人文地理专业硕士点2011年 研究生入学考试高等数学考试大纲

合集下载

2011年全国硕士研究生入学考试数学四考试大纲

2011年全国硕士研究生入学考试数学四考试大纲

2001年全国硕士研究生入学考试数学四考试大纲数学四考试科目微积分、线性代数、概率论微积分一、函数、极限、连续考试内容函数的概念及其表示法函数的有界性、单调性、周期性和奇偶性反函数、复合函数、隐函数、分段函数基本初等函数的性质及其图形初等函数数列极限与函数极限的定义以及它们的性质函数的左极限和右极限无穷小和无穷大的概念及其关系无穷小的基本性质及阶的比较极限四则运算极限存在的两个准则(单调有界准则和夹逼准则)两个重要极限函数连续与间断的概念初等函数的连续性闭区间上连续函数的性质。

考试要求1.理解函数的概念,掌握函数的表示法.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数、反函数、隐函数和分段函数的概念.4.掌握基本初等函数的性质及其图形,理解初等函数的概念.5.会建立简单应用问题中的函数关系式.6.了解数列极限和函数极限(包括左、右极限)的概念.7.了解无穷小的概念和基本性质,掌握无穷小的阶的比较方法,了解无穷大的概念及其与无穷小的关系.8.了解极限的性质与极限存在的两个准则,掌握极限的性质及四则运算法则,会应用两个重要极限.9.理解函数连续性的概念(含左连续与右连续).10.了解连续函数的性质和初等函数的连续性.了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理)及其简单应用.二、一元函数微分学考试内容导数的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系导数的四则运算基本初等函数的导数复合函数、反函数和隐函数的导数高阶导数微分的概念和运算法则罗尔(Rolle)定理和拉格朗目中值定理及其应用洛必达法则函数单调性函数的极值函数图形的凹凸性、拐点及浙近线函数图形的描绘函数的最大值和最小值考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际和弹性的概念).2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则;掌握反函数与隐函数求导法,了解对数求导法.3.了解高阶导数的概念,会求二阶导数以及较简单函数的n阶导教.4.了解微分的概念,导数与微分之间的关系,以及一阶微分形式的不变性,会来函数的微分.5.理解罗尔定理和拉格朗日中值定理的条件和结论,掌握这两个定理的简单应用.6.会用洛必达法则求极限.7.掌握函数单调性的判别方法及简单应用,掌握极值、最大值和最小值的求法(含解较简单的应用题).8,会用导数判断函数图形的凹凸性和拐点,会求函数图形的渐近线.9.掌握函数作图的基本步骤和方法,会作某些简单函数的图形.三、一元函数积分学考试内容原函数与不定积分的概念不定积分的基本性质基本积分公式不定积分的换元积分法和分部积分法定积分的概念和基本性质定积分中值定理变上限定积分定义的函数及其导数牛顿一莱布尼茨(Newton-Leibniz)公式定积分的换元积分法和分部积分法广义积分的概念及计算定积分的应用考试要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握计算不定积分的换元积分法和分部积分法.2.了解定积分的概念和基本性质,了解定积分中值定理,掌握牛顿一莱布尼茨公式,以及定积分的换元积分法和分部积分法;了解变上限定极分定义的函数并会求它的导数.3.会利用定积分计算平面图形的面积和旋转体的体积,会利用定积分求解一些简单的经济应用题.4.了解广义积分收敛与发散的概念,掌握计算广义积分的基本方法,了解广义积分的收敛与发散的条件.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续性有界闭区域上二元连续函数的性质(最大值和最小值定理)多元函数的偏导数的概念与计算多元复合函数的求导法与隐函数求导法高阶偏导数全微分多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算无界区域上的简单二重积分的计算考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的直观意义.3.了解多元函数的编导数与全微分的概念,掌握求多元复合函数编导数和全微分的方法,会用隐函数的求导法则.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会求解一些简单的应用题.5.了解二重积分的概念与基本性质,会计算较简单的二重积分(合利用极坐标进行计算);会计算天界区域上较简单的二重积分.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.理解n阶行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念单位矩阵、对角矩阵、数量矩阵、三角矩阵和对称矩阵矩阵的线性运算矩阵与矩阵的积方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件矩阵的伴随矩阵矩阵的初等变换初等矩阵矩阵等价矩阵的秩分块矩阵及其运算考试要求1.理解矩阵的概念,了解几种特殊矩阵的定义和性质.2.