图像傅里叶变换的物理意义
傅立叶变换的物理意义及应用

傅立叶变换的物理意义及应用1. 引言:傅立叶变换的魔力傅立叶变换,听上去是不是有点神秘?但别担心,它其实是一个非常实用的工具,能帮我们解决许多问题。
简单来说,傅立叶变换就像是一个神奇的魔术师,把复杂的信号分解成简单的成分。
有没有感觉它有点像在复杂的拼图中找出每一块的颜色和形状?接下来,我们就一起深入了解一下它的物理意义和应用吧!2. 傅立叶变换的物理意义2.1 频域与时域傅立叶变换的核心概念是“频域”与“时域”。
大家平时听到的音乐信号,其实是时间上的波动。
傅立叶变换的魔法就在于,它能把这些时间上的波动转换到频率上来,揭示出信号的频率成分。
就像在调音台上调整每一个音频频率,傅立叶变换帮助我们了解每一个频率的贡献。
形象点说,时域就是你在听音乐时的体验,而频域就是音乐背后的秘密。
2.2 频率的分解傅立叶变换就像一个聪明的侦探,能够把一个复杂的信号拆解成不同的频率成分。
比如,当你听到一首复杂的音乐,它其实是由很多不同频率的声音组成的。
傅立叶变换就能帮你识别出每一个频率,弄清楚它们是如何组合在一起的。
这样的分析在声音处理、图像处理等领域中都非常重要。
3. 傅立叶变换的实际应用3.1 音频处理傅立叶变换在音频处理中的应用可是大有来头。
比如在音乐制作中,制作人可以用它来分解和重构声音信号。
这就像把一首歌分解成各种乐器的声音,再把这些声音重新组合起来。
也就是在调音时,傅立叶变换帮我们“听”到那些我们平时听不到的细节。
3.2 图像处理在图像处理领域,傅立叶变换也是大显身手。
你是否曾经使用过一些滤镜来美化照片?这些滤镜背后的秘密就是傅立叶变换。
通过对图像进行傅立叶变换,我们可以处理图像的各种频率成分,达到降噪、锐化等效果。
简单来说,就是通过分析图像中的频率信息,提升了图像的清晰度。
3.3 信号分析傅立叶变换在信号分析中也有广泛应用。
比如在通信领域,傅立叶变换可以帮助分析和优化信号传输。
通过把信号分解成不同的频率成分,我们可以更好地识别和处理信号中的各种干扰,确保信息能够清晰地传递到接收端。
【数字图像处理】傅里叶变换在图像处理中的应用

【数字图像处理】傅⾥叶变换在图像处理中的应⽤1.理解⼆维傅⾥叶变换的定义1.1⼆维傅⾥叶变换1.2⼆维离散傅⾥叶变换1.3⽤FFT计算⼆维离散傅⾥叶变换1.3图像傅⾥叶变换的物理意义2.⼆维傅⾥叶变换有哪些性质?2.1⼆维离散傅⾥叶变换的性质2.2⼆维离散傅⾥叶变换图像性质3.任给⼀幅图像,对其进⾏⼆维傅⾥叶变换和逆变换4.附录 94.1matlab代码4.2参考⽂献⽬录1.理解⼆维傅⾥叶变换的定义1.1⼆维傅⾥叶变换⼆维Fourier变换:逆变换:1.2⼆维离散傅⾥叶变换⼀个图像尺⼨为M×N的函数的离散傅⾥叶变换由以下等式给出:其中和。
其中变量u和v⽤于确定它们的频率,频域系统是由所张成的坐标系,其中和⽤做(频率)变量。
空间域是由f(x,y)所张成的坐标系。
可以得到频谱系统在频谱图四⾓处沿和⽅向的频谱分量均为0。
离散傅⾥叶逆变换由下式给出:令R和I分别表⽰F的实部和需部,则傅⾥叶频谱,相位⾓,功率谱(幅度)定义如下:1.3⽤FFT计算⼆维离散傅⾥叶变换⼆维离散傅⾥叶变换的定义为:⼆维离散傅⾥叶变换可通过两次⼀维离散傅⾥叶变换来实现:1)作⼀维N点DFT(对每个m做⼀次,共M次)2)作M点的DFT(对每个k做⼀次,共N次)这两次离散傅⾥叶变换都可以⽤快速算法求得,若M和N都是2的幂,则可使⽤基⼆FFT算法,所需要乘法次数为⽽直接计算⼆维离散傅⾥叶变换所需的乘法次数为(M+N)MN,当M和N⽐较⼤时⽤⽤FFT运算,可节约很多运算量。
1.3图像傅⾥叶变换的物理意义图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平⾯空间上的梯度。
如:⼤⾯积的沙漠在图像中是⼀⽚灰度变化缓慢的区域,对应的频率值很低;⽽对于地表属性变换剧烈的边缘区域在图像中是⼀⽚灰度变化剧烈的区域,对应的频率值较⾼。
傅⾥叶变换在实际中有⾮常明显的物理意义,设f是⼀个能量有限的模拟信号,则其傅⾥叶变换就表⽰f的频谱。
