(完整版)从头到尾彻底理解傅里叶变换算法
(完整版)从头到尾彻底理解傅里叶变换算法

即将时间域的函数f(t)表示为频率域的函数F(ω)的积分。 一般可称函数f(t)为原函数,而称函数F(ω)为傅里叶变换的像函数,原函数和像函数构成一个傅里叶变换对(transform pair)。 除此之外,还有其它型式的变换对,以下两种型式亦常被使用。在通信或是信号处理方面,常以来代换,而形成新的变换对:
(完整版)从头到尾彻底理解傅里叶变换算法
从头到尾彻底理解傅里叶变换算法、上 从头到尾彻底理解傅里叶变换算法、上 前言 第一部分、DFT 第一章、傅立叶变换的由来 第二章、实数形式离散傅立叶变换(Real DFT) 从头到尾彻底理解傅里叶变换算法、下 第三章、复数 第四章、复数形式离散傅立叶变换 前言: “关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚的文章,太过抽象, 尽是一些让人看了就望而生畏的公式的罗列,让人很难能够从感性上得到理解”---dznlong, 那么,到底什么是傅里叶变换算法列?傅里叶变换所涉及到的公式具体有多复杂列? 傅里叶变换(Fourier transform)是一种线性的积分变换。因其基本思想首先由法国学者傅里叶系统地提出,所以以其名字来 命名以示纪念。 哦,傅里叶变换原来就是一种变换而已,只是这种变换是从时间转换为频率的变化。这下,你就知道了,傅里叶就是一种变 换,一种什么变换列?就是一种从时间到频率的变化或其相互转化。 ok,咱们再来总体了解下傅里叶变换,让各位对其有个总体大概的印象,也顺便看看傅里叶变换所涉及到的公式,究竟有多复 杂: 以下就是傅里叶变换的4种变体(摘自,维基百科) 连续傅里叶变换 一般情况下,若“傅里叶变换”一词不加任何限定语,则指的是“连续傅里叶变换”。连续傅里叶变换将平方可积的函数f(t)表示 成复指数函数的积分或级数形式。
实数傅里叶变换公式

实数傅里叶变换公式实数傅里叶变换公式是数学领域中一个相当重要的概念,不过要讲清楚它,还真得费点心思。
咱先来说说啥是傅里叶变换。
简单来说,傅里叶变换就是把一个复杂的函数,分解成一堆简单的三角函数的组合。
就好比你有一堆乱七八糟的积木,通过傅里叶变换,能把它们整理成一块块规则的、容易理解的小积木。
那实数傅里叶变换公式到底长啥样呢?它一般是这样的:$F(\omega)=\int_{-\infty}^{\infty} f(t) \cos(\omega t) dt$ 。
这里面的$f(t)$就是咱要处理的那个原始函数,$\omega$是角频率,$F(\omega)$就是变换后的结果。
我记得有一次给学生们讲这个的时候,那可真是状况百出。
我在黑板上写了满满一黑板的公式和推导过程,底下的学生们一个个瞪大眼睛,满脸的迷茫。
有个调皮的小家伙甚至小声嘟囔:“老师,这简直比外星人的语言还难懂!”我一听,心里那叫一个着急。
我赶紧停下,想了想,决定换个方式。
我拿起一支笔,在纸上画了一个简单的波浪线,说:“同学们,你们看,这就好比是一个信号,它一会儿高一会儿低。
那我们怎么才能更好地理解它呢?傅里叶变换就像是一个神奇的魔法,能把这个波浪线变成好多小波浪线的组合,每个小波浪线都有自己特定的频率和幅度。
”然后我又举了个例子,比如说咱们听音乐。
一首好听的歌曲,其实就是各种不同频率的声音组合在一起的。
高音、低音,快节奏、慢节奏,通过傅里叶变换,我们就能把这些不同的部分清晰地分辨出来。
经过这么一番解释,学生们好像有点开窍了。
但要真正掌握,还得靠大量的练习和思考。
实数傅里叶变换公式在很多领域都有大用处。
比如说在通信领域,它能帮助我们更好地传输和处理信号;在图像处理中,能让我们更清晰地看到图像的特征。