掌握矩阵的线性运算和乘法,以及它们的运算规律,掌握矩阵转置的性质,掌握方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求矩阵的逆.4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,会用初等变换求矩阵的逆和秩.5.了解分块矩阵的概念,掌握分块矩阵的运算法则.三、向量考试内容向量的概念向量的线性组合与线性表示向量组线性相关与线性无关的概念、性质和判别法向量组的极大线性无关组等价向量组向量组的秩向量组的积与矩阵的秩之间的关系考试要求1.了解向量的概念.掌握向县的加法和数乘的运算法则.2.理解向量的线性组合与线性表示、向县组线性相关、线性无关等概念.掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大无关组的概念.掌握求向量组的极大无关组的方法.4.了解向是组等价的概念,理解向量组的秩的概念,了解矩阵的秩与其行(列)向量组的秩之间的关系,会求向量组的秩.四、线性方程组考试内容线性方程组的解线性方程组的克莱姆(Cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线性方程组(导出组)的解之间的关系非齐次线性方程组的通解考试要求1.理解线性方程组解的概念,会用克莱姆法则解线性方程组,掌握线性方程组有解和无解的判定方法.2.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.3.掌握非齐次线性方程组的通解的求法,会用其特解及相应的导出组的基础解系表示非齐次线性方程组的通解.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念和性质矩阵可对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值和特征向量及相似对角矩阵考试要来1.理解矩阵的特征值、特征向己的概念,掌握矩阵特征值的性质.掌握求矩阵的特征值和特征向显的方法.2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.广解实对称矩阵的特征值和特征向量的性质.概率论一、随机事件和概率考试内容随机事件与样本空间事件的关系事件的运算及其性质事件的独立性完全事件组概率的定义概率的基本性质古典型概率条件概率加法公式乘法公式全概率公式和贝叶斯(Bayes)公式独立重复试验考试要求l、了解样本空间的概念,理解随机事件的概念,掌握事件间的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算占典型概率,掌握概率的加法公式、乘法公式、全概率公式以及贝叶斯公式.3.理解事件的独立性的概念,掌握用事件独立性进行概率计算,理解独市里复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其低事分布考试内容随机变量及其概率分布随机变量的分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的概串分布考试要求1.理解随机变量及其概率分布的概念,理解分布函数F(X)=P{X<=x}的概念及性质,会计算与随机变量相关的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-l分布、二项分布、超几何分市、泊松(Poisson)分布及其应用.3.理解连续型随机变量及其概率密度的概念,掌握概率密度与分布函数之间的关系,掌握正态分布、均匀分布、指数分布及其应用.4.掌握根据自变量的概率分布求其简单函数的概率分布的基本方法.三、二维随机变量及其概率分布考试内容二维随机变量及其联合(概率)分布二维离散型随机变量的联合概率分布和边缘分布二维连续型随机变量的联合概率密度和边缘密度随机变量的独立性常见二维随机变量的联合分布随机变量函数的概率分布考试至求1.理解二维随机变量的概念,理解二维随机变量的联合分布的概念、性质及其两种基本形式:离散型联合概率分布和边缘分布;连续型联合概率密度和边缘密度.会利用二维概率分布求有关事件的概率.2.理解随机变量的独立性概念,掌握离散型和连续型防机变量独立的条件.3.掌握二维均匀分布,了解二维正态分布的密度函数,理解其中参数的概率意义.4.会求两个随机变量的简单函数的概率分布.四、随机变量的数字特征考试内容随机变量的数学期望、方差、标准差以及它们的基本性质随机变量函数的数学期望二随机变量的协方差及其性质二随机变量的相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、协方差、相关系数)的概念,并会运用数字特征的基本性质计其具体分布的数字特征,掌握常用分布的数字特征.2.会根据随机变量X的概率分布求其函数g(X)的数学期望Eg(X).五、中心极限定理考试内容泊松(Poisson)定理棣莫弗一拉普拉斯(De Moivre-Laplace)定理(二项分布以正态分布为极限分布)列维一林德伯格(Levy-lindberg)定理(独立同分布的中心极限定理)考试要求1.掌握泊松定理的结出和应用条件,并会用泊松分布近似计算二项分布的概率.2.了解核奖弗一拉普拉斯中心极限定理,列维一林德伯格中心极限定理的结论和应用条件,并会用相关定理近似计算有关随机事件的概率.试卷结构(一)内容比例微积分约50 %线性代数约25 %概率论约25%(二)题型比例填空与选择题约刃刀30%解答题(包括证明题)约70 %。

