圆的极坐标方程(2)

合集下载

1.3.1 圆的极坐标方程 课件(人教A选修4-4)(2)

1.3.1 圆的极坐标方程 课件(人教A选修4-4)(2)

(4)∵ρ2cos 2θ=4, ∴ρ2cos 2θ-ρ2sin 2θ=4,即 x2-y2=4. 1 (5)∵ρ= , 2-cos θ ∴2ρ-ρcos θ=1. ∴2 x2+y2-x=1.化简,得 3x2+4y2-2x-1=0.
[悟一法]
直角坐标方程化为极坐标方程比较容易,只要运用公式x= ρcos θ及y=ρsin θ直接代入并化简即可;而极坐标方程化为直角 坐标方程则相对困难一些,解此类问题常通过变形,构造形如 ρcos θ,ρsin θ,ρ2的形式,进行整体代换.其中方程的两边同 乘以(或同除以)ρ及方程两边平方是常用的变形方法.但对方程 进行变形时,方程必须同解,因此应注意对变形过程的检验.
的极坐标方程. [精讲详析] 本题考查极坐标方程的求法,解答此题需要
根据题目特点建立恰当的极坐标系,然后再求直角顶点的轨迹 方程.
设直角三角形的斜边为OD,它的长度是2r,以O为极点, OD所在射线为极轴,建立极坐标系,如图所示: 设P(ρ,θ)为轨迹上的一点, 则OP=ρ,∠xOP=θ.
在直角三角形ODP中,
[读教材· 填要点]
1.曲线的极坐标方程 在极坐标系中,如果平面曲线C上任意一点的极坐标中 至少有一个 满足方程f(ρ,θ)=0,并且坐标适合f(ρ,θ)=0的 点 都在曲线C上 ,那么方程f(ρ,θ)=0叫做曲线C的极坐标方
程.
2.圆的极坐标方程 圆心为C(a,0)(a>0)半径为a的圆的极坐标方程为 ρ=2acos θ .
[通一类] π 2.在极坐标系中,已知圆 C 的圆心为(3,3),半径为 3,Q 点在 圆周上运动. (1)求圆 C 的极坐标方程; (2)若 P 是 OQ 中点,求 P 的轨迹.
解:(1)如图,设 Q(ρ,θ)为圆上任意一点,连结 DQ、OQ, 则|OD|=6, π ∠DOQ=3-θ,

极坐标系的圆方程

极坐标系的圆方程

极坐标系的圆方程在数学中,极坐标系是一种以极坐标来描述平面上点的坐标系统。

极坐标系使用极径(r)和极角(θ)来表示点的位置,极径表示点与原点之间的距离,极角表示点与正极轴之间的逆时针角度。

在极坐标系中,有一种特殊的曲线形状,即圆。

圆是一个平面上所有到一个指定点(圆心)距离相等的点的集合。

在极坐标系中,我们可以使用极径和极角的方程来表示圆的形状。

对于一个以原点为圆心半径为r的圆,其极坐标系的方程可以表示为:r = a其中,a为圆的半径。

这个方程表示了圆上所有点与圆心的距离都等于半径a。

对于一个以某个点(r0,θ0)为圆心半径为r的圆,其极坐标系的方程可以表示为:r = r0这个方程表示了圆上所有点与点(r0,θ0)的距离都等于半径r0。

在极坐标系中,圆的方程可以帮助我们更直观地理解圆的形状。

与直角坐标系不同,极坐标系中的圆方程直接将圆的形状与半径和极角联系起来,更符合我们对圆的直观认识。

通过圆的极坐标方程,我们可以轻松地得到圆上任意一点的坐标。

假设我们已知圆的半径a和圆心坐标(r0,θ0),我们可以使用以下公式计算圆上任意一点的极坐标(r,θ):r = aθ = θ0这个公式表示得到的点的极径始终等于圆的半径a,极角始终等于圆心的极角θ0。