总之,实数傅里叶变换公式虽然看起来有点复杂,但只要我们耐心琢磨,多联系实际,还是能把它拿下的!就像我们解决生活中的其他难题一样,只要不放弃,总能找到办法。
傅里叶变换公式的意义和理解

傅里叶变换公式的意义和理解一、傅里叶变换的基本概念和原理傅里叶变换是一种将时间域或空间域中的信号转换为频域中的信号的数学方法。
它的基本原理是通过将原始信号分解成一组不同频率的正弦波,从而实现对信号的分析和处理。
傅里叶变换的核心公式为:X(ω) = ∫x(t)e^(-jωt) dt其中,X(ω)表示频域信号,x(t)表示时域信号,ω表示角频率,j表示虚数单位。
二、傅里叶变换的重要性傅里叶变换在信号处理、图像处理、通信等领域具有重要的应用价值。
它有助于我们更好地理解信号的频谱特性,从而为后续的信号处理和分析提供有力的理论依据。
三、傅里叶变换的应用领域1.信号处理:傅里叶变换有助于分析信号的频率成分,如音频信号、图像信号等。
2.图像处理:傅里叶变换可用于图像的频谱分析,如边缘检测、滤波等。
3.通信系统:傅里叶变换在通信系统中广泛应用于信号调制、解调、多路复用等领域。
4.量子力学:傅里叶变换在量子力学中具有重要作用,如描述粒子在晶体中的能级结构等。
四、深入理解傅里叶变换公式1.离散傅里叶变换:离散傅里叶变换是将离散信号从时域转换到频域的一种方法,如快速傅里叶变换(FFT)算法。
2.小波变换:小波变换是傅里叶变换的一种推广,可以实现信号的高频局部化分析,适用于图像压缩、语音处理等领域。
3.分数傅里叶变换:分数傅里叶变换是在傅里叶变换基础上发展的一种数学方法,可以实现信号的相位和幅度分析。
五、总结与展望傅里叶变换作为一种重要的数学工具,在各个领域具有广泛的应用。
随着科技的发展,傅里叶变换及相关理论不断得到拓展和深化,为人类探索复杂信号和系统提供了强大的支持。
(完整word版)傅里叶变换本质及其公式解析

傅里叶变换的本质傅里叶变换的公式为dt et f F tj ⎰+∞∞--=ωω)()(可以把傅里叶变换也成另外一种形式:t j e t f F ωπω),(21)(=可以看出,傅里叶变换的本质是内积,三角函数是完备的正交函数集,不同频率的三角函数的之间的内积为0,只有频率相等的三角函数做内积时,才不为0。
)(2,21)(2121Ω-Ω==⎰Ω-ΩΩΩπδdt e e e t j t j t j下面从公式解释下傅里叶变换的意义 因为傅里叶变换的本质是内积,所以f(t)和tj eω求内积的时候,只有f(t)中频率为ω的分量才会有内积的结果,其余分量的内积为0。
可以理解为f(t)在tj eω上的投影,积分值是时间从负无穷到正无穷的积分,就是把信号每个时间在ω的分量叠加起来,可以理解为f(t)在tj e ω上的投影的叠加,叠加的结果就是频率为ω的分量,也就形成了频谱。
傅里叶逆变换的公式为ωωπωd e F t f tj ⎰+∞∞-=)(21)( 下面从公式分析下傅里叶逆变换的意义傅里叶逆变换就是傅里叶变换的逆过程,在)(ωF 和tj eω-求内积的时候,)(ωF 只有t 时刻的分量内积才会有结果,其余时间分量内积结果为0,同样积分值是频率从负无穷到正无穷的积分,就是把信号在每个频率在t 时刻上的分量叠加起来,叠加的结果就是f(t)在t 时刻的值,这就回到了我们观察信号最初的时域。
对一个信号做傅里叶变换,然后直接做逆变换,这样做是没有意义的,在傅里叶变换和傅里叶逆变换之间有一个滤波的过程。
将不要的频率分量给滤除掉,然后再做逆变换,就得到了想要的信号。
比如信号中掺杂着噪声信号,可以通过滤波器将噪声信号的频率给去除,再做傅里叶逆变换,就得到了没有噪声的信号。
优点:频率的定位很好,通过对信号的频率分辨率很好,可以清晰的得到信号所包含的频率成分,也就是频谱。
缺点:因为频谱是时间从负无穷到正无穷的叠加,所以,知道某一频率,不能判断,该频率的时间定位。
