FFT计算物理意义

合集下载

FFT算法的物理意义

FFT算法的物理意义

FFT算法的物理意义FFT是离散傅⽴叶变换的⾼速算法,能够将⼀个信号变换到频域。

有些信号在时域上是⾮常难看出什么特征的,可是如果变换到频域之后,就⾮常easy看出特征了。

这就是⾮常多信号分析採⽤FFT变换的原因。

另外,FFT能够将⼀个信号的频谱提取出来,这在频谱分析⽅⾯也是经经常使⽤的。

尽管⾮常多⼈都知道FFT是什么,能够⽤来做什么,怎么去做,可是却不知道FFT之后的结果是什意思、怎样决定要使⽤多少点来做FFT。

如今圈圈就依据实际经验来说说FFT结果的详细物理意义。

⼀个模拟信号,经过ADC採样之后,就变成了数字信号。

採样定理告诉我们,採样频率要⼤于信号频率的两倍,这些我就不在此罗嗦了。

採样得到的数字信号,就能够做FFT变换了。

N个採样点,经过FFT之后,就能够得到N个点的FFT结果。

为了⽅便进⾏FFT运算,通常N取2的整数次⽅。

如果採样频率为Fs,信号频率F,採样点数为N。

那么FFT之后结果就是⼀个为N点的复数。

每⼀个点就相应着⼀个频率点。

这个点的模值,就是该频率值下的幅度特性。

详细跟原始信号的幅度有什么关系呢?如果原始信号的峰值为A,那么FFT的结果的每⼀个点(除了第⼀个点直流分量之外)的模值就是A的N/2倍。

⽽第⼀个点就是直流分量,它的模值就是直流分量的N倍。

⽽每⼀个点的相位呢,就是在该频率下的信号的相位。

第⼀个点表⽰直流分量(即0Hz),⽽最后⼀个点N的再下⼀个点(实际上这个点是不存在的,这⾥是如果的第N+1个点,也能够看做是将第⼀个点分做两半分,还有⼀半移到最后)则表⽰採样频率Fs,这中间被N-1个点平均分成N等份,每⼀个点的频率依次添加�。

⽐如某点n所表⽰的频率为:Fn=(n-1)*Fs/N。

由上⾯的公式能够看出,Fn所能分辨到频率为为Fs/N,如果採样频率Fs为1024Hz,採样点数为1024点,则能够分辨到1Hz。

1024Hz的採样率採样1024点,刚好是1秒,也就是说,採样1秒时间的信号并做FFT,则结果能够分析到1Hz,如果採样2秒时间的信号并做FFT,则结果能够分析到0.5Hz。

FFT结果的物理意义

FFT结果的物理意义

傅立叶变换的物理意义(转)1、为什么要进行傅里叶变换,其物理意义是什么?傅立叶变换是数字信号处理领域一种很重要的算法。

要知道傅立叶变换算法的意义,首先要了解傅立叶原理的意义。

傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。

而根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。

和傅立叶变换算法对应的是反傅立叶变换算法。

该反变换从本质上说也是一种累加处理,这样就可以将单独改变的正弦波信号转换成一个信号。

因此,可以说,傅立叶变换将原来难以处理的时域信号转换成了易于分析的频域信号(信号的频谱),可以利用一些工具对这些频域信号进行处理、加工。

最后还可以利用傅立叶反变换将这些频域信号转换成时域信号。

从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换。

它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。

在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。

在数学领域,尽管最初傅立叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。

"任意"的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类:1. 傅立叶变换是线性算子,若赋予适当的范数,它还是酉算子;2. 傅立叶变换的逆变换容易求出,而且形式与正变换非常类似;3. 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段; 5. 离散形式的傅立叶的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取;4. 著名的卷积定理指出:傅立叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段,离散形式的傅里叶变换可以利用数字计算机快速的算出(其算法称为快速傅立叶变换算法(FFT))。

FFT结果的物理意义

FFT结果的物理意义

FFT结果的物理意义最近正在做一个音频处理方面的项目,以前没有学过fft,只是知道有这么个东西,最近这一用才发现原来欠缺这么多,最基本的,连fft的输入和输出各自代表什么都不知道了,终于在网上查到这样的一点资料,得好好保存了,也欢迎大家分享。