通过这个公式,我们可以逐个计算圆上的点,从而绘制出圆的形状。

总结起来,极坐标系的圆方程可以帮助我们更直观地理解圆的形状。

通过指定圆的半径和圆心的极坐标,我们可以得到圆上任意一点的极坐标,并进而绘制出完整的圆形。

希望本文对你理解极坐标系中的圆方程有所帮助!。

1.3.1 圆的极坐标方程 课件(人教A选修4-4)(2)

1.3.1 圆的极坐标方程 课件(人教A选修4-4)(2)

2. 圆心在极点, 半径为 r 的圆的极坐标方程是什么?圆心在点(a, π 2)处且过极点的圆的方程又是什么?
提示:圆心在极点,半径为 r 的圆的极坐标方程为 ρ=r;圆心 π 在点(a,2)处且过极点的圆的方程为 ρ=2asin θ(0≤θ≤π).
[研一题] [例1] 设一个直角三角形的斜边长一定,求直角顶点轨迹
[悟一法]
(1)圆的极坐标方程是曲线的极坐标方程的一种特殊情况,
其求解过程同曲线的极坐标方程的求法. (2)特别地,当圆心在极轴上即θ0=0时,方程为r2=ρ+ρ2 -2ρρ0cos θ;若再有ρ0=r,则其方程为ρ=2ρ0cos θ=2rcos θ; 若ρ0=r,θ0≠0,则方程为ρ=2rcos (θ-θ0),这几个方程经常用 来判断图形的形状和位置.

(4)∵ρ2cos 2θ=4, ∴ρ2cos 2θ-ρ2sin 2θ=4,即 x2-y2=4. 1 (5)∵ρ= , 2-cos θ ∴2ρ-ρcos θ=1. ∴2 x2+y2-x=1.化简,得 3x2+4y2-2x-1=0.
[悟一法]
直角坐标方程化为极坐标方程比较容易,只要运用公式x= ρcos θ及y=ρsin θ直接代入并化简即可;而极坐标方程化为直角 坐标方程则相对困难一些,解此类问题常通过变形,构造形如 ρcos θ,ρsin θ,ρ2的形式,进行整体代换.其中方程的两边同 乘以(或同除以)ρ及方程两边平方是常用的变形方法.但对方程 进行变形时,方程必须同解,因此应注意对变形过程的检验.
极坐标方程常常可以在一个三角形中实现,找出这样的三角形
便形成了解题的关键.
[通一类] 1.设 M 是定圆 O 内一定点,任作半径 OA,连结 MA,过 M 作 MP⊥MA 交 OA 于 P,求 P 点的轨迹方程. 解:以 O 为极点,射线 OM 为极轴,建立极坐标系,如图.

1.3.1 圆的极坐标方程 课件(人教A选修4-4)(2)

1.3.1 圆的极坐标方程 课件(人教A选修4-4)(2)