傅里叶变换原理

傅里叶变换原理傅里叶变换是一种非常重要的数学工具,它在信号处理、图像处理、通信系统等领域都有着广泛的应用。
傅里叶变换的原理是将一个信号分解成不同频率的正弦和余弦函数的叠加,从而可以分析信号的频谱特性。
在本文中,我们将详细介绍傅里叶变换的原理及其在实际应用中的重要性。
首先,让我们来了解一下傅里叶变换的数学表达式。
对于一个连续信号 f(t),它的傅里叶变换F(ω) 定义为:F(ω) = ∫f(t)e^(-jωt)dt。
其中,e^(-jωt) 是复指数函数,ω 是频率。
这个公式表示了信号 f(t) 在频域上的表示,也就是说,它将信号 f(t) 转换成了频率域上的复数函数F(ω)。
通过傅里叶变换,我们可以得到信号的频谱信息,从而可以分析信号的频率成分和能量分布。
傅里叶变换的原理可以通过一个简单的例子来说明。
假设我们有一个周期为 T 的正弦信号f(t) = Asin(2πft),其中 A 是振幅,f 是频率。
对这个信号进行傅里叶变换,我们可以得到频谱F(ω)= A/2 (δ(ω-f) δ(ω+f)),其中δ(ω) 是狄拉克δ函数。
这个频谱表示了信号只包含了频率为 f 的正弦成分,而其他频率成分的能量为零。
这样,我们就可以通过傅里叶变换来分析信号的频率特性。
在实际应用中,傅里叶变换有着广泛的应用。
在信号处理中,我们可以通过傅里叶变换来对信号进行滤波、频谱分析等操作。
在图像处理中,傅里叶变换可以用来进行图像的频域滤波、频谱分析等操作。
在通信系统中,傅里叶变换可以用来对调制信号进行频谱分析、信道估计等操作。
可以说,傅里叶变换已经成为了现代科学技术中不可或缺的数学工具。
总之,傅里叶变换是一种非常重要的数学工具,它可以将一个信号从时域转换到频域,从而可以分析信号的频率特性。
通过傅里叶变换,我们可以对信号进行频谱分析、滤波等操作,从而可以更好地理解和处理信号。
傅里叶变换在信号处理、图像处理、通信系统等领域都有着广泛的应用,它已经成为了现代科学技术中不可或缺的数学工具。
详解傅里叶变换公式

详解傅里叶变换公式傅里叶变换(Fourier Transform)是一种将时域信号转换到频域信号的数学方法。
它可以将一个信号分解为不同频率的正弦波之和,从而揭示信号的频率结构。
傅里叶变换在信号处理、图像处理、通信、物理学等领域具有广泛的应用。
首先,我们要理解时域(Time Domain)和频域(Frequency Domain)的概念。
1. 时域:在时域中,信号表示为时间轴上的函数,例如:```f(t) = A * cos(2 * π* t) + B * sin(2 * π* t)```在这个例子中,f(t) 是一个正弦波函数,t 是时间。
2. 频域:在频域中,信号表示为频率轴上的函数,例如:```F(ω) = A * cos(2 * π* ω) + B * sin(2 * π* ω)```在这个例子中,F(ω) 是一个正弦波函数,ω是频率。
傅里叶变换可以将时域信号转换为频域信号,公式如下:```F(ω) = ∫_{-∞}^{∞} f(t) e^(-jωt) dt```其中,F(ω) 是频域信号,ω是频率,t 是时间,j 是虚数单位,e 是自然对数的底数。
傅里叶变换的逆变换公式如下:```f(t) = ∫_{-∞}^{∞} F(ω) e^(jωt) dω```现在,我们来通过一个简单的例子来说明傅里叶变换。
假设我们有一个正弦波信号,如下所示:f(t) = A * sin(2 * π* t) + B * sin(2 * π* t + π/4)```我们可以使用傅里叶变换将其转换为频域信号,如下所示:```F(ω) = A * cos(2 * π* ω) + B * cos(2 * π* ω+ π/2)```通过傅里叶变换,我们可以看到信号中包含的主要频率成分。
