重庆市中考数学应用题附答案

合集下载

重庆中考数学22题应用题练习

重庆中考数学22题应用题练习

1.1.低碳生活的理念已逐步被人们接受低碳生活的理念已逐步被人们接受低碳生活的理念已逐步被人们接受..剧相关资料统计:一个人平均一年节约的用电,相当于减排二氧化碳约18kg 18kg;一个人平均一年少买;一个人平均一年少买的衣服,相当于减排二氧化碳约6kg.6kg.甲、乙两校分别对本校师生提出“节约用电”甲、乙两校分别对本校师生提出“节约用电”、“少买衣服”的倡议“少买衣服”的倡议.2010.2010年两校响应本校倡议的人数共60人,因此而减排二氧化碳总量为600kg.(1)2010年两校响应本校倡议的人数分别为多少人?(2)2010年到2012年,甲校响应本校倡议的人数每年增加相同的数量,乙校响应本校倡议的人数每年按相同的百分比增长.2011年乙校响应本校倡议的人数是甲校响应本校倡议人数的2倍,2012年两校响应本校倡议的总人数比2011年两校响应本校倡议的总人数多100人.求2012年两校响应本校倡议减排二氧化碳的总量年两校响应本校倡议减排二氧化碳的总量. .2.2.为了倡导节能低碳生活,某工厂对集体宿舍用电收费作了如下规定:一间宿舍一个月用电量不超过为了倡导节能低碳生活,某工厂对集体宿舍用电收费作了如下规定:一间宿舍一个月用电量不超过a 千瓦时,则一个月的电费为20元;若超过a 千瓦时,则除了交20元外,超过部分每千瓦时要交100a 元.某宿舍3月份用电80千瓦时,交电费35元;元;44月份用电45千瓦时,交电费20元.(1)求a 的值;的值;(2)若该宿舍5月份交电费45元,那么该宿舍当月用电量为多少千瓦时?3.3.“六一”“六一”“六一”儿童节前,儿童节前,儿童节前,某玩具商店根据市场调查,某玩具商店根据市场调查,某玩具商店根据市场调查,用用2500元购进一批儿童玩具,元购进一批儿童玩具,上市后很快脱销,上市后很快脱销,上市后很快脱销,接着又用接着又用4500元购进第二批这种玩具,所购数量是第一批数量的1.5倍,但每套进价多了10元.(1)第一批玩具每套的进价为多少元?(2)如果这两批玩具每套售价都相同,且全部售完后总利润不低于25%25%,那么每套售价至少是多少元?,那么每套售价至少是多少元?4.4.随着人们经济收入的不断提高及汽车产业的快速发展,汽车已越来越多地进入普通家庭随着人们经济收入的不断提高及汽车产业的快速发展,汽车已越来越多地进入普通家庭.据某市交通部门统计,据某市交通部门统计,20102010年底该市汽车拥有量为75万辆,而截止到2012年底,该市的汽车拥有量已达到108万辆万辆. .(1)求2010年底至2012年底该市汽车拥有量的年平均增长率;(2)为了保护城市环境,缓解汽车拥堵状况,该市交通部门拟控制汽车总量,要求到2014年底全市汽车总量不超过125.48万辆;另据统计,从2013年初起,该市以后每年报废的汽车数量是上年底汽车拥有量的10%10%,假设每年新增汽车数量相同,请你估算出该市从,假设每年新增汽车数量相同,请你估算出该市从2013年出起每年新增汽车数量最多不超过多少万辆年出起每年新增汽车数量最多不超过多少万辆. .5.5.一家蔬菜公司收购到某种绿色蔬菜一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行吨,但两种加工不能同时进行..受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完这批蔬菜全部加工后销售完. .(1)如果要求12天刚好加工完140吨蔬菜,则公司应该安排几天精加工,几天粗加工?几天粗加工?(2)如果先进行精加工,然后进行粗加工)如果先进行精加工,然后进行粗加工. .① 试求出销售利润试求出销售利润W 元与精加工的蔬菜吨数m 之间的函数关系式;之间的函数关系式;② 若要求在不超过若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?6.6.为创建和谐社会,为民办实事,市政府决定为创建和谐社会,为民办实事,市政府决定2012年投入10000万元用于改善医疗卫生服务,比2011年增加了2000万元万元..投入资金的服务对象包括“需方”(患者等)和“供方”(医疗卫生机构等),2012年投入“需方”的资金将比2011年提高30%30%,投入“供方”的资金将,投入“供方”的资金将比2011年提高20%.(1)该市政府2011年投入改善医疗卫生服务的资金是多少万元?(2)该市政府2012年投入“需方”和“供方”的资金各多少万元?(3)该市政府预计2013年将有12500投入改善医疗卫生服务,若从2011~2013年每年的资金投入按相同的增长率递增,求2011~2013年的年增长率的年增长率. .7.7.随着经济的发展,小张所在的公司每年都在元月一次性的提高员工当年的月工资随着经济的发展,小张所在的公司每年都在元月一次性的提高员工当年的月工资.小张2010年的月工资为2000元,在2012年时他的月工资增加到2420元,他2013年的月工资按2010到2012年的月工资的平均增长率继续增长年的月工资的平均增长率继续增长. .(1)小张2013年的月工资为多少?年的月工资为多少?(2)小张看了甲、乙两种工具书的单价,认为用自己2013年6月份的工资刚好购买若干本甲种工具书和一些乙种工具书,当他拿着他选定的这些工具书去付款时,发现自己计算书款时把这两种工具书的单价弄兑换了,故实际付款比2013年6月份的月工资少了242元,于是他用着242元又购买了甲、乙两种工具书各一本,并把购买的这两种工具书全部捐献给了山区的学校.请问,小张一共捐献了多少本工具书?具书?8.8.有一批图形计算器,原售价为每台有一批图形计算器,原售价为每台800元,在甲、乙两家公司销售元,在甲、乙两家公司销售..甲公司用如下方法促销:买一台单价为780元,买两台每台都为760元.以此类推,以此类推,即每多买一台各台单价均再减即每多买一台各台单价均再减20元,元,但最低不能低于每台但最低不能低于每台440元;元;乙公司一律按原价的乙公司一律按原价的75%75%促销促销促销..某单位购买一批图形计算器.(1)若此单位需购买6台图形计算器,应去哪家公司购买化肥较少;(2)若此单位恰好花费7500元.在同一家公司购买了一定数量的图形计算器,请问是在哪家公司购买的,数量是多少? 销售方式销售方式 粗加工后销售粗加工后销售 精加工后销售精加工后销售 每吨获利(元)每吨获利(元) 1000 2000。

