ′(x)>0,∴f(x)在(0,2]上单调递增.又由于f(x)在[-2,0]上单调递减,因此f(0)是f(x)在区间[-2,2]上的最大值,于是有f(0)=a=20∴f(x)=-x3+3x2-20∴f(2)==-16,即函数f(x)在区间[-2,2]上的最小值为-16.21[解析] (1)f ′(x)=-3x2+6x.令f ′(x)<0,解得x<0,或x>2,∴函数f(x)的单调递减区间为(-∞,0)和(2,+∞).(2)∵f(-2)=8+12+a=20+a,f(2)=-8+12+a=4+a,∴f(-2)>f(2).∵在(0,2)上f ′(x)>0,∴f(x)在(0,2]上单调递增.又由于f(x)在[-2,0]上单调递减,因此f(0)是f(x)在区间[-2,2]上的最大值,于是有f(0)=a=20∴f(x)=-x3+3x2-20∴f(2)==-16,即函数f(x)在区间[-2,2]上的最小值为-16.22【解题指南】(1)根据曲线y=f(x)和曲线y=g(x)都过点P(0,2),可将P(0,2)分别代入到y=f(x)和y=g(x)中,再利用在点P处有相同的切线y=4x+2,对曲线y=f(x)和曲线y=g(x)进行求导,列出关于a,b,c,d的方程组求解.(2)构造函数F(x)=kg(x)-f(x),然后求导,判断函数F(x)=kg(x)-f(x)的单调性,通过分类讨论,确定k的取值范围.【解析】(1)由已知得f(0)=2,g(0)=2,f′(0)=4,g′(0)=4.而f′(x)=2x+a,g′(x)=ex(cx+d+c).故b=2,d=2,a=4,d+c=4.从而a=4,b=2,c=2,d=2.(2)由(1)知f(x)=x2+4x+2,g(x)=2ex(x+1).设F(x)=kg(x)-f(x)=2kex(x+1)-x2-4x-2,则F′(x)=2kex(x+2)-2x-4=2(x+2)(kex-1).由题设可得F(0)≥0,即k≥1.令F′(x)=0,即2(x+2)(kex-1)=0,得x1=-lnk,x2=-2.①若1≤k<e2,则-2<x1≤0,从而当x∈(-2,x1)时,F′(x)<0,当x∈(x1,+∞)时,F′(x)>0,即F(x)在x∈(-2,x1)上单调递减,在x∈(x1,+∞)上单调递增,故F(x)在[-2,+∞)上有最小值为F(x1).F(x1)=2x1+2--4x1-2=-x1(x1+2)≥0.故当x≥-2时,F(x)≥0恒成立,即f(x)≤kg(x).②若当k=e2,则F′(x)=2e2(x+2)(ex-e-2),当x>-2时,F′(x)>0,即F(x)在(-2,+∞)上单调递增,而F(-2)=0,故当且仅当x≥-2时,F(x)≥0恒成立,即f(x)≤kg(x).③若k>e2,则F(-2)=-2ke-2+2=-2e-2(k-e2)<0.从而当x≥-2时,f(x)≤kg(x)不可能恒成立.综上,k的取值范围为[1,e2].。

2017-2018学年高二下学期期中考试数学(理)试题 word版

2017-2018学年高二下学期期中考试数学(理)试题 word版

2017-2018学年第二学期高二年段期中考数学(理)试卷(满分:150分,完善时间:120分钟)班级姓名座号一、选择题(本大题共12小题,共60分)1.设复数z的共轭复数为,若(2+i)z=3-i,则的值为()A.1B.C.2D. 42. 一个包内装有4本不同的科技书,另一个包内装有5本不同的科技书,分别从两个包内各取一本的取法有()种.A.15B.4C.9D.203.已知对任意x∈R,恒有f(-x)=-f(x),g(-x)=g(x),且当x>0时,f′(x)>0,g′(x)>0,则当x<0时有()A.f′(x)>0,g′(x)>0B.f′(x)>0,g′(x)<0C.f′(x)<0,g′(x)>0D.f′(x)<0,g′(x)<04.函数y=f(x)导函数f'(x)的图象如图所示,则下列说法正确的是()A.y=f(x)在(-∞,0)上单调递增B. y=f(x)的递减区间为(3,5)C.函数y=f(x)在x=0处取得极大值D.函数y=f(x)在x=5处取得极小值5.用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,假设正确的是()A.假设三内角都不大于60度B.假设三内角都大于60度C.假设三内角至多有一个大于60度D.