2011年考研数一考纲

2011年考研数一考纲

2011年考研数学一大纲考试科目高等数学、线性代数、概率论与数理统计考试形式和试卷结构1、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.2、答题方式答题方式为闭卷、笔试.3、试卷内容结构高等教学56%线性代数22%概率论与数理统计22%4、试卷题型结构试卷题型结构为:单选题8小题,每题4分,共32分填空题6小题,每题4分,共24分解答题(包括证明题) 9小题,共94分考试内容之高等数学函数、极限、连续考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.一元函数微分学考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数。

2011考研数学大纲___(数学一)

2011考研数学大纲___(数学一)

2011考研数学大纲(数学一)2011年考研数学大纲,从卷种分类,到题型,题量以及各科所占的分值比例,再到各部分的考试内容和考试要求考试科目高等数学、线性代数、概率论与数理统计试卷结构一、试卷满分及答题时间试卷满分为150分,考试时间为180分钟二、内容比例高等数学约56% 线性代数约22% 概率论与数理统计约22% 三、题型结构单项选择题8小题,每小题4分,共32分填空题6小题,每小题4分,共24分解答题(包括证明题) 9小题,共94分试卷结构的变化2009年大纲与2008年大纲比较1.内容比例无变化2.题型结构无变化高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:,函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.本章考查焦点1.极限的计算及数列收敛性的判断2.无穷小的性质二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L’Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值和最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数。

硕士研究生入学考试科目《高等数学》考试大纲

硕士研究生入学考试科目《高等数学》考试大纲

硕士研究生入学考试科目《高等数学》考试大纲一、考试说明1. 参考教材:《高等数学》第五版(上、下册),同济大学应用数学系主编,高等教育出版社2. 试卷结构及比例题型比例:填空题与选择题约40%解答题(包括证明)约60%内容比例:函数、极限、连续约20%一元函数的微积分学约35%多元函数的微积分学约15%常微分方程约15%幂级数约15%二、考试内容第一单元函数、极限、连续函数的概念及表示法;函数的有界性、单调性、周期性和奇偶性;反函数、复合函数、隐函数和分段函数;基本初等函数的性质及其图形;初等函数简单的应用问题和函数关系的建立;数列极限与函数极限的定义以及它们的性质;函数的左右极限;无穷小;无穷大;无穷小的比较;极限的四则运算;极限存在的两个准则;单调有界准则和夹逼准则;两个重要极限:lim(sinx/x)=1,lim(1+1/x)x=ex→0 x→∞函数连续的概念:函数间断点的类型;初等函数的连续性;闭区间上连续函数的性质(最大值最小值定理和介值定理)第二单元一元函数微分学导数和微分的概念;导数的几何意义和物理意义;函数的可导性与连续性之间的关系;平面曲线的切线和法线;基本初等函数的导数;导数和微分的四则运算;反函数、复合函数、隐函数以及参数方程所确定的函数的微分法;高阶导数的概念;某些简单函数的n阶导数;一阶微分形式的不变性;微分在近似计算中的应用;Rolle定理,Lagronge中值定理,Cauchy 中值定理,Taylor定理,L’Hospital法则.函数极值及其求法,函数增减性和函数图形的凹凸性的判定,函数图形的拐点及其求法,渐近线,描绘函数图形,函数最大值和最小值的求法及其简单应用。

