一元一次不等式 (2)

合集下载

9.2 一元一次不等式 第2课时 新人教版七年级数学下册教学课件

9.2 一元一次不等式 第2课时 新人教版七年级数学下册教学课件

探究新知
素养考点 2 一元一次不等式解答货币问题 例2 小颖准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本 2.2元,她买了2个笔记本.请你帮她算一算,她还可能买几支笔?
解:设她还可能买n支笔,根据题意得 3n+2.2×2≤21,
解得 n≤ . 因为在这个问题中n只能取正整数,所以小颖还可能买1支、2支、 3支、4支或5支笔.
例1 去年广州空气质量良好(二级以上)的天数与全年 天数(365天)之比达到60%,如果到明年(365天)这样 的比值要超过70%,那么明年空气质量良好的天数要比 去年至少增加多少?
分析:题目蕴含的不等关系为 明年这样的比值要超70% ,
转 化 为 不 等 式,即 明年空气明质年量天良数好的天数>70%
连接中考
某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分, 小华得分要超过120分,他至少要答对的题的个数为( C )
A.13
B.14
C.15 D.16
课堂检测
基础巩固题
1.某商品原价500元,出售时标价为900元,要保持利润不低
于26%,则最低可打 ( B)
A. 六折 B. 七折
C. 八折
答:明年要比去年空气质量良好的天数至少增加 37天,
才能使这一年空气质量良好的天数超过全年天数的70% .
巩固练习
在一次知识竞赛中,有10道抢答题,答对一题得10分,答错一 题扣5分,不答得0分,小玲有一道题没有答,成绩仍然不低于 60分,她至少答对几道题?
解:设小玲答对的题数是x,则答错的题数是9-x, 根据题意,得10x-5(9-x)≥60, 解这个不等式,得x≥7. 答:她至少答对7道题.
D. 九折
2. 某次知识竞赛共20道题,每一题答对得10分,答错或不答

(完整版)一元一次不等式知识点总结

(完整版)一元一次不等式知识点总结

一元一次不等式知识点一:不等式的概念1.不等式:用“<” (或“≤” ),“>” (或“≥” ) 等不等号表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.要点诠释:(1) 不等号的类型:① “≠”读作“不等于”,它说明两个量之间的关系是不等的,但不能明确两个量谁大谁小;②“>”读作“大于”,它表示左边的数比右边的数大;③“<”读作“小于”,它表示左边的数比右边的数小;④“≥”读作“大于或等于”,它表示左边的数不小于右边的数;⑤“≤”读作“小于或等于”,它表示左边的数不大于右边的数;(2)等式与不等式的关系:等式与不等式都用来表示现实世界中的数量关系,等式表示相等关系,不等式表示不等关系,但不论是等式还是不等式,都是同类量比较所得的关系,不是同类量不能比较。

(3)要正确用不等式表示两个量的不等关系,就要正确理解“非负数”、“非正数”、“不大于”、“不小于”等数学术语的含义。

2.不等式的解:能使不等式成立的未知数的值,叫做不等式的解。

要点诠释:由不等式的解的定义可以知道,当对不等式中的未知数取一个数,若该数使不等式成立,则这个数就是不等式的一个解,我们可以和方程的解进行对比理解,要判断一个数是否为不等式的解,可将此数代入不等式的左边和右边利用不等式的概念进行判断。

3.不等式的解集:一般地,一个含有未知数的不等式的所有解,组成这个不等式的解集。

求不等式的解集的过程叫做解不等式。

如:不等式x-4<1的解集是x<5. 不等式的解集与不等式的解的区别: 解集是能使不等式成立的未知数的取值范围, 是所有解的集合, 而不等式的解是使不等式成立的未知数的值. 二者的关系是:解集包括解, 所有的解组成了解集。

要点诠释:不等式的解集必须符合两个条件:(1)解集中的每一个数值都能使不等式成立;(2)能够使不等式成立的所有的数值都在解集中。

知识点二:不等式的基本性质基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。

一元一次不等式 (2)