假设三内角至多有两个大于60度6.设f(x)=,则f(x)dx=()A. B. C. D.不存在7.用数学归纳法证明1+a+a2+…+an+1=(a≠1,n∈N*),在验证n=1成立时,左边的项是()A.1B.1+aC.1+a+a2D.1+a+a2+a48.有八名运动员参加男子100米的决赛.已知运动场有从内到外编号依次为1,2,3,4,5,6,7,8的八条跑道,若指定的3名运动员所在的跑道编号必须是三个连续的数字(如:4,5,6),则参加比赛的这八名运动员安排跑道的方式共有()A.360种 B.4320种 C.720种 D.2160种9.如图,设D是图中边长分别为1和2的矩形区域,E是D内位于函数图象下方的阴影部分区域,则阴影部分E的面积为()A.ln2B.1-ln2C.2-ln2D.1+ln210.若函数f(x)=x3-ax2+1在(0,2)内单调递减,则实数a的取值范围为()A.a≥3B.a=3C.a≤3D.0<a<311.已知函数f(x)=x2+cosx,f′(x)是函数f(x)的导函数,则f′(x)的图象大致是()A. B. C. D.12.已知,则导函数f′(x)是()A.仅有最小值的奇函数B.既有最大值,又有最小值的偶函数C.仅有最大值的偶函数D.既有最大值,又有最小值的奇函数二、填空题(本大题共4小题,共20.0分)13.已知物体的运动方程为s=t2+(t是时间,s是位移),则物体在时刻t=2时的速度为14. 将3本相同的小说,2本相同的诗集全部分给4名同学,每名同学至少1本,则不同的分法15.若函数存在极值,则m的取值范围是16.用火柴棒按图的方法搭三角形:按图示的规律搭下去,则所用火柴棒数an 与所搭三角形的个数n之间的关系式可以是三、解答题(本大题共6小题,共72分)17. 已知m∈R,复数z=+(m2+2m-3)i,当m为何值时,(1)z∈R;(2)z是纯虚数;(3)z对应的点位于复平面第二象限;18.设函数f(x)=x3-3ax2+3bx的图象与直线12x+y-1=0相切于点(1,-11).(Ⅰ)求a,b的值;(Ⅱ)讨论函数f(x)的单调性.19.设a、b∈R+且a+b=3,求证.20.已知数列{an}的前n项和Sn满足Sn=2an-2.(1)求a1,a2,a3并由此猜想an的通项公式;(2)用数学归纳法证明{an}的通项公式.21.某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式:y=+10(x-6)2,其中3<x<6,a 为常数,已知销售的价格为5元/千克时,每日可以售出该商品11千克.(1)求a的值;(2)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大,并求出最大值.22.已知函数f(x)=ax2+ln(x+1).(1)当a=-时,求函数f(x)的单调区间;(2)若函数f(x)在区间[1,+∞)上为减函数,求实数a的取值范围;(3)当x∈[0,+∞)时,不等式f(x)-x≤0恒成立,求实数a的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

理数试卷第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.与极坐标2,6π⎛⎫- ⎪⎝⎭表示的不是同一点的极坐标是( ) A .72,6π⎛⎫ ⎪⎝⎭ B .72,6π⎛⎫-⎪⎝⎭ C .112,6π⎛⎫--⎪⎝⎭ D .132,6π⎛⎫-⎪⎝⎭2.给出下列表述: ①综合法是由因导果法; ②综合法是顺推证法; ③分析法是执果索因法; ④分析法是间接证明法;⑤分析法是逆推证法.其中正确的表述有( )A .2个B .3个C .4个D .5个 3.设复数z 满足(1)1i z i +=-(i 为虚数单位),则z 的共轭复数z =( )A .1i +B .1i - C.22- D.22+ 4.用反证法证明命题“若sin cos 1θθ=,则s i n0θ≥且cos 0θ≥”时,下列假设的结论正确的是( )A .sin 0θ<或cos 0θ<B .sin 0θ<且cos 0θ<C .sin 0θ≥或cos 0θ≥D .sin 0θ>且cos 0θ>5.方程2222t tt tx y --⎧=-⎪⎨=+⎪⎩(t 为参数)表示的曲线是( ) A .