从纯粹的数学意义上看,傅⾥叶变换是将⼀个函数转换为⼀系列周期函数来处理的。
FFT结果的物理意义

傅立叶变换的物理意义(转)1、为什么要进行傅里叶变换,其物理意义是什么?傅立叶变换是数字信号处理领域一种很重要的算法。
要知道傅立叶变换算法的意义,首先要了解傅立叶原理的意义。
傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。
而根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。
和傅立叶变换算法对应的是反傅立叶变换算法。
该反变换从本质上说也是一种累加处理,这样就可以将单独改变的正弦波信号转换成一个信号。
因此,可以说,傅立叶变换将原来难以处理的时域信号转换成了易于分析的频域信号(信号的频谱),可以利用一些工具对这些频域信号进行处理、加工。
最后还可以利用傅立叶反变换将这些频域信号转换成时域信号。
从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换。
它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。
在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。
在数学领域,尽管最初傅立叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。
"任意"的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类:1. 傅立叶变换是线性算子,若赋予适当的范数,它还是酉算子;2. 傅立叶变换的逆变换容易求出,而且形式与正变换非常类似;3. 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段; 5. 离散形式的傅立叶的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取;4. 著名的卷积定理指出:傅立叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段,离散形式的傅里叶变换可以利用数字计算机快速的算出(其算法称为快速傅立叶变换算法(FFT))。
傅里叶变换的物理意义

傅里叶变换的物理意义傅里叶变换是数学中最著名的变换之一,在物理、无线电、信号处理等学科中都有广泛应用。
物理意义上来说,傅里叶变换是一种将时域函数转化为频域函数的技术,可以更加方便地对于复杂的波形进行分析和处理。
一般情况下,如果我们想要表达一个事件,就需要函数来描述它,称为时域函数。
但是这些函数中存在着很复杂的信号,根据它们的特征我们可以把它们分成不同的频率成分。
这个任务可以很容易地完成,只需要把时域函数作为输入,然后使用傅里叶变换。
傅里叶变换就是一种将时域函数转换成频域函数的工具,可以将时域函数分解成不同的频率成分。
同时,傅里叶变换也可以反过来,把频域函数转换回时域函数,这就是所谓的逆变换。
因此,傅里叶变换可以实现从时域到频域的信息的转换,也可以从频域到时域的信息的转换。
这种单向变换有助于我们更加容易地理解时域函数,也可以帮助我们分析频率成分。
傅里叶变换在传输信号与信号处理方面有着重要的应用,如在数据通讯和线性系统中,傅里叶变换可以帮助我们实现模拟信号与数字信号之间的转换,从而实现迅速准确的信号处理。
同时,傅里叶变换也可以使我们更好地理解波形的频率成分,这样就可以更准确地处理和测量信号。
此外,傅里叶变换也在信号压缩技术中发挥了重要作用。
傅里叶变换可以把信号分割为不同频率成分,这些成分中可能存在很多冗余成分,可以利用傅里叶变换将这些冗余成分去掉,从而实现信号压缩,从而节省空间和费用。
总之,傅里叶变换的物理意义是将时域函数转换为频域函数,利用傅里叶变换我们可以很容易地提取复杂信号的特征,并利用傅里叶变换实现信号压缩,从而在物理、无线电、信号处理等学科中都有广泛应用。
