《推理与证明复习课件》

合集下载

2014年(理科)二轮复习课件:推理与证明

2014年(理科)二轮复习课件:推理与证明

3.直接证明 (1)综合法 用 P 表示已知条件、已有的定义、定理、公理等,Q 表示 所要证明的结论,则综合法可用框图表示为 P⇒Q1 → Q1⇒Q2 → Q2⇒Q3 →„→ Qn⇒Q (2)分析法 用 Q 表示要证明的结论,则分析法可用框图表示为 Q⇐P1 → P1⇐P2 → P2⇐P3 →„→
D)
n n n cn + c +…+ c n 1 2 n C.dn= D.dn= c1·c2·…·cn n
________.
b 2 a
2
a1+a2+…+an 3.若数列{an}是等差数列,bn= ,则数列{bn}也 n
为等差数列. 类比这一性质可知, 若正项数列{cn}是等比数列, 且{dn}也是等比数列,则 dn 的表达式应为 (
c1+c2+…+cn A.dn= n
c1·c2·…·cn B.dn= n
(2)合情推理与演绎推理的区别 归纳和类比是常用的合情推理, 从推理形式上看, 归纳是由部 分到整体、个别到一般的推理;类比是由特殊到特殊的推理; 而演绎推理是由一般到特殊的推理.从推理所得的结论来看, 合情推理的结论不一定正确, 有待进一步证明; 演绎推理在大 前提、 小前提和推理形式都正确的前提下, 得到的结论一定正 确.
1.合情推理 (1)归纳推理 ①归纳推理是由某类事物的部分对象具有某些特征,推出 该类事物的所有对象具有这些特征的推理,或者由个别事 实概括出一般结论的推理. ②归纳推理的思维过程如下: 实验、观察 → 概括、推广 → 猜测一般性结论
(2)类比推理 ①类比推理是由两类对象具有某些类似特征和其中一类对 象的某些已知特征,推出另一类对象也具有这些特征的推 理. ②类比推理的思维过程如下: 观察、比较 → 联想、类推 → 猜测新的结论 2.演绎推理 (1)“三段论”是演绎推理的一般模式,包括: ①大前提——已知的一般性原理. ②小前提——所研究的特殊情况. ③结论——根据一般原理,对特殊情况做出的判断.

艺术生高考数学总复习第六章不等式推理与证明第5节合情推理与演绎推理课件

艺术生高考数学总复习第六章不等式推理与证明第5节合情推理与演绎推理课件

A.只需要按开关 A,C 可以将四盏灯全部熄灭 B.只需要按开关 B,C 可以将四盏灯全部熄灭 C.按开关 A,B,C 可以将四盏灯全部熄灭 D.按开关 A,B,C 无法将四盏灯全部熄灭
[解析] D [根据题意,按开关 A ,2,3,4 号灯熄灭,1 号灯亮;按 开关 B ,1,2 号灯熄灭,3,4 号灯亮;按开关 C ,则 2,3,4 号灯熄灭,1
∴第五个不等式为 1+212+312+412+512+612<161.
答案:1+212+312+412+512+612<161
考点一 归纳推理(多维探究) [命题角度 1] 数式的归纳 1.(2016·山东卷)观察下列等式: sinπ3-2+sin23π-2=43×1×2; sinπ5-2+sin25π-2+sin35π-2+sin45π-2 =43×2×3;
复习课件
艺术生高考数学总复习第六章不等式推理与证明第5节合情推理与演绎推 理课件
2021/4/17
艺术生高考数学总复习第六章不等式推理与证明第5节合情 推理与演绎推理课件
高考总复习 第六章 不等式、推理与证明
第5节 合情推理与演绎推理

类比推理
定义
由某类事物的部分对象具有 由两类对象具有某些类似特
D.没有出错
解析:A [要分析一个演绎推理是否正确,主要观察所给的大
前提、小前提和推理形式是否都正确,只有这几个方面都正确,才能
得到这个演绎推理正确.本题中大前提:任何实数的平方都大于 0,
是不正确的.]
2.观察(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,由归纳推
理得:若定义在 R 上的函数 f(x)满足 f(-x)=f(x),记 g(x)为 f(x)的导