FFT是离散傅立叶变换的快速算法,可以将一个信号变换到频域。

有些信号在时域上是很难看出什么特征的,但是如果变换到频域之后,就很容易看出特征了。

这就是很多信号分析采用FFT变换的原因。

另外,FFT可以将一个信号的频谱提取出来,这在频谱分析方面也是经常用的。

虽然很多人都知道FFT是什么,可以用来做什么,怎么去做,但是却不知道FFT之后的结果是什意思、如何决定要使用多少点来做FFT。

现在圈圈就根据实际经验来说说FFT结果的具体物理意义。

一个模拟信号,经过ADC采样之后,就变成了数字信号。

采样定理告诉我们,采样频率要大于信号频率的两倍,这些我就不在此罗嗦了。

采样得到的数字信号,就可以做FFT变换了。

N个采样点,经过FFT之后,就可以得到N个点的FFT结果。

为了方便进行FFT运算,通常N取2的整数次方。

假设采样频率为Fs,信号频率F,采样点数为N。

那么FFT之后结果就是一个为N点的复数。

每一个点就对应着一个频率点。

这个点的模值,就是该频率值下的幅度特性。

具体跟原始信号的幅度有什么关系呢?假设原始信号的峰值为A,那么FFT的结果的每个点(除了第一个点直流分量之外)的模值就是A的N/2倍。

而第一个点就是直流分量,它的模值就是直流分量的N倍。

而每个点的相位呢,就是在该频率下的信号的相位。

第一个点表示直流分量(即0Hz),而最后一个点N的再下一个点(实际上这个点是不存在的,这里是假设的第N+1个点,也可以看做是将第一个点分做两半分,另一半移到最后)则表示采样频率Fs,这中间被N-1个点平均分成N等份,每个点的频率依次增加。

例如某点n所表示的频率为:Fn=(n-1)*Fs/N。

如何决定要使用多少点来做FFT

如何决定要使用多少点来做FFT

如何决定要使用多少点来做FFTFFT结果的物理意义FFT是离散傅立叶变换的快速算法,可以将一个信号变换到频域。

有些信号在时域上是很难看出什么特征的,但是如果变换到频域之后,就很容易看出特征了。

这就是很多信号分析采用FFT变换的原因。

另外,FFT可以将一个信号的频谱提取出来,这在频谱分析方面也是经常用的。

虽然很多人都知道FFT是什么,可以用来做什么,怎么去做,但是却不知道FFT之后的结果是什意思、如何决定要使用多少点来做FFT。

一个模拟信号,经过ADC采样之后,就变成了数字信号。

采样定理告诉我们,采样频率要大于信号频率的两倍。

采样得到的数字信号,就可以做FFT变换了。

N个采样点,经过FFT之后,就可以得到N个点的FFT结果。

为了方便进行FFT运算,通常N取2的整数次方。

假设采样频率为Fs,信号频率F,采样点数为N。

那么FFT之后结果就是一个为N点的复数。

每一个点就对应着一个频率点。

这个点的模值,就是该频率值下的幅度特性。

具体跟原始信号的幅度有什么关系呢?假设原始信号的峰值为A,那么FFT的结果的每个点(除了第一个点直流分量之外)的模值就是A的N/2倍。

而第一个点就是直流分量,它的模值就是直流分量的N倍。

而每个点的相位呢,就是在该频率下的信号的相位。

第一个点表示直流分量(即0Hz),而最后一个点N的再下一个点(实际上这个点是不存在的,这里是假设的第N+1个点,可以看做是将第一个点分做两半分,另一半移到最后)则表示采样频率Fs,这中间被N-1个点平均分成N等份,每个点的频率依次增加。