第三单元一元函数积分学原函数和不定积分的概念,不定积分的基本性质,基本积分公式,定积分的概念和性质,积分中值定理,变上限定积分及其导数,NewTon-Leibniz公式,不定积分和定积分的换元积分法与分部积分法,有理函数、三角函数的有理式、简单无理函数的积分,广义积分的概念及计算,定积分的应用,定积分的近似计算法。

2011年硕士研究生入学统一考试数学考试大纲--数学二

2011年硕士研究生入学统一考试数学考试大纲--数学二

2011年硕士研究生入学统一考试数学考试大纲--数学二考试科目:高等数学、线性代数考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等教学78%线性代数22%四、试卷题型结构试卷题型结构为:单项选择题8小题,每小题4分,共32分填空题6小题,每小题4分,共24分解答题(包括证明题) 9小题,共94分高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西( Cauchy )中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数平均值.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数的偏导数和全微分多元复合函数、隐函数的求导法二阶偏导数多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).五、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程.3.会用降阶法解下列形式的微分方程:和.4.理解二阶线性微分方程解的性质及解的结构定理.5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.6.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.7.会用微分方程解决一些简单的应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容向量的概念向量的线性组合和线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的的正交规范化方法考试要求1.理解维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系.5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克莱姆(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解非齐次线性方程组的通解考试要求1.会用克莱姆法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组基础解系和通解的求法.4.理解非齐次线性方程组的解的结构及通解的概念.5.会用初等行变换求解线性方程组.五、矩阵的特征值及特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵.3.理解实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.W hen you are old and grey and full of sleep,And nodding by the fire, take down this book,And slowly read, and dream of the soft lookYour eyes had once, and of their shadows deep;How many loved your moments of glad grace,And loved your beauty with love false or true,But one man loved the pilgrim soul in you,And loved the sorrows of your changing face;And bending down beside the glowing bars,Murmur, a little sadly, how love fledAnd paced upon the mountains overheadAnd hid his face amid a crowd of stars.The furthest distance in the worldIs not between life and deathBut when I stand in front of youYet you don't know thatI love you.The furthest distance in the worldIs not when I stand in front of youYet you can't see my loveBut when undoubtedly knowing the love from both Yet cannot be together.The furthest distance in the worldIs not being apart while being in loveBut when I plainly cannot resist the yearningYet pretending you have never been in my heart. The furthest distance in the worldIs not struggling against the tidesBut using one's indifferent heartTo dig an uncrossable riverFor the one who loves you.When you are old and grey and full of sleep, And nodding by the fire, take down this book, And slowly read, and dream of the soft look Your eyes had once, and of their shadows deep; How many loved your moments of glad grace, And loved your beauty with love false or true, But one man loved the pilgrim soul in you,And loved the sorrows of your changing face; And bending down beside the glowing bars, Murmur, a little sadly, how love fledAnd paced upon the mountains overheadAnd hid his face amid a crowd of stars.The furthest distance in the worldIs not between life and deathBut when I stand in front of youYet you don't know thatI love you.The furthest distance in the worldIs not when I stand in front of youYet you can't see my loveBut when undoubtedly knowing the love from both Yet cannot be together.The furthest distance in the worldIs not being apart while being in loveBut when I plainly cannot resist the yearningYet pretending you have never been in my heart. The furthest distance in the worldIs not struggling against the tidesBut using one's indifferent heartTo dig an uncrossable riverFor the one who loves you.。