因此,我们可以断定傅里叶变换是解决众多物理问题的重要工具之一。
图像处理中的傅里叶变换

FFT是DFT的一种高效实现,它广 泛应用于信号处理、图像处理等 领域。
频域和时域的关系
频域
频域是描述信号频率特性的区域,通过傅里叶变换可以将 时域信号转换为频域信号。在频域中,信号的频率成分可 以被分析和处理。
时域
时域是描述信号时间变化的区域,即信号随时间的变化情 况。在时域中,信号的幅度和时间信息可以被分析和处理。
其中n和k都是整数。
计算公式
X(k) = ∑_{n=0}^{N-1} x(n) * W_N^k * n,其中W_N=exp(-
2πi/N)是N次单位根。
性质
DFT是可逆的,即可以通过DFT 的反变换将频域信号转换回时域
信号。
快速傅里叶变换(FFT)
定义
快速傅里叶变换(FFT)是一种高 效计算DFT的算法,它可以将DFT 的计算复杂度从O(N^2)降低到 O(NlogN)。
通过傅里叶变换,我们可以方便地实现图像的滤波操作,去除噪声或突出某些特 征。同时,傅里叶变换还可以用于图像压缩,通过去除高频成分来减小图像数据 量。此外,傅里叶变换还可以用于图像增强和图像识别,提高图像质量和识别准 确率。
PART 02
傅里叶变换的基本原理
离散傅里叶变换(DFT)
定义
离散傅里叶变换(DFT)是一种 将时域信号转换为频域信号的方 法。它将一个有限长度的离散信 号x(n)转换为一个复数序列X(k),
傅里叶变换的物理意义是将图像中的每个像素点的灰度值表 示为一系列正弦波和余弦波的叠加。这些正弦波和余弦波的 频率和幅度可以通过傅里叶变换得到。
通过傅里叶变换,我们可以将图像中的边缘、纹理等高频成 分和背景、平滑区域等低频成分分离出来,从而更好地理解 和处理图像。
傅立叶变换的原理、意义和应用

傅立叶变换的原理、意义和应用傅立叶变换的原理、意义和应用1概念:编辑傅里叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。
许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅里叶变换用正弦波作为信号的成分。
参考《数字信号处理》杨毅明著p.89,机械工业出版社2012年发行。
定义f(t)是t的周期函数,如果t满足狄里赫莱条件:在一个周期内具有有限个间断点,且在这些间断点上,函数是有限值;在一个周期内具有有限个极值点;绝对可积。
则有下图①式成立。
称为积分运算f(t)的傅里叶变换,②式的积分运算叫做F(ω)的傅里叶逆变换。
F(ω)叫做f(t)的像函数,f(t)叫做F(ω)的像原函数。
F(ω)是f(t)的像。
f(t)是F(ω)原像。
①傅里叶变换②傅里叶逆变换中文译名Fourier transform或Transformée de Fourier有多个中文译名,常见的有“傅里叶变换”、“付立叶变换”、“傅立叶转换”、“傅氏转换”、“傅氏变换”、等等。
为方便起见,本文统一写作“傅里叶变换”。
应用傅里叶变换在物理学、电子类学科、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值谱——显示与频率对应的幅值大小)。
相关* 傅里叶变换属于谐波分析。
* 傅里叶变换的逆变换容易求出,而且形式与正变换非常类似;* 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取;*卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;* 离散形式的傅立叶变换可以利用数字计算机快速地算出(其算法称为快速傅里叶变换算法(FFT)).[1]2性质编辑线性性质傅里叶变换的线性,是指两函数的线性组合的傅里叶变换,等于这两个函数分别做傅里叶变换后再进行线性组合的结果。
FFT结果的物理意义

FFT结果的物理意义傅里叶变换的结果称为傅里叶谱(Fourier Spectrum)或频谱。
频谱展示了信号在不同频率上的强度分布情况,可以提供有关信号的许多重要信息,如频率成分、周期性、谐波分布等。