例如某点n所表示的频率为:。

由上面的公式可以看出,Fn所能分辨到频率为Fs/N,如果采样频率Fs为1024Hz,采样点数为1024点,则可以分辨到1Hz。

1024Hz的采样率采样1024点,刚好是1秒,也就是说,采样1秒时间的信号并做FFT,则结果可以分析到1Hz,如果采样2秒时间的信号并做FFT,则结果可以分析到0.5Hz。

fft的物理意义

fft的物理意义

FFT是离散傅立叶变换的快速算法,可以将一个信号变换到频域。

有些信号在时域上是很难看出什么特征的,但是如果变换到频域之后,就很容易看出特征了。

这就是很多信号分析采用FFT变换的原因。

另外,FFT可以将一个信号的频谱提取出来,这在频谱分析方面也是经常用的。

虽然很多人都知道FFT是什么,可以用来做什么,怎么去做,但是却不知道FFT之后的结果是什意思、如何决定要使用多少点来做FFT。

现在圈圈就根据实际经验来说说FFT结果的具体物理意义。

一个模拟信号,经过ADC采样之后,就变成了数字信号。

采样定理告诉我们,采样频率要大于信号频率的两倍,这些我就不在此罗嗦了。

采样得到的数字信号,就可以做FFT变换了。

N个采样点,经过FFT之后,就可以得到N个点的FFT结果。

为了方便进行FFT运算,通常N取2的整数次方。

假设采样频率为Fs,信号频率F,采样点数为N。

那么FFT之后结果就是一个为N点的复数。

每一个点就对应着一个频率点。

这个点的模值,就是该频率值下的幅度特性。

具体跟原始信号的幅度有什么关系呢?假设原始信号的峰值为A,那么FFT的结果的每个点(除了第一个点直流分量之外)的模值就是A的N/2倍。

而第一个点就是直流分量,它的模值就是直流分量的N倍。

而每个点的相位呢,就是在该频率下的信号的相位。

第一个点表示直流分量(即0Hz),而最后一个点N的再下一个点(实际上这个点是不存在的,这里是假设的第N+1个点,也可以看做是将第一个点分做两半分,另一半移到最后)则表示采样频率Fs,这中间被N-1个点平均分成N等份,每个点的频率依次增加。

例如某点n所表示的频率为:Fn=(n-1)*Fs/N。

由上面的公式可以看出,Fn所能分辨到频率为为Fs/N,如果采样频率Fs为1024Hz,采样点数为1024点,则可以分辨到1Hz。

1024Hz的采样率采样1024点,刚好是1秒,也就是说,采样1秒时间的信号并做FFT,则结果可以分析到1Hz,如果采样2秒时间的信号并做FFT,则结果可以分析到0.5Hz。

FFT含义

FFT含义

FFT是离散傅立叶变换的快速算法,可以将一个信号变换到频域。

有些信号在时域上是很难看出什么特征的,但是如果变换到频域之后,就很容易看出特征了。

这就是很多信号分析采用FFT变换的原因。

另外,FFT可以将一个信号的频谱提取出来,这在频谱分析方面也是经常用的。

虽然很多人都知道FFT是什么,可以用来做什么,怎么去做,但是却不知道FFT之后的结果是什意思、如何决定要使用多少点来做FFT。

现在我就根据实际经验来说说FFT结果的具体物理意义。

一个模拟信号,经过ADC采样之后,就变成了数字信号。

采样定理告诉我们,采样频率要大于信号最高频率的两倍,这些我就不在此罗嗦了。

采样得到的数字信号,就可以做FFT变换了。

N个采样点,经过FFT之后,就可以得到N 个点的FFT结果。

为了方便进行FFT运算,通常N取2的整数次方(参见FFT原理)。

FFT 运算量:Nlog2N(2为对数的底)。

假设采样频率为Fs,信号频率F,采样点数为N。

那么FFT之后结果就是一个为N点的复数。

每一个点就对应着一个频率点。

这个点的模值,就是该频率值下的幅度特性。

具体跟原始信号的幅度有什么关系呢?假设原始信号的峰值为A,那么FFT的结果的每个点(除了第一个点直流分量之外)的模值就是A的N/2倍。

而第一个点就是直流分量,它的模值就是直流分量的N倍。

而每个点的相位呢,就是在该频率下的信号的相位。

第一个点表示直流分量(即0Hz),而最后一个点N的再下一个点(实际上这个点是不存在的,这里是假设的第N+1个点,也可以看做是将第一个点分做两半分,另一半移到最后)则表示采样频率Fs,这中间被N-1个点平均分成N等份,每个点的频率依次增加。