双曲线 B .双曲线的上支 C .双曲线的下支 D .圆 6.若220a x dx =⎰,230b x dx =⎰,2sin c xdx =⎰,则a ,b ,c 的大小关系是( )A .c a b <<B .a b c <<C .c b a <<D .a c b << 7.老王和小王父子俩玩一种类似于古代印度的“梵塔游戏”:有甲、乙、丙3个柱子,在甲柱上现有4个盘子,最上面的两个盘子大小相同,从第二个盘子往下大小不等,大的在下,小的在上(如图),把这4个盘子从甲柱全部移到乙柱游戏即结束.在移动过程中每次只能移动一个盘子,甲、乙、丙柱都可以利用,且3个柱子上的盘子始终保持小的盘子不能放在大的盘子之下.设游戏结束需要移动的最少次数为n ,则n =( )A .7B .8C .11D .158.在平面上,我们如果用一条直线去截正方形的一个角,那么截下的一个直角三角形,按图所标边长,由勾股定理有222c a b =+.设想正方形换成正方体,把截线换成如图的截面,这时从正方体上截下一个三条侧棱两两垂直的三棱锥O LMN -,如果用1S ,2S ,3S 表示三个侧面面积,4S 表示截面面积,那么类比得到的结论是( )A .4123S S S S =++B .41232222S S S S =++ C .41233333S S S S =++ D .41234444S S S S =++9.设函数()(sin cos )(04)xf x e x x x π=-≤≤,则函数()f x 的所有极大值之和为( )A .4n eB .2e eππ+ C .3e e ππ- D .3e e ππ+10.已知在平面直角坐标系xOy 中,曲线C 的参数方程为4cos sin x y αα=⎧⎨=⎩(α为参数),M 是曲线C 上的动点.以原点O 为极点,x 轴的正半轴为极轴,取相同的长度单位建立极坐标系,若曲线T 的极坐标方程为2sin cos 20ρθρθ+=,则点M 到T 的距离的最大值为( )A .2+.4+.11.已知函数()f x 与'()f x 的图象如图所示,则函数()()x f x g x e=(其中e 为自然对数的底数)的单调递减区间为( )A .(0,4)B .(,1)-∞,4,43⎛⎫⎪⎝⎭C .40,3⎛⎫ ⎪⎝⎭D .(0,1),(4,)+∞12.已知函数21,1()ln ,1x x f x x x x⎧-<⎪=⎨≥⎪⎩,若关于x 的方程22[()](12)()0f x m f x m +--=有5个不同的实数解,则实数m 的取值范围是( )A .11,3⎧⎫-⎨⎬⎩⎭ B .(0,)+∞ C .10,e ⎛⎫ ⎪⎝⎭ D .10,e ⎛⎤ ⎥⎝⎦第Ⅱ卷二、填空题:本题共4小题,每小题5分. 13.复数321iz i-=+(i 为虚数单位)的虚部为 . 14.在极坐标系中,直线l的方程为sin 4πρθ⎛⎫+= ⎪⎝⎭32,4A π⎛⎫⎪⎝⎭到直线l 的距离为 .15.在一次连环交通事故中,只有一个人需要负主要责任,但在警察询问时,甲说:“主要责任在乙”;乙说:“丙应负主要责任”;丙说:“甲说的对”;丁说:“反正我没有责任”.四人中只有一个人说的是真话,则该事故中需要负主要责任的人是 .16.已知实数a ,b 满足225ln 0a a b --=,c R ∈为 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.设复数22(4)z m m i =+-,其中i 为虚数单位,当实数m 取何值时,复数z 对应的点: (1)位于虚轴上; (2)位于一、三象限;(3)位于以原点为圆心,以4为半径的圆上.18.已知数列{}n a 的前n 项和为n S ,且满足21n n S a n +=+,*n N ∈. (1)写出1a ,2a ,3a ,并推测数列{}n a 的表达式; (2)用数字归纳法证明(1)中所得的结论.19.在平面直角坐标系xOy 中,曲线1C 过点(,1)P a,其参数方程为1x a y ⎧=+⎪⎨=+⎪⎩(t 为参数,a R ∈),以O 为极点,x 轴的正半轴为极轴,取相同的长度单位建立极坐标系,曲线2C 的极坐标方程为2cos 4cos 0ρθθρ+-=.(1)求曲线1C 的普通方程和曲线2C 的直角坐标方程;(2)已知曲线1C 与曲线2C 交于A ,B 两点,且2PA PB =,求实数a 的值.20.