2. 圆心在极点, 半径为 r 的圆的极坐标方程是什么?圆心在点(a, π 2)处且过极点的圆的方程又是什么?
提示:圆心在极点,半径为 r 的圆的极坐标方程为 ρ=r;圆心 π 在点(a,2)处且过极点的题] [例1] 设一个直角三角形的斜边长一定,求直角顶点轨迹
[通一类] π 2.在极坐标系中,已知圆 C 的圆心为(3,3),半径为 3,Q 点在 圆周上运动. (1)求圆 C 的极坐标方程; (2)若 P 是 OQ 中点,求 P 的轨迹.
解:(1)如图,设 Q(ρ,θ)为圆上任意一点,连结 DQ、OQ, 则|OD|=6, π ∠DOQ=3-θ,
π π 或∠DOQ=θ-3,∠DQO=2. π 在 Rt△ODQ 中,|OQ|=|OD|cos (θ-3), π 即 ρ=6cos (θ-3). (2)若 P 的极坐标为(ρ,θ),则 Q 点的极坐标为(2ρ,θ). π π ∴2ρ=6cos (θ-3),∴ρ=3cos (θ-3). ∴P 的轨迹是圆.
点击进入 创新演练大冲关
[研一题] [例2] 求圆心在(ρ0,θ0),半径为r的圆的方程. 在圆周上任取一点P(如图)
[精讲详析]
设其极坐标为(ρ,θ).
由余弦定理知: CP2=OP2+OC2-2OP· OCcos ∠COP, ∴r2=ρ+ρ2-2ρρ0cos (θ-θ0). 故其极坐标方程为
r2=ρ+ρ2-2ρρ0cos (θ-θ0).
(2)将 x=ρcos θ,y=ρsin θ 代入 y2+x2-2x-1=0, 得(ρsin θ)2+(ρcos θ)2-2ρcos θ-1=0, 化简,得 ρ2-2ρcos θ-1=0. (3)∵ρcos 2=1, 1+cos θ ∴ρ· 2 =1,即 ρ+ρcos θ=2. ∴ x2+y2+x=2.化简,得 y2=-4(x-1).

1.3.1 圆的极坐标方程 课件(人教A选修4-4)(2)

1.3.1 圆的极坐标方程 课件(人教A选修4-4)(2)

[研一题] [例2] 求圆心在(ρ0,θ0),半径为r的圆的方程. 在圆周上任取一点P(如图)
[精讲详析]
设其极坐标为(ρ,θ).
由余弦定理知: CP2=OP2+OC2-2OP· OCcos ∠COP, ∴r2=ρ+ρ2-2ρρ0cos (θ-θ0). 故其极坐标方程为
r2=ρ+ρ2-2ρρ0cos (θ-θ0).
2. 圆心在极点, 半径为 r 的圆的极坐标方程是什么?圆心在点(a, π 2)处且过极点的圆的方程又是什么?
提示:圆心在极点,半径为 r 的圆的极坐标方程为 ρ=r;圆心 π 在点(a,2)处且过极点的圆的方程为 ρ=2asin θ(0≤θ≤π).
[研一题] [例1] 设一个直角三角形的斜边长一定,求直角顶点轨迹
[通一类] π 2.在极坐标系中,已知圆 C 的圆心为(3,3),半径为 3,Q 点在 圆周上运动. (1)求圆 C 的极坐标方程; (2)若 P 是 OQ 中点,求 P 的轨迹.
解:(1)如图,设 Q(ρ,θ)为圆上任意一点,连结 DQ、OQ, 则|OD|=6, π ∠DOQ=3-θ,
π π 或∠DOQ=θ-3,∠DQO=2. π 在 Rt△ODQ 中,|OQ|=|OD|cos (θ-3), π 即 ρ=6cos (θ-3). (2)若 P 的极坐标为(ρ,θ),则 Q 点的极坐标为(2ρ,θ). π π ∴2ρ=6cos (θ-3),∴ρ=3cos (θ-3). ∴P 的轨迹是圆.
[小问题· 大思维] 1. 在直角坐标系中, 曲线上每一点的坐标一定适合它的方程. 那么, 在极坐标系中,曲线上一点的所有极坐标是否一定都适合方程?
提示: 在直角坐标系内, 曲线上每一点的坐标一定适合它的方程, 可是在极坐标系内,曲线上一点的所有坐标不一定都适合方 π π 程.例如给定曲线 ρ=θ,设点 P 的一极坐标为(4,4),那么点 P 适合方程 ρ=θ,从而是曲线上的一个点,但点 P 的另一个极坐 π 9π 标(4, 4 )就不适合方程 ρ=θ 了.所以在极坐标系内,确定某一 个点 P 是否在某一曲线 C 上,只需判断点 P 的极坐标中是否有 一对坐标适合曲线 C 的方程即可.

