傅里叶变换拉普拉斯变换的物理解释及区别
拉普拉斯变换和傅里叶变换频谱的区别

拉普拉斯变换和傅里叶变换频谱的区别拉普拉斯变换和傅里叶变换是信号处理中常用的两种变换方法,它们可以将复杂的时域信号转化为频域信号,用于信号的分析和处理。
下面将详细介绍拉普拉斯变换和傅里叶变换频谱的区别。
1. 定义区别拉普拉斯变换是一种对信号进行复数变换的方法,其定义具有连续性,包含对实数信号和复数信号的处理。
傅里叶变换是一种虚数变换,对信号进行分解和求和,其定义也是连续的。
2. 变换域的不同拉普拉斯变换的变换域为复平面,变换结果是一个复数函数。
傅里叶变换的变换域为实数轴,变换结果是一个实数函数,且傅里叶变换可以通过反变换得到时域信号的精确表示,而拉普拉斯变换不行。
3. 变换对象的不同拉普拉斯变换通常被用于对连续的时域信号进行变换,而傅里叶变换则更加适用于对离散的信号序列进行处理。
4. 技术应用的差异拉普拉斯变换在信号处理和系统控制等方面应用广泛,可以用于滤波、建立控制系统模型,以及稳定性分析等任务。
傅里叶变换则主要用于信号分析和图像处理,可以在时间和频率域内进行信号的分析,是数字信号处理中不可或缺的分析工具。
5. 傅里叶变换的两种形式傅里叶变换有两种形式,一种是傅里叶正变换,把时域信号转换为频域信号,另一种是傅里叶反变换,把频域信号还原为时域信号。
而拉普拉斯变换只有一种形式。
在信号处理领域中,选择采用哪种变换方法,主要取决于所处理的信号和具体的任务要求。
若要对时域信号进行振幅和相位分析,那么傅里叶变换是比较适合的。
而如果需要对连续信号进行系统模型建立或者控制系统设计,那么拉普拉斯变换所提供的分析工具就更加适合。
拉普拉斯变换和傅里叶变换

拉普拉斯变换和傅里叶变换一、引言在信号处理和数学分析中,拉普拉斯变换和傅里叶变换是两个非常重要的工具。
它们在不同领域中都有广泛的应用,包括电子工程、通信系统、图像处理和控制系统等等。
本文将对这两个变换进行全面、详细、完整且深入的探讨。
二、拉普拉斯变换2.1 定义拉普拉斯变换是一种数学变换方法,用于将一个函数转换为复平面上的函数。
给定一个函数f(t),其拉普拉斯变换记作F(s),其中s是一个复数。
拉普拉斯变换的定义如下:F(s) = L{f(t)} = ∫[0,∞) f(t) * e^(-st) dt其中,L表示拉普拉斯变换操作符,e是自然对数的底数。
2.2 特点拉普拉斯变换具有以下特点:1.线性性质:L{a f(t) + b g(t)} = a F(s) + b G(s),其中a和b是常数,f(t)和g(t)是函数。
2.平移性质:L{f(t-a)} = e^(-as) * F(s),其中a是常数。
3.时移性质:L{f(t)*e^(at)} = F(s-a),其中a是常数。
4.余弦变换:L{cos(ωt)} = s / (s^2 +ω^2),其中ω是常数。
2.3 应用拉普拉斯变换在许多领域中有广泛的应用,包括电路和信号处理。
它可以用于求解常微分方程和偏微分方程,以及分析线性时不变系统和信号的稳定性。
三、傅里叶变换3.1 定义傅里叶变换是一种数学变换方法,用于将一个函数转换为频域的函数。
给定一个函数f(t),其傅里叶变换记作F(ω),其中ω是一个实数。
傅里叶变换的定义如下:F(ω) = FT{f(t)} = ∫[-∞,+∞) f(t) * e^(-iωt) dt其中,FT表示傅里叶变换操作符,i是虚数单位。
3.2 特点傅里叶变换具有以下特点:1.线性性质:FT{a f(t) + b g(t)} = a F(ω) + b G(ω),其中a和b是常数,f(t)和g(t)是函数。
2.平移性质:FT{f(t-a)} = e^(-iωa) * F(ω),其中a是常数。