2011年考研考试大纲(数一)

2011年考研考试大纲(数一)

2011年考研大纲数一一、试卷满分及答题时间试卷满分为150分,考试时间为180分钟二、内容比例高数 约56% 线代 约22%概统约22%三、题型结构 单项选择题 填空题解答题(包括证明题)高等数学、函数、极限、连续考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立函数的左极限与右极限无穷小量和无穷大量的概念及其关系 无穷小量的性lim 1函数连续的概念 函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1 •理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系 2. 了解函数的有界性、单调性、周期性和奇偶性.3 •理解复合函数及分段函数的概念,了解反函数及隐函数的概念. 4•掌握基本初等函数的性质及其图形,了解初等函数的概念5•理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系. 6•掌握极限的性质及四则运算法则.7•掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法. &理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限. 9•理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10•了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定 理),并会应用这些性质.本章考查焦点1. 极限的计算及数列收敛性的判断2. 无穷小的性质8小题,共32分 6小题,共24分 9小题,共94分质及无穷小量的比较 极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:limx 0sin x数列极限与函数极限的定义及其性质二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital )法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值和最小值弧微分曲率的概念曲率圆与曲率半径考试要求1. 理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2 .掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3 .了解高阶导数的概念,会求简单函数的高阶导数.4 .会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5 .理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6 .掌握用洛必达法则求未定式极限的方法.7 .理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8 •会用导数判断函数图形的凹凸性(注:在区间(a,b)内,设函数f(x)具有二阶导数。

考研高等数学二大纲

考研高等数学二大纲

2011年考研高等数学(二)考试大纲考试科目:高等数学、线性代数试卷结构:(一)总分:试卷满分为150分时间:180分钟(二)内容比例:高等数学约78%;线性代数约22%(三)题型比例单项选择题 8小题,每小题4分,共32分填空题 6小题,每小题4分,共24分解答题(包括证明题) 9小题,共94分高等数学部分一、函数、极限、连续考试内容:函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则单调有界准则和夹逼准则两个重要极限函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求:1. 理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系。

2. 了解函数的有界性、单调性、周期性和奇偶性。

.3. 理解复合函数及分段函数的概念,了解反函数及隐函数的概念。

4. 掌握基本初等函数的性质及其图形,了解初等函数的概念。

5. 理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系。

6.掌握极限的性质及四则运算法则。

7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。

8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。

9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。

10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。

二、一元函数微分学考试内容:导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L’Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求:1. 理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。

2011学年考研数学一大纲

2011学年考研数学一大纲

2011年考研数学一大纲测试科目高等数学、线性代数、概率论和数理统计测试形式和试卷结构1、试卷满分及测试时间试卷满分为150分,测试时间为180分钟.2、答题方式答题方式为闭卷、笔试.3、试卷内容结构高等教学56% ;线性代数22% ;概率论和数理统计22%4、试卷题型结构试卷题型结构为:单选题8小题,每题4分,共32分;填空题6小题,每题4分,共24分解答题(包括证明题) 9小题,共94分测试内容之高等数学函数、极限、连续测试要求1.理解函数的概念,掌握函数的表示法,会建立使用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限和右极限的概念以及函数极限存在和左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续和右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会使用这些性质.一元函数微分学测试要求1.理解导数和微分的概念,理解导数和微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性和连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其使用.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人文地理专业硕士点2011年研究生入学考试高等数学考试大纲一、考 试 性 质宁波大学硕士研究生入学高等数学考试是为招收理学非数学专业硕士研究生而设置的具有选拔功能的水平考试。