一元一次不等式 (2)
全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次 性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买 1 个足球 和 1 个篮球共需 170 元;足球单价是篮球单价的 2 倍少 10 元.
第 4页(共 8页)
(1)求足球和篮球的单价各是多少元?
(2)根据学校实际情况,需一次性购买足球和篮球共 20 个,但要求购买足球和篮球的
A.x<0
B.x<﹣2
C.x>0
D.x<2
二.填空题(共 22 小题)
5.(2020 秋•市中区校级期中)对于一个数 x,我们用(x]表示小于 x 的最大整数,例如:(2.6]
=2,(﹣3]=﹣4,(10]=9.如果|(x]|=3,则 x 的取值范围为

6.(2020 春•莒县期末)已知(m﹣2)x|m|﹣1+3>0 是关于 x 的一元一次不等式,则 m 的值
1 黄粽的进货量不低于总进货量的 ,则豆沙粽最多购进
5
袋.
10.(2019 春•长丰县期末)不等式 x+2>3x﹣4 的解集是

11.(2019•南充模拟)某经销商销售一批电子手环,第一个月以 550 元/块的价格售出 50 块,
第二个月起降价,以 500 元/块的价格,将这批电子手环全部售出,销售总额超过了 4 万
三种品种的粽子共 1000 袋(每袋均为同一品种的粽子),其中白粽每袋 12 个,豆沙粽每
1

8
个,蛋黄粽每袋
6
个.为了推广,超市还计划将三个品种的粽子各取 出来,拆开 20
后重新组合包装,制成 A、B 两种套装进行特价销售:A 套装为每袋白粽 4 个,豆沙粽 4
第 1页(共 8页)

一元一次不等式(第2课时)(课件)八年级数学下册(北师大版)

一元一次不等式(第2课时)(课件)八年级数学下册(北师大版)

随堂练习
解:(1)设该种商品每次降价的百分率为x%, 依题意得:400×(1-x%)2=324, 解得:x=10,或x=190(舍去). 答:该种商品每次降价的百分率为10%.
随堂练习
(2)设第一次降价后售出该种商品m件,则第二次降价后售出该 种商品(100-m)件, 第一次降价后的单件利润为:400×(1-10%)-300=60(元/件); 第二次降价后的单件利润为:324-300=24(元/件). 依题意得:
探究新知
例3:青年志愿者爱心小分队赴山村送温暖,准备为困 难村民购买一些米面.已知购买1袋大米、4袋面粉,共 需240元;购买2袋大米、1袋面粉,共需165元. (1)求每袋大米和面粉各多少元? (2)如果爱心小分队计划购买这些米面共40袋,总费用 不超过2 140元,那么至少购买多少袋面粉?
探究新知
(比如有的时候只能取整数)
谢谢~
随堂练习
6.2021年5月14日至15日,“一带一路”国际合作高峰论坛在北京 举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某 厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家 和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件 甲种商品比2件乙种商品的销售收入多1500元.
10
≥ 5%
探究新知
例1:某种商品进价为200元,标价为300元出售,商场规定可以打折销售, 但其利润率不能少于5%. 请你计算一下,这种商品最多可以按几折销售?
不等关系:(出售价-进价)÷进价≥利润率 解:设该商品可以打 x 折销售.
则 (300×0.1x-200)÷200≥5%. 解得 x ≥ 7. 答:这种商品最多可以按七折销售.
解:(1)设每袋大米x元,每袋面粉y元,根据题意,得:

一元一次不等式组(2)全面版

一元一次不等式组(2)全面版

务;如果每个小组每天比原先多生产1件产品,就能
提前完成任务.每个小组原先每天生产多少件产品?
解:设每个小组原先每天生产x件产品,
根据题意,得 310x500 ①
310(x1)500 ②
由不等式①得 x 16 2
3
由不等式②得 x 15 2
3
因此,不等式组的解集为
152 x162
归 纳:课本140页
(1)对于具有多种不等关系的问题,可 通过不等式组解决。 (2)解一元一次不等式组时,一般先求 出其中各个不等式的解集,再求出这些 解集的公共部分。 (3)利用数轴可以直观地表示不等式组 的解集,再结合实际问题求出符合实际 问题的解。
三、巩固训练,熟练技能
1、在方程组2xxyym6中, 已知x 0, y 0,求m的取值范.围
– 解不等式3≤2x-1≤5,你觉得该
怎样思考这个问题,你有解决的
办法吗?
• •
求出不等式组 3x 7 2 的解集中的正整数3x。 7 8
课本140页练习1
2、某工厂工人经过第一次改进工作
方法,每人每天平均加工的零件比原来多 10个,因而,每人在8天内加工的零件超 过200个,第二次又改进工作方法,每人 每天平均又比第一次改进方法后多做27个 零件,这样只做了4天,所做的件数就超 过前8天所做的数量。试问每个工人原来 每人平均做几个零件?
思考: 你觉得列一元一次不等式组解
应用题与列二元一次方程组解应用 题的步骤一样吗?