傅里叶变换拉普拉斯变换的物理解释及区别

傅里叶变换拉普拉斯变换的物理解释及区别 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN傅里叶变换在物理学、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值分量和频率分量)。
傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。
在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。
傅里叶变换是一种解决问题的方法,一种工具,一种看待问题的角度。
理解的关键是:一个连续的信号可以看作是一个个小信号的叠加,从时域叠加与从频域叠加都可以组成原来的信号,将信号这么分解后有助于处理。
我们原来对一个信号其实是从时间的角度去理解的,不知不觉中,其实是按照时间把信号进行分割,每一部分只是一个时间点对应一个信号值,一个信号是一组这样的分量的叠加。
傅里叶变换后,其实还是个叠加问题,只不过是从频率的角度去叠加,只不过每个小信号是一个时间域上覆盖整个区间的信号,但他确有固定的周期,或者说,给了一个周期,我们就能画出一个整个区间上的分信号,那么给定一组周期值(或频率值),我们就可以画出其对应的曲线,就像给出时域上每一点的信号值一样,不过如果信号是周期的话,频域的更简单,只需要几个甚至一个就可以了,时域则需要整个时间轴上每一点都映射出一个函数值。
傅里叶变换就是将一个信号的时域表示形式映射到一个频域表示形式;逆傅里叶变换恰好相反。
这都是一个信号的不同表示形式。
它的公式会用就可以,当然把证明看懂了更好。
对一个信号做傅里叶变换,可以得到其频域特性,包括幅度和相位两个方面。
幅度是表示这个频率分量的大小,那么相位呢,它有什么物理意义频域的相位与时域的相位有关系吗信号前一段的相位(频域)与后一段的相位的变化是否与信号的频率成正比关系。
说说傅立叶变换和拉普拉斯变换(z变换)

说说傅立叶变换和拉普拉斯变换(z变换)
首先,可以把拉普拉斯变换和z 变换(生成函数)视为一体,两者都是拉普拉斯提出的。
拉普拉斯作为傅立叶的导师,并不认同复立叶提出的复立叶变换,直到拉普拉斯去世,傅立叶才正式发表,直到柯西提出了关于极限的严格收敛条件,傅立叶才放心大胆使用它的理论。
从历史的角度来讲,傅立叶变换出现在拉普拉斯变换之后,从形式上说,他们是类似的,但是出发点是不相同的。
拉普拉斯变换:拉普拉斯变换的基本思想其实是源于函数的幂级数分解。
z变换可以视为是函数幂级数展开的逆运算,也就是已知系数,求原函数,它是一个累加的形式。
当把累加形式变成积分形式,就有了拉普拉斯变换。
这是历史。
在信号处理中,通常是先引入对信号的拉普拉斯变换,然后对此信号采样后再进行拉普拉斯变换,得到z变换。
傅立叶变换:傅立叶变换的基本思想源于正交分解。
如果说Laplace是从幂级数展开的思想发展出来的拉普拉斯变换,那么傅立叶更加有针对性地研究周期信号的三角级数展开(或者说是分解)。
拉普拉斯变换更多的是针对系统的分析和处理,主要是微分方程(差分方程),冲击响应,传递函数,零点极点和频率响应,稳定性分析。
傅立叶变换更多的是针对信号的分析和处理,主要是频谱分析。
拉普拉斯变换与傅里叶变换在信号分析中的应用研究

拉普拉斯变换与傅里叶变换在信号分析中的应用研究信号分析是一门研究信号特性和行为的学科,对于理解和处理各种信号至关重要。
在信号分析中,拉普拉斯变换和傅里叶变换是两个重要的数学工具,它们在信号处理中起到了至关重要的作用。
一、拉普拉斯变换拉普拉斯变换是一种将时域信号转换为复频域信号的数学工具。