高中数学一轮复习课件:第七章 不等式、推理与证明(必修5、选修1-2)7-4

高中数学一轮复习课件:第七章 不等式、推理与证明(必修5、选修1-2)7-4

2.数列 2,5,11,20,x,47,…中的 x 等于( ) A.28 B.32 C.33 D.27
[解析] 从第 2 项起每一项与前一项的差构成公差为 3 的等 差数列,所以 x=20+12=32.故选 B.
[答案] B
3.(选修 1-2P30 练习 T1 改编)已知数列{an}中,a1=1,n≥2 时,an=an-1+2n-1,依次计算 a2,a3,a4 后,猜想 an 的表达式 是( )
[对点训练] 1.(2019·山东日照模拟)对于实数 x,[x]表示不超过 x 的最大 整数,观察下列等式: [ 1 ]+[ 2 ]+[ 3 ]=3; [ 4 ]+[ 5 ]+[ 6 ]+[ 7 ]+[ 8 ]=10; [ 9 ]+[ 10 ]+[ 11 ]+[ 12 ]+[ 13 ]+[ 14 ]+[ 15 ] =21; … 按照此规律第 n 个等式的等号右边的结果为________.
主干知识梳理 Z
主干梳理 精要归纳
1.合情推理
[知识梳理]
2.演绎推理 (1)定义:从一般性的原理出发,推出某个特殊情况下的结论, 我们把这种推理称为演绎推理.简言之,演绎推理是由一般到 特殊 的推理. (2)“三段论”是演绎推理的一般模式,包括: ①大前提——已知的一般原理; ②小前提——所研究的特殊情况; ③结论——根据一般原理,对特殊情况作出的判断.
[解析] 根据题图(1)所示的分形规律,可知 1 个白圈分形为 2
个白圈 1 个黑圈,1 个黑圈分形为 1 个白圈 2 个黑圈,把题图(2)
中的树形图的第 1 行记为(1,0),第 2 行记为(2,1),第 3 行记为(5,4),
第 4 行的白圈数为 2×5+4=14,黑圈数为 5+2×4=13,所以第

高考数学大一轮复习第六章不等式推理与证明第三节基本不等式及其应用课件理新人教A版03294185

高考数学大一轮复习第六章不等式推理与证明第三节基本不等式及其应用课件理新人教A版03294185
值;若这两个正数不相等,则这两个正数的积不一定有最大值.
思考2:已知x>0,y>0. ∵x+y≥2 xy,1x+2y≥2 x2y, ∴(x+y) 1x+2y ≥4 2 ,即(x+y) 1x+2y 的最小值为4 2 ,正确吗? 说明理由.
提示:不正确,取等号的条件:x=y且
1 x

2 y
无解,故(x+y)
1x+2y
≥4 2等号不成立,即(x+y)1x+2y的最小值不是4 2.
正确的求法:(x+y)
1x+2y
=1+
2x y

y x
+2≥3+2
2 .当且Leabharlann 当y=2x时取等号,故(x+y)1x+2y的最小值为3+2 2.
四基精演练
解析:选D.因为x<0,所以-x>0,-x+
1 -x
≥2
1 =2,当且仅
当x=-1时,等号成立,所以x+1x≤-2.
3.(知识点1、2)设x>0,y>0,且x+y=18,则xy的最大值为( C )
⇐ 源自必修五P99例1(2)
A.80
B.77
C.81
D.82
解析:选C.∵x>0,y>0,∴x+2 y≥ xy,
命题点2
含有等式条件的最值
[例2] [一题多解]已知正数x,y满足x+2y-xy=0,则x+2y的最
小值为( A )
A.8
B.4
C.2
D.0
解析:解法一:(构造目标不等式法)∵x>0,y>0,∴xy=
1 2
(x·2y)≤12×x+22y2,又x+2y=xy,∴x+2y≤12×x+22y2.由x>0,y> 0知x+2y>0,所以x+2y≥8,∴x+2y的最小值为8.
解析:因为ab>0,所以