列 解(结果) 答
一元一次 不等式组
二元一次 方程组
一个未知 数
两个未知 数
找 一个范围 不等关系

一组数
等量关系
根据题意 写出答案

一元一次不等式应用题2

一元一次不等式应用题2
找出
实际问题 解 决 不等关系 列出 不等式 组 成 求 解
结合实 际因素
不等式组

小颖准备用21元钱买笔和笔
记本.已知每支笔3元,每个笔
记本2.2元,她买了2个笔记本 .请你帮她算一算,她还可能
买几支笔?
分析: 不管如何买,两种物品的购价不得超过 21元,即小于或等于21元
小兰准备用30元买钢笔和笔记本,已知 一支钢笔4.5元,一本笔记本3元,如果 她钢笔和笔记本共买了8件,每一种至 少买一件,则她有多少种购买方案?
解:设购买X千克水果,
到甲市场收费为( 20X+3000 )元;乙市场收 费为( 30X ) 元;
1.20X+3000<30X
--10X< --3000
X>300
2. 20X+3000>30X --10X> --3000 X<300 3. 20X+3000=30X --10X= --3000 X=300
此时到甲市场买更合算。
此时到乙市场买更合算。
此时两个市场收费相同。
问题:甲、乙两商店以同样价格出售同样的 商品。并且又各自推出不同的优惠方案:在 甲店累计购买100元商品后,再购买的商品按 原价的90%收费;在乙店累计购买50元商品 后,再购买的商品按原价的95%收费。顾客 怎样选择商店购物能获得更大优惠?
分析:不等关系是:购轿车的钱+购面包 车的钱≤55万元
• 解1:设购轿车x辆,则购面包车(10-x)辆 根据题意得:7x+4(10-x) ≤55 解得: x≤5 符合条件的是:x=5 ,4 , 3 . 有三种方案:第一种方案,轿车购5辆,面包车购5辆。 第二种方案,轿车购4辆,面包车购6辆。 第一种方案,轿车购3辆,面包车购7辆。 解2:第一种方案收入:5×200+5×110=1550元 第二种方案收入:4×200+6×110=1460元 第三种方案收入:3×200+7×110=1370元 所以 日收入不低于1500,选择第一种方案