傅里叶谱的物理意义可以从以下几个方面来解释。
1.频率成分分析:信号经过傅里叶变换后,可以得到频谱,即信号在不同频率上的能量分布情况。
频谱图展示了信号中存在的基频和谐波成分的强度。
傅里叶变换可以帮助研究者分析信号中存在的频率成分,如声音中的音高、光信号中的颜色成分等。
2.能量分布分析:傅里叶谱可以展示信号在不同频率上的能量分布情况,通过分析信号的能量分布,可以了解信号在不同频率区间上的重要程度。
例如,在音频信号处理中,低频区域通常表示基频,高频区域表示谐波成分。
通过分析傅里叶谱,可以确定信号的能量主要分布在哪些频率上,从而对信号进行分类、滤波或降噪处理。
3.周期性分析:通过傅里叶变换,可以将周期性信号转换为频域上的离散频率线谱图。
线谱图中每个频率分量的强度代表了对应频率的贡献。
通过频谱分析,可以确定信号的频率和周期,并进一步分析信号的周期性特征。
4.滤波和降噪处理:傅里叶变换在滤波和降噪处理中也有重要作用。
通过观察频谱图,可以确定信号中存在的噪声成分,并在频域上删除或削弱这些成分。
滤波器可以根据信号在频谱中的分布选择,如低通滤波器、高通滤波器等。
利用傅里叶变换进行滤波和降噪处理,可以有效去除信号中的干扰和噪声。
5.编码和解码:傅里叶变换也用于信号的编码和解码。
通过将信号转换到频域上,可以用频谱图中的频率和振幅作为编码信息。
在信号传输和存储过程中,对信号进行压缩和解压缩时,常常利用傅里叶变换来进行频率编码和解码,以减小数据量并提高传输效率。
总之,傅里叶变换的物理意义主要体现在分析信号的频率成分、能量分布情况、周期性特征、滤波降噪处理和信号编码解码等方面。
通过傅里叶变换,我们可以更全面地理解信号的性质和特征,为信号处理和通信领域的研究和应用提供有力的数学工具。
图像傅立叶变换的原理和物理意义

图像的傅立叶变换,原始图像由N行N列构成,N必须是基2的,把这个N*N个包含图像的点称为实部,另外还需要N*N个点称为虚部,因为FFT是基于复数的,如下图所示:(//实数DFT将时域内的N个点变换为频域中两组各N/2+1个点(分别对应实部和虚部))计算图像傅立叶变换的过程很简单:首先对每一行做一维FFT,然后对每一列做一维FFT。
具体来说,先对第0行的N个点做FFT(实部有值,虚部为0),将FFT输出的实部放回原来第0行的实部,FFT输出的虚部放回第0行的虚部,这样计算完全部行之后,图像的实部和虚部包含的是中间数据,然后用相同的办法进行列方向上的FFT变换,这样N*N 的图像经过FFT得到一个N*N的频谱。
下面展示了一副图像的二维FFT变换:频域中可以包含负值,图像中灰色表示0,黑色表示负值,白色表示正值。
可以看到4个角上的黑色更黑,白色更白,表示其幅度更大,其实4个角上的系数表示的是图像的低频组成部分,而中心则是图像的高频组成部分。
除此以外,FFT的系数显得杂乱无章,基本看不出什么。
将上述直角坐标转换为极坐标的形式,稍微比较容易理解一点,幅度中4个角上白色的区域表示幅度较大,而相位中高频和低频基本看不出什么区别来。
上述以一种不同的方法展示了图像频谱,它将低频部分平移到了频谱的中心(//MATLAB中实现函数fftshift)。
这个其实很好理解,因为经2D-FFT的信号是离散图像,其2D-FFT的输出就是周期信号,也就是将前面一张图周期性平铺,取了一张以低频为中心的图。
将原点放在中心有很多好处,比如更加直观更符合周期性的原理,但在这节中还是以未平移之前的图来解释。
行N/2和列N/2将频域分成四块。
对实部和幅度来说,右上角和左下角成镜像关系,左上角和右下角也是镜像关系;对虚部和相位来说,也是类似的,只是符号要取反(//共轭?),这种对称性和1维傅立叶变换是类似的,你可以往前看看。
为简单起见,先考虑4*4的像素,右边是其灰度值,对这些灰度值进行2维fft变换。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
傅里叶变换在图像处理中的作用
图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。