例如,在这个例子中,我们可以看到信号主要包含两个频率成分:一个是A = 1,ω= π/2 的正弦波,另一个是B = 1,ω= π/4 的正弦波。
傅里叶变换原理

傅里叶变换原理傅里叶变换是一种将信号从时域转换到频域的数学工具。
它的原理是将一个信号分解成不同频率的正弦和余弦波的叠加,从而得到信号在频域上的表示。
这种变换在信号处理、图像处理、通信系统等领域中得到广泛应用。
在傅里叶变换中,信号可以表示为一个连续的函数,通常用f(t)表示。
这个函数可以是任何类型的信号,例如音频信号、图像信号、电信号等。
傅里叶变换将这个函数分解成不同频率的正弦和余弦波的叠加,这些波的频率从0开始,一直到无穷大。
傅里叶变换的公式如下:F(ω) = ∫f(t)e^(-iωt)dt其中,F(ω)表示信号在频域上的表示,ω表示频率,e^(-iωt)表示一个复数,它的实部是cos(ωt),虚部是sin(ωt)。
这个公式可以理解为将信号f(t)与一个复数e^(-iωt)相乘,然后对整个信号进行积分。
这个积分的结果就是信号在频域上的表示。
傅里叶变换的一个重要应用是信号滤波。
在信号处理中,我们经常需要去除一些噪声或者干扰信号。
这时候可以使用傅里叶变换将信号转换到频域上,然后通过滤波器去除不需要的频率成分,最后再将信号转换回时域。
这个过程被称为频域滤波。
傅里叶变换还可以用于信号压缩。
在图像处理中,我们经常需要将一张高分辨率的图像压缩成低分辨率的图像,以便在网络传输或者存储时节省带宽和存储空间。
这时候可以使用傅里叶变换将图像转换到频域上,然后去除高频成分,最后再将图像转换回时域。
这个过程被称为频域压缩。
傅里叶变换是一种非常重要的数学工具,它可以将信号从时域转换到频域,从而方便我们进行信号处理、图像处理、通信系统等领域的研究和应用。
五种傅里叶变换解析

五种傅里叶变换解析标题:从简到繁:五种傅里叶变换解析引言:傅里叶变换是数学中一种重要且广泛应用于信号处理、图像处理和物理等领域的工具。
它的基本思想是将一个信号或函数表示为若干个不同频率的正弦波的叠加,从而揭示信号或函数的频谱特性。
本文将展示五种常见的傅里叶变换方法,包括离散傅里叶变换(DFT)、快速傅里叶变换(FFT)、连续傅里叶变换(CTFT)、离散时间傅里叶变换(DTFT)和傅里叶级数展开,帮助读者逐步理解傅里叶变换的原理与应用。
第一部分:离散傅里叶变换(DFT)在此部分中,我们将介绍离散傅里叶变换的基本概念和算法。
我们将讨论DFT的离散性质、频域和时域之间的关系,以及如何利用DFT进行频域分析和滤波等应用。
此外,我们还将探讨DFT算法的时间复杂度,以及如何使用DFT来解决实际问题。
第二部分:快速傅里叶变换(FFT)在这一部分中,我们将深入研究快速傅里叶变换算法,并详细介绍其原理和应用。
我们将解释FFT如何通过减少计算量和优化计算过程来提高傅里叶变换的效率。
我们还将讨论FFT算法的时间复杂度和几种不同的FFT变体。
第三部分:连续傅里叶变换(CTFT)本部分将介绍连续傅里叶变换的概念和定义。
我们将讨论CTFT的性质、逆变换和时频分析的应用。
进一步,我们将引入傅里叶变换对信号周期性的描述,以及如何利用CTFT对信号进行频谱分析和滤波。
第四部分:离散时间傅里叶变换(DTFT)在这一章节中,我们将介绍离散时间傅里叶变换的基本原理和应用。
我们将详细讨论DTFT的定义、性质以及与DFT之间的关系。
我们还将探讨DTFT的离散频率响应、滤波和频谱分析的相关内容。
第五部分:傅里叶级数展开最后,我们将深入研究傅里叶级数展开的原理和应用。
我们将解释傅里叶级数展开如何将周期函数分解为多个不同频率的正弦波的叠加。
我们还将讨论傅里叶级数展开的收敛性和逼近性,并探讨如何利用傅里叶级数展开来处理周期信号和周期性问题。