圆的极坐标方程

圆的极坐标方程

圆的极坐标方程
圆的极坐标方程是圆周线曲线图形分析中常用的一种形式,其中包括了点、直线和圆。

极坐标系在数学领域中是个非常重要的系统,其中包括点、直线和圆,是一种特殊的坐标系统,可以表示圆周曲线以及其它曲线。

在极坐标系中,任何点都可以用一对数值来表示,这就是极坐标。

圆的极坐标方程由两部分组成:一部分是极坐标,另一部分是方程,将极坐标带入正确的方程即可求得圆的极坐标方程。

极坐标表示的点在极坐标系中的位置可以通过以下的极坐标方程来表示:
r=p+rcos(theta)
其中,r为极点到点的距离,p为原点到极点的距离,theta为极点到点的角度。

综上所述,圆的极坐标方程可以表示如下:
x=p+rcos(theta)
y=p+rsin(theta)
其中,x、y分别表示极坐标下点的横纵坐标值,p、r分别为极点到原点的距离和极点到点的距离,theta为极点到点的角度。

图形分析技巧也可以用来求解圆的极坐标方程,一般情况下可以从图形上得出极坐标表达式,如果要用图形来求解圆的极坐标方程,则需要先求出原点(中心)到极点的距离p和极点到点的半径r,再求出极点到点的角度theta。

圆的极坐标方程有许多应用,比如在很多子极坐标系中,都需要用到极坐标来表示一个圆周曲线。

在一些应用程序中,也经常用极坐
标系统建立坐标轴,用坐标轴来描述一个圆周曲线。

此外,圆的极坐标方程也经常用于数学建模,可以给出一些有用的数学模型,方便数学家们的分析和研究。

综上所述,圆的极坐标方程是一种圆形曲线分析的重要工具,它可以方便地描述和求解圆形曲线,并用于数学建模,为数学研究提供了一种重要的材料。

圆的极坐标方程

圆的极坐标方程

圆的极坐标方程在极坐标系中,如果平面曲线C上任意一点的极坐标中至少有一个满足方程$f(\rho,\theta)=0$,并且坐标适合方程$f(\rho,\theta)=0$的点都在曲线C上,那么方程$f(\rho,\theta)=0$叫做曲线C的极坐标方程。

对于圆的极坐标方程,有以下特殊情形:1) 圆心在极点(0,0)时,极坐标方程图形为$\rho=r$,其中$0\leq\theta<2\pi$。

2) 圆心在点$(r,0)$时,极坐标方程图形为$\rho=2r\cos\theta$,其中$-\pi\leq\theta<\pi$。

3) 圆心在点$(r,\frac{\pi}{2})$时,极坐标方程图形为$\rho=2r\sin\theta$,其中$0\leq\theta<\frac{\pi}{2}$。

4) 圆心在点$(r,\pi)$时,极坐标方程图形为$\rho=-2r\cos\theta$,其中$\pi\leq\theta<\frac{3\pi}{2}$。

5) 圆心在点$(r,-\frac{\pi}{2})$时,极坐标方程图形为$\rho=-2r\sin\theta$,其中$-\frac{\pi}{2}<\theta\leq 0$。

对于一般情形,设圆心为C$(\rho,\theta)$,半径为$r$,M$(\rho,\theta)$为圆上任意一点,则$|CM|=r$,$\angleCOM=|\theta-\theta|$,根据余弦定理可得圆C的极坐标方程为$\rho^2-2\rho r\cos(\theta-\theta)+r^2=0$。