它的主要目的是测试考生的数学素质,包括对高等数学各项内容的掌握程度和应用相关知识解决问题的能力。

考试对象为参加全国硕士研究生入学高等数学考试的考生。

二、考试的基本要求要求考生比较系统地理解高等数学的基本概念和基本理论,掌握高等数学的基本方法。

要求考生具有抽象思维能力、逻辑推理能力、空间想象能力、运算能力和综合运用所学的知识分析问题和解决问题的能力。

三、考试方法和考试时间高等数学考试采用闭卷笔试形式,试卷满分为150分,考试时间为180分钟。

四、考试内容与要求一、函数、极限、连续(一)函数1.考试内容函数的定义,函数的表示法,分段函数,反函数,复合函数,隐函数,函数的性质(有界性、奇偶性、周期性、单调性),基本初等函数,初等函数。

2.考试要求(1) 理解函数的概念。

掌握函数的表示法,会求函数的定义域。

(2) 了解函数的有界性、奇偶性、周期性、单调性。

(3) 了解分段函数、反函数、复合函数、隐函数的概念。

(4) 掌握基本初等函数的性质和图像,了解初等函数的概念。

(二)极限1.考试内容数列极限的定义与性质,函数极限的定义及性质,函数的左极限与右极限,无穷小与无穷大的概念及其关系,无穷小的性质及无穷小的比较,极限的四则运算,极限存在的两个准则(单调有界准则和夹逼准则),两个重要极限:2.考试要求(1) 理解数列及函数极限的概念(对极限定义中的“ N ε-”,“εδ- ”等形式表述不作要求)。

(2) 会求数列极限。

会求函数的极限(含左极限、右极限)。

了解函数在一点处极限存在的充分必要条件。

(3) 了解极限的有关性质(惟一性,有界性)。

掌握极限的四则运算法则。

(4) 理解无穷小和无穷大的概念。

掌握无穷小的性质、无穷小和无穷大的关系。

了解高阶、同阶、等价无穷小的概念。

(5) 掌握用两个重要极限求极限的方法。

(三)连续1.考试内容函数连续的概念左连续与右连续函数的间断点连续函数的四则运算法则复合函数的连续性反函数的连续性初等函数的连续性闭区间上连续函数的性质(最大值、最小值定理,零点定理)2.考试要求(1) 理解函数连续性的概念(含左连续、右连续)。

会求函数的间断点。

(2) 掌握连续函数的四则运算法则。

(3) 了解复合函数、反函数和初等函数的连续性。

(4) 了解闭区间上连续函数的性质(最大值、最小值定理,零点定理)。

二、一元函数微分学(一)导数与微分1.考试内容导数与微分的定义,左导数与右导数,导数的几何意义,函数的可导性、可微性与连续性的关系,导数与微分的四则运算,导数与微分的基本公式,复合函数的求导法,隐函数的求导法,高阶导数。

2.考试要求(1) 理解导数的概念及其几何意义。

了解左导数与右导数的概念。

(2) 了解函数可导性、可微性与连续性的关系。

(3) 会求平面曲线上一点处的切线方程和法线方程。

(4) 熟练掌握导数的基本公式、四则运算法则及复合函数的求导方法。

(5) 会求隐函数的一阶导数。

(6) 了解高阶导数的概念。

会求函数的二阶导数。

(7) 了解微分的概念。

会求函数的微分。

(二)微分中值定理及导数的应用1.考试内容微分中值定理(罗尔定理、拉格朗日中值定理),洛必达法则,函数单调性的判别,函数的极值,函数的最大、最小值函数图形的凹凸性与拐点。