高考数学一轮复习第七章不等式推理与证明1二元一次不等式与简单的线性规划问题课件新人教A版22

高考数学一轮复习第七章不等式推理与证明1二元一次不等式与简单的线性规划问题课件新人教A版22
4.利用可行域求非线性目标函数最值的方法:画出可行域,分析目
标函数的几何意义是斜率问题还是距离问题,依据几何意义可求得
最值.
-27考点1
考点2
考点3
对点训练 2(1)(2020 河北唐山二模)已知 x,y 满足约束条件
- + 2 ≥ 0,
-2 + 1 ≤ 0,则 z=x-y 的最大值为( B )
包括
标系中画不等式Ax+By+C≥0所表示的平面区域时,此区域应_____
实线
边界直线,则把边界直线画成
.
(2)因为对直线Ax+By+C=0同一侧的所有点(x,y),把它的坐标(x,y)
代入Ax+By+C,所得的符号都 相同
,所以只需在此直线的同
一侧取一个特殊点(x0,y0)作为测试点,由Ax0+By0+C的 符号 即
-1 ≤ 0,
- + 1 ≥ 0
为( D )
A.-5
B.1
C.2
D.3
(2)如图,阴影部分表示的区域可用二元一次不等式组表示
+ -1 ≥ 0,
为 -2 + 2 ≥. 0
-17考点1
考点2
考点3
+ -1 ≥ 0,
解析: (1)不等式组 -1 ≤ 0,
所围成的平面区域如图所示.
3
3
7
A.1
B.
C.
D.
2
4
4
- ≥ 0,
2 + ≤ 2,
(2)若不等式组
表示的平面区域是一个三角形,则
≥ 0,
+ ≤
a 的取值范围是( D )

高考数学考点回归总复习第七模块不等式推理与证明第三十一讲不等关系与不等式省名师优质课赛课获奖课件市赛

高考数学考点回归总复习第七模块不等式推理与证明第三十一讲不等关系与不等式省名师优质课赛课获奖课件市赛

1
2 n.
n1 n
[措施与技巧] 作商法需要注意商式分母必须为正,一般 地,比较指数式旳大小用作商法较简朴(如a,b>0时,比较 aa•bb与ba•ab旳大小).本题用作差法也比较简朴,同学们不 妨一试.
B.等于0
C.不不小于0
D.符号不能拟定
答案:A
4.已知a,b,c满足c<b<a,且ac<0.那么下列选项中一定成立旳 是( )
A.ab>ac
B.c(b-a)<0
C.cb2<ab2
D.ac(a-c)>0
答案:A
5.设a 0, b 0,已知m b, a 且m 0,则 1 的取值范围是( )
m
2.a≤b旳含义是指“或者a<b,或者a=b”,等价于“a不不小 于b”;a≥b旳含义是指“或者a>b,或者a=b”,等价于“a 不不不小于b”.
【典例1】 某汽车企业因为发展旳需要需购进一批汽车,计 划使用不超出1000万元旳奖金购置单价分别为40万元、90 万元旳A型汽车和B型汽车.根据需要,A型汽车至少买5辆 ,B型汽车至少买6辆,写出满足上述全部不等关系旳不等式.
类型三
比较大小
解题准备:作差法比较大小旳环节是:
作差→变形→判断差旳符号→下结论.
作商法比较大小旳环节是:
作商→变形→判断商与1旳大小→下结论.
其中变形是关键,变形措施主要是通分、因式分解和配方等, 变形要彻底,要有利于与0或1比较大小.
【典例3】设a、b是不相等的正数, A a b ,G ab, 2
性质3:加法法则 假如a>b,那么a+c>b+c. 推论1:移项法则 假如a+b>c,那么a>c-b. 推论2:同向可加性 假如a>b,且c>d,那么a+c>b+d.

高考数学一轮复习第五章数列推理与证明第2讲等差数列课件理

高考数学一轮复习第五章数列推理与证明第2讲等差数列课件理
第十页,共四十三页。
考点(kǎo di等ǎn)差1数列的基本(jīběn)运算 例 1:(1)(2017 年新课标Ⅰ)记 Sn为等差数列(děnɡ chā shù liè){an}的前n项 和.若a4+a5=24,S6=48,则{an}的公差为( )
第十一页,共四十三页。
解析:方法一,设公差为 d,a4+a5=a1+3d+a1+4d=2a1 +7d=列{an}的前 n 项和为 Sn,a1=15,且满足2ann-+13=
2na-n 5+1,已知 n,m∈N*,n>m,则 Sn-Sm 的最小值为(
第2讲 等差数列(děnɡ chā shù liè)
第一页,共四十三页。
1.理解(lǐjiě)等差数列的概念.
2.掌握等差数列的通项公式与前n项和公式. 3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解
决相应的问题.
4.了解等差数列与一次函数的关系.
第二页,共四十三页。
1.等差数列的定义
7.等差数列的最值
在等差数列{an}中,若a1>0,d<0,则Sn存在最大值;若
a1<0,d>0,则Sn存在(cúnzài)最_小_____值.
第六页,共四十三页。
1.(2015 年重庆(zhònɡ qìnɡ))在等差数列{an}中,若a2=4,a4=2,则a6 =( B )
A.-1
第七页,共四十三页。
第十六页,共四十三页。
考点(kǎo diǎ等n) 差2 数列的基本性质(xìngzhì)及应用 例2:(1)已知等差数列{an}的前n项和为Sn,若S10=1,S30=5,则S40 =( ) A. 思路点拨:思路1,设等差数列{an}的首项为a1,公差为d,根据 (gēnjù)题意列方程组求得a1,d,进而可用等差数列前n项和公式求S40; 思路2,设{an}的前n项和Sn=An2+Bn,由题意列出方程组求得A, B,从而得Sn,进而得S40;