通过拉普拉斯变换,我们可以将复杂的时域信号转换为频域中的简单函数,从而更好地分析和处理信号。
在信号分析中,拉普拉斯变换广泛应用于线性时不变系统的频域分析。
通过将时域系统响应函数进行拉普拉斯变换,我们可以获得频域中的传递函数,从而可以更好地理解系统的频率响应和特性。
这对于滤波器设计、系统控制和通信系统设计等方面都具有重要意义。
此外,拉普拉斯变换还可以用于求解微分方程。
通过将微分方程转换为代数方程,我们可以更简洁地求解复杂的微分方程问题。
这在控制系统分析和信号处理中尤为重要,可以帮助我们更好地理解和解决实际问题。
二、傅里叶变换傅里叶变换是一种将时域信号转换为频域信号的数学工具。
通过傅里叶变换,我们可以将信号分解为不同频率的正弦和余弦函数的叠加,从而更好地理解信号的频谱特性。
在信号分析中,傅里叶变换广泛应用于频域分析和滤波器设计。
通过将时域信号进行傅里叶变换,我们可以得到信号的频谱信息,包括频率成分和幅度。
这对于理解信号的频率特性、滤波器设计和频谱分析都非常重要。
傅里叶变换还有一个重要应用是信号压缩。
通过傅里叶变换,我们可以将信号从时域转换为频域,然后只保留部分频率成分,从而实现对信号的压缩。
这在图像和音频压缩中得到了广泛应用,可以减小数据量并提高传输效率。
三、拉普拉斯变换与傅里叶变换的关系拉普拉斯变换和傅里叶变换在信号分析中有着密切的关系。
事实上,拉普拉斯变换可以看作是傅里叶变换在复平面上的推广。
傅里叶变换将时域信号分解为正弦和余弦函数的叠加,而拉普拉斯变换则将时域信号分解为指数函数的叠加。
通过引入复数变量s,拉普拉斯变换可以更全面地描述信号的频域特性,包括幅度、相位和频率响应等。
通俗浅谈傅里叶级数、傅里叶变换、拉普拉斯变换、z变换

通俗浅谈傅里叶级数、傅里叶变换、拉普拉斯变换、z变换中国航天科工集团二院706所宋晓秋一、傅里叶级数(1) 一个周期为2π的函数表示成不同周期的正弦函数、余弦函数之和。
f t=a02+a n cos nt+b n sin nt ∞n=1a n=1πf t cos nt dtπ−π,n=0,1,2,⋯b n=1πf t sin nt dtπ−π,n=1,2,3,⋯(2) 周期为T的函数怎么办?做下变换,令ω=2πTf t=a02+a n cos nωt+b n sin nωt ∞n=1a n=2Tf t cos nωt dtT2−T2,n=0,1,2,⋯b n=2Tf t sin nωt dtT2−T2,n=1,2,3,⋯(3) 时域、频域的概念f t是随时间t变化的函数,它转换成了不同频率(周期的倒数)三角函数的和,即对应成了反映频率特征的a n、b n。
直接分析f t那是时域分析,通过a n、b n分析那是频域分析。
(4) 傅里叶级数的复数表达形式基础知识:复数e ix=cos x+i sin x,可知cos nωt=12e inωt+e−inωtsin nωt=12ie inωt−e−inωt将其代入下式的傅里叶级数(这里ω=2πT)f t=a02+a n cos nωt+b n sin nωt ∞n=1a n=2Tf t cos nωt dtT2−T2,n=0,1,2,⋯b n=2Tf t sin nωt dtT2−T2,n=1,2,3,⋯得到傅里叶级数的复数表达形式f t=F n e inωt∞n=−∞F n=1Tf(t)e−inωt dtT2−T2,n=⋯,−2,−1,0,1,2,⋯同理,直接分析f t那是时域分析,通过F n分析那是频域分析。
记住周期函数的傅里叶级数复数表达形式,由此引出傅里叶变换。