结论:综上所述,本文介绍了五种常见的傅里叶变换方法,包括离散傅里叶变换(DFT)、快速傅里叶变换(FFT)、连续傅里叶变换(CTFT)、离散时间傅里叶变换(DTFT)和傅里叶级数展开。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从头到尾彻底理解傅里叶变换算法、上从头到尾彻底理解傅里叶变换算法、上前言第一部分、DFT第一章、傅立叶变换的由来第二章、实数形式离散傅立叶变换(Real DFT)从头到尾彻底理解傅里叶变换算法、下第三章、复数第四章、复数形式离散傅立叶变换前言:“关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚的文章,太过抽象,尽是一些让人看了就望而生畏的公式的罗列,让人很难能够从感性上得到理解”---dznlong,那么,到底什么是傅里叶变换算法列?傅里叶变换所涉及到的公式具体有多复杂列?傅里叶变换(Fourier transform)是一种线性的积分变换。
因其基本思想首先由法国学者傅里叶系统地提出,所以以其名字来命名以示纪念。
哦,傅里叶变换原来就是一种变换而已,只是这种变换是从时间转换为频率的变化。
这下,你就知道了,傅里叶就是一种变换,一种什么变换列?就是一种从时间到频率的变化或其相互转化。
ok,咱们再来总体了解下傅里叶变换,让各位对其有个总体大概的印象,也顺便看看傅里叶变换所涉及到的公式,究竟有多复杂:以下就是傅里叶变换的4种变体(摘自,维基百科)连续傅里叶变换一般情况下,若“傅里叶变换”一词不加任何限定语,则指的是“连续傅里叶变换”。
连续傅里叶变换将平方可积的函数f(t)表示成复指数函数的积分或级数形式。
这是将频率域的函数F(ω)表示为时间域的函数f(t)的积分形式。
连续傅里叶变换的逆变换(inverse Fourier transform)为:即将时间域的函数f(t)表示为频率域的函数F(ω)的积分。
一般可称函数f(t)为原函数,而称函数F(ω)为傅里叶变换的像函数,原函数和像函数构成一个傅里叶变换对(transform pair)。
除此之外,还有其它型式的变换对,以下两种型式亦常被使用。
在通信或是信号处理方面,常以来代换,而形成新的变换对:或者是因系数重分配而得到新的变换对:一种对连续傅里叶变换的推广称为分数傅里叶变换(Fractional Fourier Transform)。
分数傅里叶变换(fractional Fourier transform,FRFT)指的就是傅里叶变换(Fourier transform,FT)的广义化。
分数傅里叶变换的物理意义即做傅里叶变换a 次,其中a 不一定要为整数;而做了分数傅里叶变换之后,信号或输入函数便会出现在介于时域(time domain)与频域(frequency domain)之间的分数域(fractional domain)。
当f(t)为偶函数(或奇函数)时,其正弦(或余弦)分量将消亡,而可以称这时的变换为余弦变换(cosine transform)或正弦变换(sine transform).另一个值得注意的性质是,当f(t)为纯实函数时,F(−ω) = F*(ω)成立.傅里叶级数连续形式的傅里叶变换其实是傅里叶级数(Fourier series)的推广,因为积分其实是一种极限形式的求和算子而已。
对于周期函数,其傅里叶级数是存在的:其中Fn为复幅度。
对于实值函数,函数的傅里叶级数可以写成:其中an和bn是实频率分量的幅度。
离散时域傅里叶变换离散傅里叶变换是离散时间傅里叶变换(DTFT)的特例(有时作为后者的近似)。
DTFT 在时域上离散,在频域上则是周期的。
DTFT可以被看作是傅里叶级数的逆变换。
离散傅里叶变换离散傅里叶变换(DFT),是连续傅里叶变换在时域和频域上都离散的形式,将时域信号的采样变换为在离散时间傅里叶变换(DTFT)频域的采样。