如:大面积的沙漠在图像中是一片灰度变化缓慢的区域,对应的频率值很低;而对于地表属性变换剧烈的边缘区域在图像中是一片灰度变化剧烈的区域,对应的频率值较高。
傅立叶变换在实际中有非常明显的物理意义,设f是一个能量有限的模拟信号,则其傅立叶变换就表示f的谱。
从纯粹的数学意义上看,傅立叶变换是将一个函数转换为一系列周期函数来处理的。
从物理效果看,傅立叶变换是将图像从空间域转换到频率域,其逆变换是将图像从频率域转换到空间域。
换句话说,傅立叶变换的物理意义是将图像的灰度分布函数变换为图像的频率分布函数,傅立叶逆变换是将图像的频率分布函数变换为灰度分布函数
傅立叶变换以前,图像(未压缩的位图)是由对在连续空间(现实空间)上的采样得到一系列点的集合,我们习惯用一个二维矩阵表示空间上各点,则图像可由z=f(x,y)来表示。
由于空间是三维的,图像是二维的,因此空间中物体在另一个维度上的关系就由梯度来表示,这样我们可以通过观察图像得知物体在三维空间中的对应关系。
为什么要提梯度?因为实际上对图像进行二维傅立叶变换得到频谱图,就是图像梯度的分布图,当然频谱图上的各点与图像上各点并不存在一一对应的关系,即使在不移频的情况下也是没有。
傅立叶频谱图上我们看到的明暗不一的亮点,实际上图像上某一点与邻域点差异的强弱,即梯度的大小,也即该点的频率的大小(可以这么理解,图像中的低频部分指低梯度的点,高频部分相反)。
一般来讲,梯度大则该点的亮度强,否则该点亮度弱。
这样通过观察傅立叶变换后的频谱图,也叫功率图,我们首先就可以看出,图像的能量分布,如果频谱图中暗的点数更多,那么实际图像是比较柔和的(因为各点与邻域差异都不大,梯度相对较小),反之,如果频谱图中亮的点数多,那么实际图像一定是尖锐的,边界分明且边界两边像素差异较大的。
对频谱移频到原点以后,可以看出图像的频率分布是以原点为圆心,对称分布的。
将频谱移频到圆心除了可以清晰地看出图像频率分布以外,还有一个好处,它可以分离出有周期性规律的干扰信号,比如正弦干扰,一副带有正弦干扰,移频到原点的频谱图上可以看出除了中心以外还存在以某一点为中心,对称分布的亮点集合,这个集合就是干扰噪音产生的,这时可以很直观的通过在该位置放置带阻滤波器消除干扰
注:
1、图像经过二维傅立叶变换后,其变换系数矩阵表明:
若变换矩阵Fn原点设在中心,其频谱能量集中分布在变换系数短阵的中心附近(图中阴影区)。
若所用的二维傅立叶变换矩阵Fn的原点设在左上角,那么图像信号能量将集中在系数矩阵的四个角上。
这是由二维傅立叶变换本身性质决定的。
同时也表明一股图像能量集中低频区域。
2 、变换之后的图像在原点平移之前四角是低频,最亮,平移之后中间部分是低频,最亮,亮度大说明低频的能量大(幅角比较大)
傅立叶变换在图像处理中有非常非常的作用。
因为不仅傅立叶分析涉及图像处理的很多方面,傅立叶的改进算法,
比如离散余弦变换,gabor与小波在图像处理中也有重要的分量。
印象中,傅立叶变换在图像处理以下几个话题都有重要作用:
1.图像增强与图像去噪
绝大部分噪音都是图像的高频分量,通过低通滤波器来滤除高频——噪声; 边缘也是图像的高频分量,可以通过添加高频分量来增强原始图像的边缘;
2.图像分割之边缘检测
提取图像高频分量
3.图像特征提取:
形状特征:傅里叶描述子
纹理特征:直接通过傅里叶系数来计算纹理特征
其他特征:将提取的特征值进行傅里叶变换来使特征具有平移、伸缩、旋转不变性
4.图像压缩
可以直接通过傅里叶系数来压缩数据;常用的离散余弦变换是傅立叶变换的实变换;
傅立叶变换
傅里叶变换是将时域信号分解为不同频率的正弦信号或余弦函数叠加之和。
连续情况下要求原始信号在一个周期内满足绝对可积条件。
离散情况下,傅里叶变换一定存在。
冈萨雷斯版<图像处理>里面的解释非常形象:一个恰当的比喻是将傅里叶变换比作一个玻璃棱镜。
棱镜是可以将光分解为不同颜色的物理仪器,每个成分的颜色由波长(或频率)来决定。
傅里叶变换可以看作是数学上的棱镜,将函数基于频率分解为不同的成分。
当我们考虑光时,讨论它的光谱或频率谱。