二、傅里叶变换对于非周期函数怎么办?当然是让T→∞了,可以证明此时有f t=F n e inωt∞n=−∞→12πF(iΩ)e iΩt dΩ∞−∞F n T = f (t )e −inωt dt T 2−T 2→ f (t )e −iΩt dt ∞−∞=F (iΩ)直接分析 f t 那是时域分析,通过 F (iΩ)分析那是频域分析。
傅里叶变换与拉普拉斯变换区别演讲稿

这个演讲分为三部分进行展开。
在介绍两者区别之前,首先将给大家带来的是两种变换的背景以及两种变换的给我们带来的便利。
最后进入到正题,两种变换之间的差别。
第一部分两种变换的背景。
首先是傅里叶变换的背景。
这个背景想必大家在高数课,电分课和之前的信号与系统课上已经阅读过了,那么在这里大家可以稍稍再重温一遍。
接下来是拉普拉斯变换的背景。
大家一定没有想到,拉普拉斯变换并不是由拉普拉斯发明的,而是由这为Heaviside先生发明的。
拉普拉斯对这项变换的贡献是进行了严密的数学定义,确定其可行性后进行了推广。
因此这项变换被称为拉普拉斯变换。
说一句额外的话,在准备内容时,我本指望能像傅里叶变换一样,找到有关拉普拉斯变换发展的波澜历史,却因拉普拉斯变换并不是被其发明者命名,所以有关Heaviside先生如何得到这种变换的资料少之又少,而拉普拉斯对其定义的过程相对来说又很枯燥,并没有什么值得记载的故事,因此大家可以从刚刚这段说明中看出拉普拉斯的发展历史只是草草陈述。
这也告诉我们,做事一定要完备,知识一定要渊博,否则发现了什么却忘记对其进行推广,或者知道要去推广却因数学功底不足而无法给出严格定义以及证明,流芳百世的机会也只能拱手让人。
因为现实生活中的信号多为因果信号,因此在此考虑拉普拉斯的现实意义,引入拉普拉斯单边变换。
下述有关拉普拉斯变换的讨论均基于拉普拉斯单边变换。
第二部分两种变换带来的便利。
首先是傅里叶变换带给我们的方便。
求解线性电路有了通法。
面对三角函数信号,以及电容电感这类原件,时域中求解电路状态变得十分困难。
但通过电分的学习,我们掌握了频域解法。
又通过傅里叶变换,我们可以将任何信号变成虚指数或者说三角函数形式,对于线性系统,我们可以依次求解这些三角函数分量作用时的电路状态,再加和。
所以只要是线性系统我们都可以求解!我们能够从一个不随时间变换的空间中观察函数或者信号。
傅里叶就是通往这个世界的大门,把时域信号转换至频域。
傅里叶变换 拉普拉斯变换 z变换

傅里叶变换拉普拉斯变换 z变换主题:傅里叶变换、拉普拉斯变换和z变换引言:在信号与系统领域,傅里叶变换、拉普拉斯变换和z变换是三种重要的数学工具。
它们被广泛应用于信号处理、图像处理、电路分析等领域。
本文将介绍这三种变换的基本概念和应用,并探讨它们之间的关系和特点。
一、傅里叶变换1.1 基本概念傅里叶变换是将一个函数表示为正弦和余弦函数的线性组合。
对于一个函数f(t),其傅里叶变换F(ω)定义如下:F(ω) = ∫[f(t)e^(-jωt)]dt其中,ω是频率,e^(-jωt)表示复指数函数。
1.2 特点和应用傅里叶变换具有如下特点:- 可以将一个信号分解成不同频率的分量,进而进行频谱分析。
- 可以将时域信号转换为频域信号,便于对信号的时频属性进行分析。
- 在信号处理中,傅里叶变换在滤波、频谱分析等方面有着重要的应用。
1.3 傅里叶变换的逆变换傅里叶变换的逆变换可以将频域信号恢复为时域信号。
逆变换的定义如下:f(t) = ∫[F(ω)e^(jωt)]dω二、拉普拉斯变换2.1 基本概念拉普拉斯变换是将一个函数表示为指数衰减函数的线性组合。
对于一个函数f(t),其拉普拉斯变换F(s)定义如下:F(s) = ∫[f(t)e^(-st)]dt其中,s是复数变量,表示频域变量。
2.2 特点和应用拉普拉斯变换具有如下特点:- 可以对连续时间信号进行频域分析,并描述系统的稳定性。
- 可以求解线性时不变系统的微分方程。