例如某点n所表示的频率为:Fn=(n-1)*Fs/N。

由上面的公式可以看出,Fn所能分辨到频率F0=Fs/N。

假设频率分辨率F0=Fs/N限定,采样频率Fs也给定,也已知信号最高频率Fh,那么由采样定理:Fs》=2Fh得到:N=Fs/F0>=2Fh/F0,即采样点必须满足这样一个关系式。

FFT算法

FFT算法

FFT是离散傅立叶变换的快速算法,可以将一个信号变换到频域。

有些信号在时域上是很难看出什么特征的,但是如果变换到频域之后,就很容易看出特征了。

这就是很多信号分析采用FFT变换的原因。

另外,FFT可以将一个信号的频谱提取出来,这在频谱分析方面也是经常用的。

虽然很多人都知道FFT是什么,可以用来做什么,怎么去做,但是却不知道FFT之后的结果是什意思、如何决定要使用多少点来做FFT。

现在圈圈就根据实际经验来说说FFT结果的具体物理意义。

一个模拟信号,经过ADC采样之后,就变成了数字信号。

采样定理告诉我们,采样频率要大于信号频率的两倍,这些我就不在此罗嗦了。

采样得到的数字信号,就可以做FFT变换了。

N个采样点,经过FFT之后,就可以得到N 个点的FFT结果。

为了方便进行FFT运算,通常N取2的整数次方。

假设采样频率为Fs,信号频率F,采样点数为N。

那么FFT之后结果就是一个为N点的复数。

每一个点就对应着一个频率点。

这个点的模值,就是该频率值下的幅度特性。

具体跟原始信号的幅度有什么关系呢?假设原始信号的峰值为A,那么FFT的结果的每个点(除了第一个点直流分量之外)的模值就是A的N/2倍。

而第一个点就是直流分量,它的模值就是直流分量的N倍。

而每个点的相位呢,就是在该频率下的信号的相位。

第一个点表示直流分量(即0Hz),而最后一个点N的再下一个点(实际上这个点是不存在的,这里是假设的第N+1个点,也可以看做是将第一个点分做两半分,另一半移到最后)则表示采样频率Fs,这中间被N-1个点平均分成N等份,每个点的频率依次增加。

例如某点n所表示的频率为:Fn=(n-1)*Fs/N。

由上面的公式可以看出,Fn所能分辨到频率为为Fs/N,如果采样频率Fs为1024Hz,采样点数为1024点,则可以分辨到1Hz。

1024Hz的采样率采样1024点,刚好是1秒,也就是说,采样1秒时间的信号并做FFT,则结果可以分析到1Hz,如果采样2秒时间的信号并做FFT,则结果可以分析到0.5Hz。

FFT变换的物理意义知识分享

FFT变换的物理意义知识分享

F F T变换的物理意义FFT是离散傅立叶变换的快速算法,可以将一个信号变换到频域。

有些信号在时域上是很难看出什么特征的,但是如果变换到频域之后,就很容易看出特征了。

这就是很多信号分析采用FFT变换的原因。

另外,FFT可以将一个信号的频谱提取出来,这在频谱分析方面也是经常用的。

虽然很多人都知道FFT是什么,可以用来做什么,怎么去做,但是却不知道FFT之后的结果是什意思、如何决定要使用多少点来做FFT。

现在根据实际经验来说说FFT结果的具体物理意义。

一个模拟信号,经过A DC采样之后,就变成了数字信号。

采样定理告诉我们,采样频率要大于信号频率的两倍。

采样得到的数字信号,就可以做FFT变换了。

N个采样点,经过FFT之后,就可以得到N个点的FFT结果。

为了方便进行FFT运算,通常N取2的整数次方。

假设采样频率为Fs,信号频率F,采样点数为N。

那么FFT之后结果就是一个为N点的复数。

每一个点就对应着一个频率点。

这个点的模值,就是该频率值下的幅度特性。

具体跟原始信号的幅度有什么关系呢?假设原始信号的峰值为A,那么FFT的结果的每个点(除了第一个点直流分量之外)的模值就是A 的N/2倍。

而第一个点就是直流分量,它的模值就是直流分量的N倍。

而每个点的相位呢,就是在该频率下的信号的相位。

第一个点表示直流分量(即0H z),而最后一个点N的再下一个点(实际上这个点是不存在的,这里是假设的第N+1个点,也可以看做是将第一个点分做两半分,另一半移到最后)则表示采样频率Fs,这中间被N-1个点平均分成N等份,每个点的频率依次增加。