例如,极坐标方程$\rho=4$表示以极点为圆心,以4为半径的圆。

又例如,过极点且圆心为$(1,0)$的圆的极坐标方程为$\rho=2\cos\theta$。

极坐标方程$\rho=\cos\frac{\pi}{4}$表示以极点为圆心,以$\frac{1}{\sqrt{2}}$为半径的圆。

极坐标方程公式大全

极坐标方程公式大全

极坐标方程公式大全极坐标是一种由半径和角度两个参数来描述点的坐标系统。

极坐标系常用于描述圆形、螺线等曲线,对于研究具有旋转对称性的问题非常有用。

在数学和物理学中,极坐标方程提供了描述极坐标系中各种曲线和图形的公式。

本文将介绍一些常见的极坐标方程公式。

圆的极坐标方程圆可以用极坐标方程表示为:r=a其中,a是圆的半径。

该公式表示了以原点为中心的圆,半径为a。

简单螺线的极坐标方程螺线是在极坐标系中以常数速率展开的曲线。

最常见的螺线是阿基米德螺线,其极坐标方程可以表示为:$r = a + b \\theta$其中,a和b是常数,$\\theta$ 是极角。

该公式描述了螺线的形状,a表示了螺线的起始半径,b表示了螺线的展开速率。

雪花曲线的极坐标方程雪花曲线是一种具有对称性的曲线,它由多个相互重叠的圆组成。

它的极坐标方程可以表示为:$r = a \\cdot \\sin(n \\theta)$其中,a和n是常数,$\\theta$ 是极角。

该公式描述了雪花曲线的形状,a控制着雪花曲线的大小,n控制着雪花曲线的复杂程度。

心形线的极坐标方程心形线是以两个相互重叠的圆为基础构成的曲线。

它的极坐标方程可以表示为:$r = a(1 - \\sin \\theta)$其中,a是常数,$\\theta$ 是极角。

该公式描述了心形线的形状,a控制着心形线的大小。

摆线的极坐标方程摆线是由一个悬挂的线上的一点在重力作用下运动形成的曲线。

摆线的极坐标方程可以表示为:$r = a - b \\cdot \\cos \\theta$其中,a和b是常数,$\\theta$ 是极角。

该公式描述了摆线的形状,a控制摆线的振幅,b控制摆线的周期。

总结极坐标方程提供了描述极坐标系中各种曲线和图形的公式。

本文介绍了圆、螺线、雪花曲线、心形线和摆线的极坐标方程。

每个公式都可以通过调整常数参数来控制图形的形状和大小。

极坐标方程的使用可以简化对特定曲线和图形的描述和分析,为研究具有旋转对称性的问题提供了便利。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

=r
显然,使极点与圆心重 合时的极坐标方程在形 式 上比(1)简单。
思考:已知一个圆的方程是=5 3 cos 5sin 求圆心坐标和半径。
解:=5 3 cos 5sin 两边同乘以 得
=5 3 cos -5 sin 即化为直角坐标为
2
5 3 2 5 2 x y 5 3 x 5 y 即( x ) ( y ) 25 2 2 5 3 5 所以圆心为( , ), 半径是5 2 2
x ( y 2) 4
2 2
2、极坐标方程分别是 =cos和=sin 的两个 圆的圆心距是多少?
1 解:圆=cos 圆心的坐标是( , 0) 2 圆 sin cos( ) cos( ) 2 2 1 2 圆=sin 的圆心坐标是( , ), 所以圆心距是 2 2 2


3、极坐标方程 cos( )所表示的 4 曲线是 ( D )
A、双曲线 C、抛物线 B、椭圆 D、圆

解:该方程可以化为 =cos( ) 4 1 1 以( , )为圆心, 为半径的圆。 2 4 2

解:=cos cos
2

4
sin sin

4
2 2 cos sin 即 2 2 2 2 2 2 x y x y0 2 2 2 2 2 2 1 (x ) (y ) 4 4 4
2 2
你可以用极坐标方程直接来求吗?
解:原式可化为 3 1 =10(cos sin ) 10 cos( ) 2 2 6 所以圆心为(5, ), 半径为5 6

圆心为(a, )(a 0)半径为a 圆的极坐标方程为 =2a cos( ) 此圆过极点O
所以,等式(1)就是圆上任意一点的极 坐标( , ) 满足的条件,另一方面 ,可以验证,坐标适合 等式(1)的点都在这个圆上。