- 在控制系统、电路分析等方面有着广泛的应用。
2.3 拉普拉斯变换的逆变换拉普拉斯变换的逆变换可以将频域信号恢复为时域信号。
逆变换的定义如下:f(t) = (1/2πj)∫[F(s)e^(st)]d s,积分路径为垂直于Im(s)轴的线。
三、z变换3.1 基本概念z变换是傅里叶变换和拉普拉斯变换的离散形式,也是一种离散时间信号的频域分析方法。
对于一个离散时间信号f[n],其z变换F(z)定义如下:F(z) = ∑[f[n]z^(-n)]其中,z是复数变量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
傅里叶变换在物理学、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值分量和频率分量)。
傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。
在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。
傅里叶变换是一种解决问题的方法,一种工具,一种看待问题的角度。
理解的关键是:一个连续的信号可以看作是一个个小信号的叠加,从时域叠加与从频域叠加都可以组成原来的信号,将信号这么分解后有助于处理。
我们原来对一个信号其实是从时间的角度去理解的,不知不觉中,其实是按照时间把信号进行分割,每一部分只是一个时间点对应一个信号值,一个信号是一组这样的分量的叠加。
傅里叶变换后,其实还是个叠加问题,只不过是从频率的角度去叠加,只不过每个小信号是一个时间域上覆盖整个区间的信号,但他确有固定的周期,或者说,给了一个周期,我们就能画出一个整个区间上的分信号,那么给定一组周期值(或频率值),我们就可以画出其对应的曲线,就像给出时域上每一点的信号值一样,不过如果信号是周期的话,频域的更简单,只需要几个甚至一个就可以了,时域则需要整个时间轴上每一点都映射出一个函数值。
傅里叶变换就是将一个信号的时域表示形式映射到一个频域表示形式;逆傅里叶变换恰好相反。
这都是一个信号的不同表示形式。
它的公式会用就可以,当然把证明看懂了更好。
对一个信号做傅里叶变换,可以得到其频域特性,包括幅度和相位两个方面。
幅度是表示这个频率分量的大小,那么相位呢,它有什么物理意义频域的相位与时域的相位有关系吗信号前一段的相位(频域)与后一段的相位的变化是否与信号的频率成正比关系。
傅里叶变换就是把一个信号,分解成无数的正弦波(或者余弦波)信号。
也就是说,用无数的正弦波,可以合成任何你所需要的信号。
想一想这个问题:给你很多正弦信号,你怎样才能合成你需要的信号呢答案是要两个条件,一个是每个正弦波的幅度,另一个就是每个正弦波之间的相位差。
所以现在应该明白了吧,频域上的相位,就是每个正弦波之间的相位。
傅里叶变换用于信号的频率域分析,一般我们把电信号描述成时间域的数学模型,而数字信号处理对信号的频率特性更感兴趣,而通过傅立叶变换很容易得到信号的频率域特性。
傅里叶变换简单通俗理解就是把看似杂乱无章的信号考虑成由一定振幅、相位、频率的基本正弦(余弦)信号组合而成,傅里叶变换的目的就是找出这些基本正弦(余弦)信号中振幅较大(能量较高)信号对应的频率,从而找出杂乱无章的信号中的主要振动频率特点。
如减速机故障时,通过傅里叶变换做频谱分析,根据各级齿轮转速、齿数与杂音频谱中振幅大的对比,可以快速判断哪级齿轮损伤。
拉普拉斯变换,是工程数学中常用的一种积分变换。
它是为简化计算而建立的实变量函数和复变量函数间的一种函数变换。
对一个实变量函数作拉普拉斯变换,并在复数域中作各种运算,再将运算结果作拉普拉斯反变换来求得实数域中的相应结果,往往比直接在实数域中求出同样的结果在计算上容易得多。