2.考试要求(1) 理解罗尔定理、拉格朗日中值定理。

会简单应用。

(2) 熟练掌握用洛必达法则求“0”、“∞∞”、“0⋅∞”、“1∞”等各种类型未定式极限的方法。

(3) 掌握利用导数判断函数单调性的方法。

(4) 理解函数极值的概念。

掌握求函数的极值与最大、最小值的方法,并会求解简单的应用问题。

(5) 会判断平面曲线的凹凸性。

会求平面曲线的拐点。

三、一元函数积分学(一)不定积分1.考试内容原函数与不定积分的概念,不定积分的基本性质,不定积分的基本公式,不定积分的换元积分法与分部积分法。

2.考试要求(1) 理解原函数与不定积分的概念。

掌握不定积分的基本性质。

(2) 熟练掌握不定积分的基本公式。

(3) 熟练掌握不定积分的第一类换元法,掌握不定积分的第二类换元法(仅限于三角代换与简单的根式代换)。

(4) 熟练掌握不定积分的分部积分法。

(5)会求简单的有理函数的不定积分。

(二)定积分1.考试内容定积分的概念与基本性质,定积分的几何意义,变上限积分定义的函数及其导数,牛顿-莱布尼茨公式,定积分的换元法与分部积分法。

定积分的应用。

2.考试要求(1) 理解定积分的概念。

了解定积分的几何意义。

掌握定积分的基本性质。

(2) 理解变上限积分作为其上限的函数的含义,会求这类函数的导数。

(3) 掌握牛顿-莱布尼茨公式。

(4) 熟练掌握定积分的换元法与分部积分法。

(5)会利用定积分求面积和旋转体的体积。

四、多元函数的微积分1、考试内容多元函数的连续性、可导性、可微的概念,多元函数微分法及应用。

二重积分的计算及应用。

2、考试要求(1)了解多元函数的连续性、可导性、可微的概念,会求多元函数的偏导数、全微分及多元复合函数的导数,掌握隐函数的求导法。

(2)掌握多元函数微分学的几何应用。

(切平面,法线等)(3)掌握二重积分的计算(直角坐标下和极坐标下),会求简单的应用题。

五、微分方程1、考试内容微分方程的概念,可分离变量的方程,一阶线性微分方程,二阶常系数非齐次线性微分方程。

2、考试要求(1)了解微分方程的概念,熟练掌握可分离变量的方程及一阶线性微分方程的解法(2)会求解二阶常系数非齐次线性微分方程。

六、无穷级数1、考试内容常数项级数的概念和性质,常数项级数的审敛法,幂级数,函数展开成幂级数。

2、考试要求(1)了解常数项级数的概念和性质,掌握常数项级数收敛的充要条件及必要条件。

(2)掌握正项级数的审敛法(比较法和比值法)及交错级数的审敛法。

(3)掌握幂级数的收敛半径,会求简单幂级数的和函数。

(4)掌握间接法把函数展开成幂级数。

七、主要参考文献《高等数学》(第四版上、下册),同济大学编,高教出版社;上册,2003,下册,2004。

人文地理专业硕士点2011年研究生入学考试城市规划原理考试大纲一、城市与城市发展:城市形成与发展的基本规律;城市化的概念、特征和规律;城市化进程与经济、社会发展的关系。

二、城市规划学科的产生和发展:中国和欧洲古代城市典型格局及其社会和政治体制背景;现代城市规划产生的历史背景和理论渊源;现代城市规划的早期思想;现代城市的发展理论;现代城市规划思想的发展;当代城市规划所面临的形势。

三、城市规划的工作内容和编制程序:城市规划的地位、作用和任务;城市规划的基本内容和编制体系;城市规划的调查研究过程;城市规划与其他相关规划的关系。

四、城市构成与用地规划:城市的功能及其内部结构,以及城市各组成部分之间的关系;城市用地分类及适用性评价;城市不同用途的用地规划。

五、城市发展战略:城市发展战略的涵义;国民经济和社会发展规划与城市规划纲要的内容;城市可持续发展的内容;结构规划和远景规划的涵义;制定城市发展战略的要点。

六、城市总体布局:城市功能、结构与形态的相关概念;城市总体布局的原则;城市总体布局的综合协调的内容;城市总体布局的方案评定和优化方法;城市绿地系统与景观规划的内容;典型城市的总体布局方法。