在形式上,变换两端(时域和频域上)的序列是有限长的,而实际上这两组序列都应当被认为是离散周期信号的主值序列。
即使对有限长的离散信号作DFT,也应当将其看作经过周期延拓成为周期信号再作变换。
在实际应用中通常采用快速傅里叶变换以高效计算DFT。
为了在科学计算和数字信号处理等领域使用计算机进行傅里叶变换,必须将函数xn定义在离散点而非连续域内,且须满足有限性或周期性条件。
这种情况下,使用离散傅里叶变换(DFT),将函数xn表示为下面的求和形式:其中Xk是傅里叶幅度。
直接使用这个公式计算的计算复杂度为O(n*n),而快速傅里叶变换(FFT)可以将复杂度改进为O(n*lgn)。
(后面会具体阐述FFT是如何将复杂度降为O(n*lgn)的。
)计算复杂度的降低以及数字电路计算能力的发展使得DFT成为在信号处理领域十分实用且重要的方法。
下面,比较下上述傅立叶变换的4种变体,如上,容易发现:函数在时(频)域的离散对应于其像函数在频(时)域的周期性。
反之连续则意味着在对应域的信号的非周期性。
也就是说,时间上的离散性对应着频率上的周期性。
同时,注意,离散时间傅里叶变换,时间离散,频率不离散,它在频域依然是连续的。
如果,读到此,你不甚明白,大没关系,不必纠结于以上4种变体,继续往下看,你自会豁然开朗。
(有什么问题,也恳请提出,或者批评指正)ok,本文,接下来,由傅里叶变换入手,后重点阐述离散傅里叶变换、快速傅里叶算法,到最后彻底实现FFT算法,全篇力求通俗易懂、阅读顺畅,教你从头到尾彻底理解傅里叶变换算法。
由于傅里叶变换,也称傅立叶变换,下文所称为傅立叶变换,同一个变换,不同叫法,读者不必感到奇怪。
第一部分、DFT第一章、傅立叶变换的由来要理解傅立叶变换,先得知道傅立叶变换是怎么变换的,当然,也需要一定的高等数学基础,最基本的是级数变换,其中傅立叶级数变换是傅立叶变换的基础公式。
一、傅立叶变换的提出傅立叶是一位法国数学家和物理学家,原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier于1807年在法国科学学会上发表了一篇论文,论文里描述运用正弦曲线来描述温度分布,论文里有个在当时具有争议性的决断:任何连续周期信号都可以由一组适当的正弦曲线组合而成。
当时审查这个论文拉格朗日坚决反对此论文的发表,而后在近50年的时间里,拉格朗日坚持认为傅立叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。
直到拉格朗日死后15年这个论文才被发表出来。
谁是对的呢?拉格朗日是对的:正弦曲线无法组合成一个带有棱角的信号。
但是,我们可以用正弦曲线来非常逼近地表示它,逼近到两种表示方法不存在能量差别,基于此,傅立叶是对的。
为什么我们要用正弦曲线来代替原来的曲线呢?如我们也还可以用方波或三角波来代替呀,分解信号的方法是无穷多的,但分解信号的目的是为了更加简单地处理原来的信号。
用正余弦来表示原信号会更加简单,因为正余弦拥有原信号所不具有的性质:正弦曲线保真度。
一个正余弦曲线信号输入后,输出的仍是正余弦曲线,只有幅度和相位可能发生变化,但是频率和波的形状仍是一样的。
且只有正余弦曲线才拥有这样的性质,正因如此我们才不用方波或三角波来表示。
二、傅立叶变换分类根据原信号的不同类型,我们可以把傅立叶变换分为四种类别:1、非周期性连续信号傅立叶变换(Fourier Transform)2、周期性连续信号傅立叶级数(Fourier Series)3、非周期性离散信号离散时域傅立叶变换(Discrete Time Fourier Transform)4、周期性离散信号离散傅立叶变换(Discrete Fourier Transform)下图是四种原信号图例(从上到下,依次是FT,FS,DTFT,DFT):这四种傅立叶变换都是针对正无穷大和负无穷大的信号,即信号的的长度是无穷大的,我们知道这对于计算机处理来说是不可能的,那么有没有针对长度有限的傅立叶变换呢?没有。