拉普拉斯变换的这种运算步骤对于求解线性微分方程尤为有效,它可把微分方程化为容易求解的代数方程来处理,从而使计算简化。
在经典控制理论中,对控制系统的分析和综合,都是建立在拉普拉斯变换的基础上的。
引入拉普拉斯变换的一个主要优点,是可采用传递函数代替微分方程来描述系统的特性。
这就为采用直观和简便的图解方法来确定控制系统的整个特性(见信号流程图、动态结构图)、分析控制系统的运动过程(见奈奎斯特稳定判据、根轨迹法),以及综合控制系统的校正装置(见控制系统校正方法)提供了可能性。
拉普拉斯变换在工程学上的应用:应用拉普拉斯变换解常变量齐次微分方程,可以将微分方程化为代数方程,使问题得以解决。
在工程学上,拉普拉斯变换的重大意义在于:将一个信号从时域上,转换为复频域(s 域)上来表示;在线性系统,控制自动化上都有广泛的应用。
回到正题,傅里叶变换虽然好用,而且物理意义明确,但有一个最大的问题是其存在的条件比较苛刻,比如时域内绝对可积的信号才可能存在傅里叶变换。
拉普拉斯变换可以说是推广了这以概念。
在自然界,指数信号exp(-x)是衰减最快的信号之一,对信号乘上指数信号之后,很容易满足绝对可积的条件。
因此将原始信号乘上指数信号之后一般都能满足傅里叶变换的条件,这种变换就是拉普拉斯变换。
这种变换能将微分方程转化为代数方程,在18世纪计算机还远未发明的时候,意义非常重大。
从上面的分析可以看出,傅里叶变换可以看做是拉普拉斯的一种特殊形式,即所乘的指数信号为exp(0)。
也即是说拉普拉斯变换是傅里叶变换的推广,是一种更普遍的表达形式。
在进行信号与系统的分析过程中,可以先得到拉普拉斯变换这种更普遍的结果,然后再得到傅里叶变换这种特殊的结果。
这种由普遍到特殊的解决办法,已经证明在连续信号与系统的分析中能够带来很大的方便2 傅氏变换与拉氏变换的比较研究傅立叶变换与拉普拉斯变换在数学、物理以及工程技术等领域中有着极其广泛的应用。
由(一)可知两种变换的性质有很多相似之处,故两者在求解问题时也会有许多类似。
另外,由于傅氏变换的积分区间为()+∞∞-,,拉氏变换的积分区间为()+∞,0,两者又会在不同的领域中有着各自的应用。
下面我们通过一些具体的例子对两种变换的应用做一些比较研究。
两种积分变换在求解广义积分中的应用傅氏变换与拉氏变换都可以用来求解一些用普通方法难以求解的广义积分,下面举例说明: 求函数1 1()0 t f t ⎧≤⎪=⎨⎪⎩其它的傅里叶积分表达式。
解:由(1-1)式有ωω1ωω1ωωω1()[()]ω21 =[()]ω21 =ω2ω1sin ω =(cos ωt +isin ωt)d ωω1sin ωcos ωt =ωω2sin ωcos ω =ω ,ωi i t i i t i i i t f t f e d e d f e d e d e e e d i d t d ττττπττπππππ+∞+∞--∞-∞+∞--∞--+∞-∞+∞-∞+∞-∞=-⎰⎰⎰⎰⎰⎰⎰0 (t 1)+∞≠±⎰ 当1t =±时,傅里叶积分收敛于(10)(0)122f f ±++±-=,根据以上的结果可以写成0(), t 12sin ωcos ωω= 1ω, t=12f t t d π+∞≠±⎧⎪⎨±⎪⎩⎰ 即 0, 12sin ωcos ωt ω, 1ω40, 1t d t t ππ+∞⎧<⎪⎪⎪==⎨⎪⎪>⎪⎩⎰两种积分变换在求解积分、微分方程中的应用求解积分方程()()()()g t h t f g t d τττ+∞-∞=+-⎰其中(),()h t f t 都是已知的函数,且()g t 、()h t 和()f t 的傅里叶变换都存在。