某中学的环保社团参照国家环境标准制定了该校所在区域空气质量指数与空气质量等级的对应关系,如下表所示(假设该区域空气质量指数不会超过300):该社团将该校区在2016年某100天的空气质量指数监测数据作为样本,绘制的频率分布直方图如下图,把该直方图所得频率估计为概率.(1)请估算2017年(以365天计算)全年空气质量优良的天数(未满一天按一天计算); (2)该校2017年6月7、8、9日将作为高考考场,若这三天中某天出现5级重度污染,需要净化空气费用10000元,出现6级严重污染,需要净化空气费用20000元,记这三天净化空气总费用为X 元,求X 的分布列及数学期望.21.已知抛物线24y x =的焦点为椭圆C :22221(0)x y a b a b+=>>的右焦点F ,点B 为此抛物线与椭圆C 在第一象限的交点,且53BF =. (1)求椭圆C 的方程;(2)过点F 作两条互相垂直的直线1l ,2l ,直线1l 与椭圆C 交于P ,Q 两点,直线2l 与直线4x =交于点T ,求TF PQ的取值范围.22.已知a R ∈,函数2()ln f x a x x=+. (1)若函数()f x 在区间(0,2)内单调递减,求实数a 的取值范围; (2)当0a >时,求函数()f x 的最小值()g a 的最大值;(3)设函数()()(2)h x f x a x =+-,[1,)x ∈+∞,求证:()2h x ≥.参考答案及解析一、选择题1-5: BCDAB 6-10: ACBDB 11、12:DC 二、填空题13. 52-14. 215. 甲 16. 2 三、解答题17.解:(1)复数z 对应的点位于虚轴上,则220040m m m =⎧⇒=⎨-≠⎩. ∴0m =时,复数z 对应的点位于虚轴上. (2)复数z 对应的点位于一、三象限,则22(4)0(2)(2)0m m m m m ->⇒-+<2m ⇒<-或02m <<. ∴当(,2)(0,2)m ∈-∞-时,复数z 对应的点位于一、三象限.(3)复数z 对应的点位于以原点为圆心,以4为半径的圆上,则4z ==0m ⇒=或2m =±.∴0m =或2m =±时,复数z 对应的点位于以原点为圆心,以4为半径的圆上. 18.解:(1)将1n =,2,3分别代入21n n S a n +=+,可得132a =,274a =,3158a =. 猜想122n n a =-.(2)①由(1),得1n =时,命题成立; ②假设n k =时,命题成立,即122k ka =-, 那么当1n k =+时,1211k k k a a a a a ++++⋅⋅⋅+++2(1)1k =++,且1221k k a a a k a ++⋅⋅⋅+=+-,所以12122(1)123k k k a a k k ++-+=++=+,所以11111222222k k k k a a +++=+-⇒=-, 即当1n k =+时,命题也成立.根据①②,得对一切*n N ∈,122n n a =-都成立. 19.解:(1)曲线1C的参数方程为1x a y ⎧=⎪⎨=+⎪⎩,则曲线1C 的普通方程为10x y a --+=.由曲线2C 的极坐标方程为2cos 4cos 0ρθθρ+-=, 得222cos 4cos 0ρθρθρ+-=, ∴22240x x x y +--=,即曲线2C 的直角坐标方程为24y x =. (2)设A ,B 两点所对应参数分别为1t ,2t , 将曲线1C 的参数方程代入2C :24y x =,得22140t a -+-=. 若有两个不同的交点,则242(14)0a ∆=-⨯->,即0a >.由韦达定理,有1212142t t a t t ⎧+=⎪⎨-⋅=⎪⎩,根据参数方程的几何意义, 可知12PA t =,22PB t =,又由2PA PB =,可得12222t t =⨯, 即122t t =或122t t =-. ∴当122t t =时,有122212231422t t t a t t t ⎧+==⎪⎨-⋅==⎪⎩1036a ⇒=>,符合题意. 当122t t =-时,有12221221422t t t a t t t ⎧+=-=⎪⎨-⋅=-=⎪⎩904a ⇒=>,符合题意. 综上所述,实数a 的值为136或94. 20.解:(1)由直方图,可估算2017(以365天计算)全年空气质量优良的天数为(0.10.2)3650.3365+⨯=⨯109.5110=≈(天).