同样,傅立叶变换使我们能通过频率成分来分析一个函数。
傅立叶变换有很多优良的性质。
比如线性,对称性(可以用在计算信号的傅里叶变换里面);
时移性:函数在时域中的时移,对应于其在频率域中附加产生的相移,而幅度频谱则保持不变;
频移性:函数在时域中乘以e^jwt,可以使整个频谱搬移w。
这个也叫调制定理,通讯里面信号的频分复用需要用到这个特性(将不同的信号调制到不同的频段上同时传输);
卷积定理:时域卷积等于频域乘积;时域乘积等于频域卷积(附加一个系数)。
(图像处理里面这个是个重点)
信号在频率域的表现
在频域中,频率越大说明原始信号变化速度越快;频率越小说明原始信号越平缓。
当频率为0时,表示直流信号,没有变化。
因此,频率的大小反应了信号的变化快慢。
高频分量解释信号的突变部分,而低频分量决定信号的整体形象。
在图像处理中,频域反应了图像在空域灰度变化剧烈程度,也就是图像灰度的变化速度,也就是图像的梯度大小。
对图像而言,图像的边缘部分是突变部分,变化较快,因此反应在频域上是高频分量;图像的噪声大部分情况下是高频部分;图像平缓变化部分则为低频分量。
也就是说,傅立叶变换提供另外一个角度来观察图像,可以将图像从灰度分布转化到频率分布上来观察图像的特征。
书面一点说就是,傅里叶变换提供了一条从空域到频率自由转换的途径。
对图像处理而言,以下概念非常的重要:
图像高频分量:图像突变部分;在某些情况下指图像边缘信息,某些情况下指噪声,更多是两者的混合;
低频分量:图像变化平缓的部分,也就是图像轮廓信息
高通滤波器:让图像使低频分量抑制,高频分量通过
低通滤波器:与高通相反,让图像使高频分量抑制,低频分量通过
带通滤波器:使图像在某一部分的频率信息通过,其他过低或过高都抑制
还有个带阻滤波器,是带通的反。
模板运算与卷积定理
在时域内做模板运算,实际上就是对图像进行卷积。
模板运算是图像处理一个很重要的处理过程,很多图像处理过程,比如增强/去噪(这两个分不清楚),边缘检测中普遍用到。
根据卷积定理,时域卷积等价与频域乘积。
因此,在时域内对图像做模板运算就等效于在频域内对图像做滤波处理。
比如说一个均值模板,其频域响应为一个低通滤波器;在时域内对图像作均值滤波就等效于在频域内对图像用均值模板的频域响应对图像的频域响应作一个低通滤波。
图像去噪
图像去噪就是压制图像的噪音部分。
因此,如果噪音是高频额,从频域的角度来看,就是需要用一个低通滤波器对图像进行处理。
通过低通滤波器可以抑制图像的高频分量。
但是这种情况下常常会造成边缘信息的抑制。
常见的去噪模板有均值模板,高斯模板等。
这两种滤波器都是在局部区域抑制图像的高频分量,模糊图像边缘的同时也抑制了噪声。
还有一种非线性滤波-中值滤波器。
中值滤波器对脉冲型噪声有很好的去掉。
因为脉冲点都是突变的点,排序以后输出中值,那么那些最大点和最小点就可以去掉了。
中值滤波对高斯噪音效果较差。
椒盐噪声:对于椒盐采用中值滤波可以很好的去除。
用均值也可以取得一定的效果,但是会引起边缘的模糊。
高斯白噪声:白噪音在整个频域的都有分布,好像比较困难。
冈萨雷斯版图像处理P185:算术均值滤波器和几何均值滤波器(尤其是后者)更适合于处理高斯或者均匀的随机噪声。
谐波均值滤波器更适合于处理脉冲噪声。
图像增强
有时候感觉图像增强与图像去噪是一对矛盾的过程,图像增强经常是需要增强图像的边缘,以获得更好的显示效果,这就需要增加图像的高频分量。
而图像去噪是为了消除图像的噪音,也就是需要抑制高频分量。
有时候这两个又是指类似的事情。
比如说,消除噪音的同时图像的显示效果显著的提升了,那么,这时候就是同样的意思了。
常见的图像增强方法有对比度拉伸,直方图均衡化,图像锐化等。
前面两个是在空域进行基于像素点的变换,后面一个是在频域处理。
我理解的锐化就是直接在图像上加上图像高通滤波后的分量,也就是图像的边缘效果。
对比度拉伸和直方图均衡化都是为了提高图像的对比度,也就是使图像看起来差异更明显一些,我想,经过这样的处理以后,图像也应该增强了图像的高频分量,使得图像的细节上差异更大。
同时也引入了一些噪音。