因为正余弦波被定义成从负无穷小到正无穷大,我们无法把一个长度无限的信号组合成长度有限的信号。
面对这种困难,方法是:把长度有限的信号表示成长度无限的信号。
如,可以把信号无限地从左右进行延伸,延伸的部分用零来表示,这样,这个信号就可以被看成是非周期性离散信号,我们可以用到离散时域傅立叶变换(DTFT)的方法。
也可以把信号用复制的方法进行延伸,这样信号就变成了周期性离散信号,这时我们就可以用离散傅立叶变换方法(DFT)进行变换。
本章我们要讲的是离散信号,对于连续信号我们不作讨论,因为计算机只能处理离散的数值信号,我们的最终目的是运用计算机来处理信号的。
但是对于非周期性的信号,我们需要用无穷多不同频率的正弦曲线来表示,这对于计算机来说是不可能实现的。
所以对于离散信号的变换只有离散傅立叶变换(DFT)才能被适用,对于计算机来说只有离散的和有限长度的数据才能被处理,对于其它的变换类型只有在数学演算中才能用到,在计算机面前我们只能用DFT方法,后面我们要理解的也正是DFT方法。
这里要理解的是我们使用周期性的信号目的是为了能够用数学方法来解决问题,至于考虑周期性信号是从哪里得到或怎样得到是无意义的。
每种傅立叶变换都分成实数和复数两种方法,对于实数方法是最好理解的,但是复数方法就相对复杂许多了,需要懂得有关复数的理论知识,不过,如果理解了实数离散傅立叶变换(real DFT),再去理解复数傅立叶变换就更容易了,所以我们先把复数的傅立叶变换放到一边去,先来理解实数傅立叶变换,在后面我们会先讲讲关于复数的基本理论,然后在理解了实数傅立叶变换的基础上再来理解复数傅立叶变换。
还有,这里我们所要说的变换(transform)虽然是数学意义上的变换,但跟函数变换是不同的,函数变换是符合一一映射准则的,对于离散数字信号处理(DSP),有许多的变换:傅立叶变换、拉普拉斯变换、Z变换、希尔伯特变换、离散余弦变换等,这些都扩展了函数变换的定义,允许输入和输出有多种的值,简单地说变换就是把一堆的数据变成另一堆的数据的方法。
三、一个关于实数离散傅立叶变换(Real DFT)的例子先来看一个变换实例,下图是一个原始信号图像:这个信号的长度是16,于是可以把这个信号分解9个余弦波和9个正弦波(一个长度为N的信号可以分解成N/2+1个正余弦信号,这是为什么呢?结合下面的18个正余弦图,我想从计算机处理精度上就不难理解,一个长度为N的信号,最多只能有N/2+1个不同频率,再多的频率就超过了计算机所能所处理的精度范围),如下图:9个余弦信号:9个正弦信号:把以上所有信号相加即可得到原始信号,至于是怎么分别变换出9种不同频率信号的,我们先不急,先看看对于以上的变换结果,在程序中又是该怎么表示的,我们可以看看下面这个示例图:上图中左边表示时域中的信号,右边是频域信号表示方法,从左向右,-->,表示正向转换(Forward DFT),从右向左,<--,表示逆向转换(Inverse DFT),用小写x[]表示信号在每个时间点上的幅度值数组, 用大写X[]表示每种频率的副度值数组(即时间x-->频率X),因为有N/2+1种频率,所以该数组长度为N/2+1,X[]数组又分两种,一种是表示余弦波的不同频率幅度值:Re X[],另一种是表示正弦波的不同频率幅度值:Im X[],Re是实数(Real)的意思,Im是虚数(Imagine)的意思,采用复数的表示方法把正余弦波组合起来进行表示,但这里我们不考虑复数的其它作用,只记住是一种组合方法而已,目的是为了便于表达(在后面我们会知道,复数形式的傅立叶变换长度是N,而不是N/2+1)。