例如某点n所表示的频率为:Fn=(n-1)*Fs/N。

由上面的公式可以看出,Fn所能分辨到频率为Fs/N,如果采样频率Fs为1024Hz,采样点数为1024点,则可以分辨到1Hz。

1024Hz的采样率采样1024点,刚好是1秒,也就是说,采样1秒时间的信号并做FFT,则结果可以分析到1Hz,如果采样2秒时间的信号并做FFT,则结果可以分析到0.5Hz。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MATLAB 中FFT函数的意义
FFT是离散傅立叶变换的快速算法,可以将一个信号变换到频域。

有些信号在时域上是很难看出什么特征的,但是如果变换到频域之后,就很容易看出特征了。

这就是很多信号分析采用FFT变换的原因。

另外,FFT可以将一个信号的频谱提取出来,这在频谱分析方面也是经常用的。

模拟信号经过ADC采样之后变成数字信号,可对此数字信号做FFT变换。

N 个采样点经过FFT之后就可以得到N个点的FFT结果。

为了方便进行FFT运算,通常N取2的整数次幂。

假设采样频率为F s,信号频率为F,采样点数为N。

则FFT之后结果为N点复数,其中每一个点对应着一个频率点,该点复数的模值为原始信号在该频率值下的幅度特性。

具体为:假设原始信号在某频率点的幅值为A,则该频点对应的FFT点复数的模值为A的N/2倍。

而FFT第一点为原始信号的直流分量,其模值为原始信号模值的N倍。

对于相位,FFT复数的相位即为原始信号在该频率点处的相位。

FFT后的N点复数,第一点表示直流分量(0Hz),而最后一点的下一点(实际不存在,假设为第N+1点)表示的频率为采样频率(F s),这中间被N-1个点平均分为N等份,每点频率依次增加。

例如,第k点所表示的频率为:F K=(K-1)F s/N。

所以FFT所能达到的频率分辨率为F s/N。

FFT结果以N/2(换算为频率即为乃奎斯特频率,F s/2)对称。

因此我们只需要前半部分的结果,即在乃奎斯特频率内的结果。

示例1:假设FFT第k点用复数表示为:a+ib,则该数的模(或绝对值)为A k=(a2+b2)0.5,相位为P k=arctan(b/a),对应频率为F K=(K-1)F s/N。

所以该点对应的时域
信号分量为:。

示例2:假设用1000Hz的采样率采信号:,采样点数为1024。

MATLAB程序
如下:
N=1024; //采样点数为1024
Fs=1000; //采样频率为1000Hz
t=[0:1/Fs:(N-1)/Fs]; //采样时刻
s=2+3*cos(2*pi*200*t+60*pi/180)+4*cos(2*pi*300*t+120*pi/180); //对信号采样Y=fft(s); //做FFT运算
y=abs(Y); //对FFT结果求模
i=1:N/2; //
x=(i-1)*F/N; //将时间点换算为相应频率
yy(i)=y(i); //取前N/2点的FFT模值
yy=yy/(N/2); //做幅值变换,变换至时域信号幅值
yy(1)==yy(1)/2;
//对直流信号做幅值变换 plot(x,yy)
//绘制图形 050100150200250300350400450500
00.5
1
1.5
2
2.5
3
3.5
4
上图为FFT 的幅频特性图。

由上图可以看出,在200Hz 和300Hz 频点处幅值比原始信号(3、4)要低。

这是因为对信号进行非整数倍周期采样(截断),产生频谱泄露。

050100150200250300350400450500
00.5
1
1.5
2
2.5
上图为在同样条件下(N=1024,F=1000Hz)对信号进行处理得到的FFT幅频特
性图。

可以看到由于是对信号进行整数倍的采样,不存在截断误差引起的频谱泄露。

在125Hz频点和250Hz频点处幅值与原始信号相同。

相关文档
最新文档