(2)由题,可知X 的所有可能取值为0,10000,20000,30000,40000,50000,60000,则3464(0)5125P X ⎛⎫=== ⎪⎝⎭,2131424(10000)105125P X C ⎛⎫==⨯⨯=⎪⎝⎭, 22314(20000)105P X C ⎛⎫==⨯⨯ ⎪⎝⎭2131410827105500125C ⎛⎫+⨯⨯==⎪⎝⎭, 31311(30000)1010P X C ⎛⎫==+⨯ ⎪⎝⎭1214491051000C ⨯⨯⨯=, 22311(40000)1010P X C ⎛⎫==⨯⨯ ⎪⎝⎭22314271051000C ⎛⎫+⨯⨯=⎪⎝⎭, 223113(50000)10101000P X C ⎛⎫==⨯⨯=⎪⎝⎭, 311(60000)101000P X ⎛⎫===⎪⎝⎭. 所以X 的分布列为642427()01000020000125125125E X =⨯+⨯+⨯49273300004000050000100010001000+⨯+⨯+⨯16000090001000+⨯=(元). 21.解:(1)由已知,可得24y x =的焦点坐标为(1,0)F , 设0000(,)(0,0)B x y x y >>, 则0513BF x =+=, 解得023x =, 所以2028433y =⨯=.由点B 在椭圆C 上,得2200221x y a b+=,即2248193a b +=. 又221a b =+,解得24a =,23b =,所以椭圆C 的方程为22143x y +=. (2)当直线2l 的斜率不存在时,与直线4x =无交点, 故直线1l 的斜率不为0. 设直线1l 的方程为1x my =+,11(,)P x y ,22(,)Q x y ,由221143x my x y =+⎧⎪⎨+=⎪⎩,得22(34)690m y my ++-=,则223636(34)0m m ∆=++>,122634my y m -+=+,122934y y m -=+,所以12PQ y y =-==2212(1)34m m +=+. 当0m ≠时,直线2l 的方程为(1)y m x =--,由4(1)x y m x =⎧⎨=--⎩,得4x =,3y m =-, 即(4,3)T m -,所以TF ==所以23412TFm PQ +=14⎛⎫= ⎝.设t =1t >, 则3144TFt PQ t=+, 由于3144y t t =+在区间(1,)+∞内为增函数, 所以31144y >+=,则1TF PQ>.当0m =时,223b PQ a==,(4,0)T , 则3TF =,所以1TF PQ=.综上,得TF PQ的取值范围是[1,)+∞.22.解:(1)函数()f x 在区间(0,2)内单调递减(0,2)x ⇔∀∈,恒有'()0f x ≤成立,而22'()0ax f x x -=≤, 故对(0,2)x ∀∈,恒有2a x≤成立, 而21x>,则1a ≤满足条件. 所以实数a 的取值范围为(,1]-∞. (2)当0a >时,222'()0ax f x x x a-==⇒=. 随x 的变化,'()f x ,()f x 的变化情况如下表:所以()f x 的最小值22()ln g a f a a a a ⎛⎫==+⎪⎝⎭. '()ln 2ln 02g a a a =-=⇒=.随x 的变化,'()g x ,()g x 的变化情况如下表:所以()g a 的最大值为(2)2g =. (3)因为[1,)x ∈+∞, 所以当2a ≥时,()()(2)h x f x a x =+-2ln (2)a x a x x=++-. 因为22'()20ax h x a x-=+-≥, 所以()h x 在区间[1,)+∞内是增函数, 故()(1)2h x h a ≥=≥. 当2a <时,()()(2)h x f x a x =--2ln (2)a x a x x=+--, 由22'()2ax h x a x -=-+ [(2)2](1)0a x x x -+-==,解得202x a=-<-(舍去)或1x =. 又20a ->,故1x ≥时,'()0h x ≥, 所以()h x 在区间[1,)+∞内是增函数, 所以()(1)42h x h a ≥=->.综上所述,对[1,)x ∀∈+∞,()2h x ≥恒成立.。

相关文档
最新文档