分析:该积分方程中的积分区间是()+∞∞-,,故首先应考虑用傅里叶积分变换法求解。
积分项内是函数()f t 与()g t 的卷积,对方程两边取傅氏变换,利用卷积性质便可以很方便的求解该问题。
解:设[()](),[()](ω),[()](ω)g t G w f t F h t H ===F F F 由卷积定义可知()()()()f g t d f t g t τττ+∞-∞-=*⎰。
因此对原积分方程两边取傅里叶变换,可得(ω)(ω)(ω)(ω)G H F G =+⋅因此有(ω)(ω)1(ω)H G F =- 由傅里叶逆变换求得原积分方程的解为ωt ωt 1()(ω)ω21(ω) =ω21(ω)i i g t G e d H e d F ππ+∞-∞+∞-∞=-⎰⎰3 总结本文以上内容举例分析了傅里叶变换与拉普拉斯变换在解决问题中的应用,两种变换存在许多相似的地方,也存在一些不同的地方。
从()中我们可以看出,用傅里叶变换在求解问题时,要求所出现的函数必须在(,)-∞+∞内满足绝对可积(()f t +∞-∞<+∞⎰)这个条件。
该条件的限制是非常强的,以致于常见的函数,如常数、多项式以及三角函数等,都不能满足这个条件。
我们按如下方式对傅氏变换进行改造:对于任何函数()f t ,我们假定在0t <时()0f t ≡,联想到指数衰减函数 (0)t e ββ->所具有的特点,那么,只要β足够的大,函数()t f t e β-的傅氏变换就有可能存在,即ω(ω0[()]()()i t βt βt β+i )t F f t e f t e e dt f t e dt -+∞+∞----∞==⎰⎰根据傅氏逆变换得到ω1()[()]ω2βt βt i t f t e F f t e e d π+∞---∞=⎰ 记 ω,()[()]βt s βi F s F f t e -=+=并注意到 ωds id =于是便可得到0()() 1()() 2st βi st βi F s f t e dt f t F s e ds i π+∞-+∞-∞⎧=⎪⎨⎪=⎩⎰⎰ 以上两式便是()中的拉普拉斯变换及其逆变换。
由此可以看出,拉氏变换可以看成是一种特殊的傅里叶变换[7]。
傅氏变换与拉氏变换存在许多类似之处,如文中所述,都能够在解决广义积分、微分积分方程、偏微分方程、电路理论等问题中得到应用。
但是两者之间也存在着差异。
从另一个角度讲,傅氏变换与拉氏变换相对于两种不同的积分变换[20]。
所谓积分变换,就是把某函数类A 中的函数()f x ,乘上一个确定的二元函数(,)K x p ,然后计算积分,即()()(,)ba F p f x K x p dx =⎰ 这样,便变成了另一个函数类B 中的函数()F p ,其中的积分域是确定的。
()F p 称为()f x 的像函数,()f x 称为()F p 的像原函数;(,)K x p 是p 和x 的已知函数,称为积分变换的核,(,)K x p 的不同形式决定着变换的不同名称。
下面我们列表说明两者的不同:两者之间的差异首先表现在积分域上,积分域的不同限制了拉氏变换在某些问题中的应用,在处理问题时首先应考虑到这一点。
两者之间的差异在信号处理中的表现得尤为显著:傅里叶变换将时域函数()f t 变换为频域函数()F ω,时域中的变量t 和频域中的变量ω都是实数且有明确的物理意义;而拉普拉斯变换则是将时域函数()f t 变换为复频域函数()F s 。
这时,时域变量t 虽是实数,但s 却是复数;与ω相比较,变量s 虽称为“复频率”,但其物理意义就不如ω明确。
但是由于常见函数(例如常数、三角函数、多项式等)大多不满足绝对可积的条件,数学上进行处理时要涉及到抽象的广义函数—— 函数[21],故在电路理论中傅氏变换的应用远不如拉氏变换的应用广泛。