七、城市交通与道路系统:城市、城市交通、城市总体布局之间的关系;城市内部交通系统和对外交通系统的规划布置;分析具体城市的交通与道路规划。

八、城市规划中的工程规划:城市给水、排水、防污、能源、电讯、防灾规划和管线综合规划的内容和方法。

城市工程管线综合规划设计的工作阶段、编制内容,城市用地竖向规划的目的和工作内容九、居住区规划:居住区规划的任务、内容;居住区的组成、类型与规划结构;居住区规划的理论和方法;居住区规划的技术经济指标;城市旧居住区的再开发方法。

十、城市公共空间:城市公共空间的相关概念和构成要素;城市商业区、城市中心、城市广场的规划方法;城市设计的含义、作用与内容。

十一、城市历史文化遗产保护与城市更新:城市历史文化遗产保护的意义与原则,城市建筑文物、历史地段的保护和利用;城市整体环境的保护和调整;城市历史文化遗产的保护办法;我国历史文化遗产保护的法律制度;城市更新的方式和城市更新与城市历史文化遗产保护之间的关系。

十二、城市规划的实施:城市建成环境的构成与演化;城市开发的类型,城市开发的经济特征,城市开发的公共干预;城市规划中的开发控制。

十三、城市规划的行政与法制:城市规划的行政权力与法制建设;城市规划的行政行为;城市规划行政管理中应遵循的行政法制原则;我国的城市规划法规体系。

人文地理专业硕士点2011年研究生入学考试人文地理考试大纲1、人文地理学的研究对象和任务,人文地理学的发展,人文地理学研究的方法2、文化与人文地理学,文化概念和文化结构,文化的形成与特点,人文地理学研究的主题,其它学科对人地关系的探索。

3、人口分布与迁移,人口分布,人口移动,人口与发展,人口增长过程,人口转变模式,人口增长的动力机制,人口与发展。

4、农业地理:农业起源,农业的发展与类型,农业景观和农业区位论;工业地理:工业的出现和发展,产业类型及其分布,影响工业分布的因素5、种族、人种与地理环境,民族形成与特征,民族的迁移与集聚、民俗与环境,语言类型与地理景观,宗教地理与宗教景观。

6、聚落地理,聚落起源与发展,城市地域结构,城市体系与城市景观,区域城镇体系规划。

7、旅游地理,旅游业的兴起,旅游的区域特征,旅游者动机与决策,旅游资源与旅游地,旅游开发的区域影响。

8、行为地理,人类行为与地理环境,人类活动的行为空间,人类行为与区位选择模型9、政治地理,政治地理要素,国家政治地理特征,国家权力,全球政治地理格局。

10、人文地理学所面临的问题,可持续发展问题,世界新的政治地理格局中的人地关系,文化景观研究与文化景观建设。

结构工程专业硕士点2011年研究生入学考试考试大纲一、《结构力学》考纲:1.本考试科目简介结构力学是土木工程专业的一门主要技术和专业基础课程。

本课程的任务是在学习理论力学和材料力学等课程的基础上进一步掌握平面杆系结构分析计算的基本概念,基本原理和基本方法,了解各类结构的受力性能,为学习有关专业课程以及进行结构设计和科学研究打好力学基础,培养结构分析与计算等方面的能力。

2.考试内容及具体要求①几何构造分析的概念、平面几何不变体系的组成规律、平面杆件体系的计算自由度;②静定结构一般性质及受力分析;③结构位移计算(含图乘法和温度作用时的位移计算);④力法、位移法求解超静定结构的基本概念与计算方法;⑤渐近法的概念与计算方法;⑥影响线的概念与求做影响线的方法、利用影响线求移动荷载下结构的最大内力;⑦矩阵位移法的原理与结构分析的方法;⑧结构动力分析基础(自振频率与主振型计算)。

相关文档
最新文档