北师大版八年级数学下册《一元一次不等式(第2课时)》精品教案

北师大版八年级数学下册《一元一次不等式(第2课时)》精品教案

《一元一次不等式》精品教案被评为优秀(85分或85分以上),小明至少答对了几道题?想一想:本题中涉及的不等关系是什么?答:小明得的分数≥85即:小明答对题的分数-答错题扣的分数≥85追问:你能利用不等式解决这个问题吗?解:设小明答对了x道题,则他答错和不答的共有(25-x)道题,根据题意,得4x-1×(25-x)≥85解得x≥22答:小明至少答对了22道题.想一想:小明可能答对了几道题呢?解:∵x≥22且x≤25,又∵x取正整数,∴x=22或23或24或25答:小明可能答对22道、23道、24道或25道题.例:小丽准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本2元,她买了2本笔记本.请你帮她算一算,她可能买了几支笔?解:设她买x枝笔,根据题意,得3x+2×2≤21解这个不等式,得x≤25 3∵x只能取正整数,∴x可以是5或4或3或2或1.答:小丽可能买1支、2支、3支、4支或5支笔.归纳:利用一元一次不等式解决实际问题的一般步骤:(1)审题,找不等关系;(2)设未知数;(3)列不等式;(4)解不等式;(5)根据实际情况,写出答案.老师的指导下求解.学生独立完成例1,班内交流后,认真听老师的讲评.学生与老师共同归纳一元一次不等式解决实际问题的步骤,并认真完成练习.实际问题的方法,体会符合题意答案的求法.进一步体会不等式解决实际问题的方法.归纳一元一次不等式解实际问题的一般步骤,并通过练习形成技练习1:小刚准备用26元钱买火腿肠和方便面,已知一根火腿肠2元钱,一盒方便面3元钱,他买了5盒方便面,他最多还能买多少根火腿肠?解:设小刚买x 根火腿肠.根据题意,得:2x +3×5≤26解这个不等式,得:x ≤5.5答:小刚最多还能买5根火腿肠.练习2:某学校学生会组织七年级和八年级共60名同学参加环保活动,七年级学生平均每人收集15个废弃塑料瓶,八年级学生平均每人收集20个废弃塑料瓶.为了保证所收集的塑料瓶总数不少于1000个,至少需要多少名八年级学生参加活动?解:设参加的八年级学生为x 人,得15×(60-x )+20x ≥1000解不等式,得x ≥20答:至少需要20名八年级学生参加活动.能.课堂练习1.太原某座桥桥头的限重标志如图,其中的“55”表示该桥梁限制载重后总质量超过55t 的车辆通过桥梁.设一辆自重10t 的卡车,其载重的质量为x t ,若它要通过此座桥,则x 应满足的关系为___________(用含x 的不等式表示).答案:10+x ≤552.亮亮准备用自己节省的零花钱买一台英语复读机.他现在已存有55元,计划从现在起以后每个月节省20元,直到他至少有350元.设x 个月后他至少有350元,则可以用于计算所需要的月数x 的不等式是()A .20x -55≥350B .20x +55≥350C .20x -55≤350D .20x +55≤350学生自主完成课堂练习,做完之后班级内交流.借助练习,检测学生的知识掌握程度,同时便于学生巩固知识.答案:B3.篮球联赛中,每场比赛都要分出胜负,每队胜一场得3分,负一场扣一分.某队预计在2018-2019赛季全部32场比赛中最少得到48分,才有希望进入季后赛,假设这个队在将要举行的比赛中胜x场,要达到目标,x应满足的关系式是()A.3x+(32-x)⩾48B.3x-(32-x)⩾48C.3x-(32-x)⩽48D.3x⩾48答案:B拓展提高“绿水青山,就是金山银山”,某旅游景区为了保护环境,需购买A,B两种型号的垃圾处理设备共10台(每种型号至少买1台),已知每台A型设备日处理能力为12吨;每台B型设备日处理能力为15吨;购回的设备日处理能力不低于140吨.请你为该景区设计购买A,B两种设备的方案.解:设购买A型设备x台,则购买B型设备(10-x)台.根据题意,得12x+15(10-x)≥140,解得x≤313∵x为正整数,∴x=1,2,3.∴该景区有三种购买方案:方案一:购买A型设备1台、B型设备9台;方案二:购买A型设备2台、B型设备8台;方案三:购买A型设备3台、B型设备7台.在师的引导下完成问题.提高学生对知识的应用能力中考链接下面让我们一起赏析中考题:(2018·永州)甲从商贩A处购买了若干斤西瓜,又从商贩B处购买了若干斤西瓜.A、B两处所购买的西瓜重量之比为3:2,然后将买回的西瓜以从A、B两处购买单价的平均数为单价全部卖给了乙,结果发现他赔钱了,这是因为()在师的引导下完成中考题.体会所学知识在中考试题考查中的运用.A.商贩A的单价大于商贩B的单价B.商贩A的单价等于商贩B的单价C.商版A的单价小于商贩B的单价D.赔钱与商贩A、商贩B的单价无关答案:A课堂总结在课堂的最后,我们一起来回忆总结我们这节课所学的知识点:问题、利用一元一次不等式解决实际问题的一般步骤?(1)审题,找不等关系;(2)设未知数;(3)列不等式;(4)解不等式;(5)根据实际情况,写出答案.跟着老师回忆知识,并记忆本节课的知识.帮助学生加强记忆知识.作业布置基础作业教材第49页习题2.5第1、2题能力作业教材第49页习题2.5第4题学生课下独立完成.检测课上学习效果.。