极坐标方程:
一般地,在极坐标系中 ,如果平面曲线 上任意 C 一点的极坐标中至少有 一个满足方程 ( , ) 0 f 并且坐标适合方程 ( , ) 0的点都在曲线 上, f C 那么方程f ( , ) 0叫做曲线C的极坐标方程。
所以, 2a cos就是圆心在C (a,0)(a 0),半径 为a的圆的极坐标方程。
例1、已知圆O的半径为r,建立怎样的极坐 标系,可以使圆的极坐标方程简单?
M

O

r x
解:如果以圆心 为极点,从O出发的一条射线 O 为极轴建立坐标系(如 图),那么圆上各点的 几 何特征就是它们的极径 都等于半径r. 设M ( , )为圆上任意一点,则 OM r ,即
4、圆=10 cos( )的圆心坐标是 ( C ) 3 2 C、 , ) (5 (5 A、 ,0) B、 , ) (5 D、 , ) (5 3 3 3 5、写出圆心在点A(2, )处且过极点的圆的 2 极坐标方程,并把它化成直角坐标方程。 解:=4 cos( ) 4sin
练习
以极坐标系中的点(1,1)为圆心,1为 半径的圆的方程是 C
A. 2cos 4 C. 2cos 1
B. 2sin 4 D. 2sin 1
题组练习 1 求下列圆的极坐标方程 (1)中心在极点,半径为2;
解:方程可化为 - cos 4 2 即2 =4+x 两边平方得: 2=( x 4) 2 4 4 x 2 4 y 2 x 2 8 x 16 3x 8 x 4 y 16
2 2
M ( , )
探 究
O
C(a,0)
A
x
解:圆经过极点 。设圆与极轴的另一个 O 交点 是A,那么OA=2a, 设M ( , )为圆上除点O,A 以外的任意一点,那么 OM AM。在RtAMO 中 OM OA cos MOA即=2a cos .......... 1) .( 可以验证,点O(0, ), A(2a,0)的坐标满足等式1) ( 2
=2
(2)中心在C(a,0),半径为a;
=2acos (3)中心在(a,/2),半径为a; =2asin
(4)中心在C(0,0),半径为r。 2+ 0 2 -2 0 cos( - 0)= r2
题组练习2
1、曲线的极坐标方程 =4 sin 化为直角坐标 方程是什么?
2 化为直角坐标 4 y x ( y 2) 4
6、已知圆C1 : 2cos ,圆C2 : 2 2 3 sin 2 0, 试判断两圆的位置关系。
解:将两圆都化为直角 坐标方程为 C1 : ( x 1) 2 y 2 1,圆心O1 (1,0)半径为 1 C2 : x 2 ( y 3 ) 2 1,圆心O2 (0, 3 )半径为 1 O1O2 2所以两圆相外切。
1.3简单曲线的极坐标方程
曲线的极坐标 方程
一、定义:如果曲线C上的点与方程 f(,)=0有如下关系 (1)曲线C上任一点的坐标(所有坐标 中至少有一个)符合方程f(,)=0 ; (2)方程f(,)=0的所有解为坐标的点 都在曲线C上。 则曲线C的方程是f(,)=0 。
如图,半径为a的圆的圆心坐标为C (a, 0)(a 0) 你能用一个等式表示圆上任意一点的极坐标 ( , )满足的条件吗?
7、从极点O作圆C:=8cos 的弦ON, 求ON的中点的轨迹方程。
M
N
解:如图,圆C的圆心(4, 0), 半径r OC 4,
O
C(4,0)
连结CM , M 是弦ON的中点 CM ON , 所以,动点M 的轨迹方程是=4 cos
练习 4 把极坐标方程= 化为直角坐标方程。 2-cos
相关文档
最新文档