高考数学一轮复习第六章不等式推理与证明6.1不等式的性质及一元二次不等式课件理

高考数学一轮复习第六章不等式推理与证明6.1不等式的性质及一元二次不等式课件理

合A,再求解.
(2)利用指数函数的性质,将原不等式化为关于x的一元
二次不等式求解即可.
【规范解答】(1)选C.A={x|1<x<3}, B={x|2<x<4}, 故A∩B={x|2<x<3}.
(2)因为4=22且y=2x在R上单调递增,所以 <4可化
为x2-x<2,解得-1<x<2.所以 <4的解集是 a(x 1 ) a
B.2个
C.433个,
D.4个
【解析】选C.运用倒数性质,
由a>b,ab>0可得 {x|2x
4}.
②④正确.又正数大于3 负数,①正确,③错误.
2.如果a,b,c满足c<b<a,且ac<0,那么下列选项中不一
定成立的是 ( )
A.ab>ac
B.c(b-a)>0
C.cb2<ab2
D.ac(a-c)<0
A.n>m>p
B.m>p>n
C.m>n>p
D.p>m>n
【解题导引】(1)根据已知条件可判断出x和z的符号, 然后由不等式的性质便可求解. (2)根据不等式性质和函数单调性求解.
【规范解答】(1)选C.因为x>y>z,x+y+z=0,所以x>0,
z<0.所以由 1 可得xy>xz. (2)选B.因为ax >1,所以a2+1-2a=(a-1)2>0,即a2+1>2a,
第六章 不等式、推理与证明 第一节
不等式的性质及一元二次不等式
ab
1

a
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二.分析法
例:已知a > 5,求证 : a -5 - a -3 &- 2 - a.
证明: a -5 - a -3 < a -2 - a 要证 a -5 a < a -2 + a -3 只需证 a(a - 5)< (a - 2)(a - 3) 只需证 只需证 a(a - 5)<(a - 2)(a - 3) 只需证 0 < 6 0<6 因为 成立. 所以 a - 5 - a - 3 < a - 2 - a 成立.
若定义在区间D上的函数f ( x)对于D上的n个值x1 , x2 ,....xn x1 x2 ... xn 1 总满足 [ f ( x1 ) f ( x2 ) ..... f ( xn )] f ( ) n n 则称函数f ( x)为D上的凸函数,已知(x) sin x在(0,) f 上是凸函数,则在 ABC中, A sin B sin C的最大值是 sin
1 1 1 ∴ a + b + c < + + 成立. a b c
三 反证法
• 设实数a,b,c满足a+b+c=1,则a,b,c中至少 有一个数不小于1/3
四.归纳、类比、猜想、证明
例:在各项为正的数列{a n }中,数列的前n项 1 1 和s n 满足s n = (a n + ) 2 an (1)求a1、a 2、a 3; (2)由(1)猜想到数列{a n }的通项公式, 并用数学归纳法证明你的猜想。
例.已知a、b、c 为 不相等正数 ,且abc = 1, 1 1 1 证求 :a + b + c < + + . a b c
证法2:∵a、b、c为 不相等正数 ,且abc = 1,
1 1 1 ∴ a+ b+ c = + + bc ca ab 1 1 1 1 1 1 + + + b c + c a + a b = 1 + 1 +1. < 2 2 2 a b c
推理与证明复习 小结
例:有下列各式: 1 1> , 2 1 1 1+ + > 1, 2 3 1 1 1 1 1 1 3 1+ + + + + + > , 2 3 4 5 6 7 2 1 1 1 1 1 1 1 1+ + + + + + + + > 2 2 3 4 5 6 7 15 你能得到怎样的一般不等式,并加以证明。
相关文档
最新文档