9.2 一元一次不等式 第2课时

9.2 一元一次不等式 第2课时
解析:设导火索长度为x m,则 x/0.015≥100/3
解得 x≥0.5 答:导火索的长度至少取0.5 m.
3.(广州·中考)某商店5月1日举行促销优惠活动,当天 到该商店购买商品有两种方案,方案一:用168元购买会 员卡成为会员后,凭会员卡购买商店内任何商品,一律按 商品价格的8折优惠;方案二:若不购买会员卡,则购买 商店内任何商品,一律按商品价格的9.5折优惠.已知小敏 5月1日前不是该商店的会员. (1)若小敏不购买会员卡,所购买商品的价格为120元时, 实际应支付多少元? (2)请帮小敏算一算,所购买商品的价格在什么范围时, 采用方案一更合算?
解决较复杂问题时,常需要分不同情况进行讨论.
•9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/9/72021/9/7Tuesday, September 07, 2021 •10、阅读一切好书如同和过去最杰出的人谈话。2021/9/72021/9/72021/9/79/7/2021 1:32:23 PM •11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/9/72021/9/72021/9/7Sep-217-Sep-21 •12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/9/72021/9/72021/9/7Tuesday, September 07, 2021
想一想:小玲有几种答题可能? 小玲有3种答题可能,分别是 答对7道题,答错2道题,有1道题未答; 答对8道题,答错1道题,有1道题未答; 答对9道题,有1道题未答.
【跟踪训练】
1.我班几个同学合影留念,每人交0.70元.已 知一张彩色底片0.68元,扩印一张相片0.50元, 每人分一张,在将收来的钱尽量用掉的前提下, 这张相片上的同学最少有几人?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

,则

.已知方程组:
﹣≤
<≤≤≤..

b=
....
的含义是
是常数,不等式+,则关于
<﹣<
,则
的方程
> a C
,则
.不等式
的解满足条件
.与

一.选择题(共30小题)
2.(2014•东昌府区模拟)与不等式的解集相同的不等式是()
3.(2014•定州市一模)已知关于x的不等式(1﹣a)x>3的解集为x<,则a的取值范围是()


).故选:
.C
方程有负数解,∴
<﹣
x=

8.(2010•武义县模拟)一个数值转换器如图所示,要使输出值y大于100,输入的最小正整数x为()

9.(2006•日照)已知方程组:的解x,y满足2x+y≥0,则m的取值范围是()
,②x=
,∴2+﹣
<≤≤



M=,N=P=p=
.C D.
,即2+
<,而对
取最小值
,即2+
,即≥
,2+
的取值范围是
15.若关于x的不等式(2m﹣n)x﹣m>5n的解集为x<,则关于x的不等式(m﹣n)x>m+n的解集为()
<,得到= 16.若max{S1,S2,…,S n}表示实数S1,S2,…,S n中的最大者.设A=(a1,a2,a3),b=,记A⊗B=max{a1b1,
a2b2,a3b3},设A=(x﹣1,x+1,1),,若A⊗B=x﹣1,则x的取值范围为()
.C D.

.∴
17.运算符号△的含义是,则方程(1+x)△(1﹣2x)=5的所有根之和为()
18.设a,b是常数,不等式+>0的解集为x<,则关于x的不等式bx﹣a<0的解集是()
<﹣>﹣
根据不等式+,即可判断
+>>﹣,∵,∴﹣,且,﹣
,即<﹣
≤≤
20.已知关于x的不等式(1﹣a)x>2的解集为x<,则a的取值范围是()

21.如果关于x的方程的解不是负值,那么a与b的关系是()
b a
x=解不是负值,∴≥
23.已知m,n为常数,若mx+n>0的解集为x<,则nx﹣m<0的解集是()
,可以继续判断
<=,∴﹣
=
,又,得,解得,
26.不等式的解集为x>2,那么m的值是()
y=
28.若方程组的解满足条件0<x+y<1,则k的取值范围是()
;x=
,∴,解得,﹣
x+y=,由于<
+3<0与>﹣2
;解不等式﹣﹣>﹣﹣
+3,﹣;解不等式
30.已知a、b为常数,若ax+b>0的解集为x<,则bx﹣a<0的解集是()
,可以确定
,∴,﹣=a
<a,∴=。

相关文档
最新文档