重庆数学中考试题及答案

重庆数学中考试题及答案

重庆数学中考试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. 3答案:B2. 如果一个直角三角形的两个直角边分别为3和4,那么斜边的长度是?A. 5B. 6C. 7D. 8答案:A3. 以下哪个表达式的结果不是整数?A. 3 * 4B. 5 / 2C. 7 - 2D. 8 ÷ 2答案:B4. 下列哪个是二次方程?A. x + 2 = 0B. x^2 + x + 1 = 0C. x^3 - 2x^2 + x = 0D. x^2 - 4 = 0答案:B5. 圆的周长公式是?A. C = πdB. C = 2πrC. A = πr^2D. A = πd^2答案:B6. 一个数的平方根是它自己,这个数是?A. 1B. -1C. 0D. 2答案:C7. 以下哪个是立方体的体积公式?A. V = a^2B. V = a^3C. V = 2aD. V = πa^3答案:B8. 一个数的倒数是1/5,这个数是?A. 5B. 4C. 3D. 2答案:A9. 以下哪个是正弦函数的图像?A. 直线B. 抛物线C. 正弦曲线D. 双曲线答案:C10. 如果一个角的正弦值是0.5,那么这个角的度数是?A. 30°B. 45°C. 60°D. 90°答案:B二、填空题(每题2分,共20分)11. 已知一个数的平方是25,这个数是________。

答案:±512. 一个圆的半径是7,那么它的直径是________。

答案:1413. 一个长方体的长、宽、高分别是2、3、4,它的体积是________。

答案:2414. 一个等腰三角形的两个底角相等,如果顶角是60°,那么底角是________。

答案:60°15. 一个数的立方是-27,这个数是________。

答案:-316. 一个直角三角形的两个直角边分别是6和8,那么斜边的长度是________。

2024重庆中考数学试卷

2024重庆中考数学试卷

2024重庆中考数学试卷一、下列实数中,是无理数的是:A. 3.14B. √2 (答案)C. 0D. -1/3二、若a//b,b//c,则a与c的关系是:A. a//c (答案)B. a⊥cC. a与c相交但不垂直D. a与c无法确定关系三、在△ABC中,∠A = 50°,∠B = 70°,则∠C的度数是:A. 50°B. 60° (答案)C. 70°D. 80°四、下列运算正确的是:A. 3a + 2b = 5abB. (a2)3 = a5C. a6 ÷ a3 = a3 (答案)D. a2 · a4 = a6 (此选项也正确,但题目要求单选,故不作为答案)五、若一元二次方程ax2 + bx + c = 0 (a ≠ 0)有两个相等的实数根,则判别式Δ = b2 - 4ac的值是:A. Δ > 0B. Δ < 0C. Δ = 0 (答案)D. Δ无法确定六、在平面直角坐标系中,点P(-3,4)到x轴的距离是:A. -3B. 3C. 4 (答案)D. 5七、下列函数中,是一次函数的是:A. y = x2 + 1B. y = 1/xC. y = 2x - 1 (答案)D. y = √x八、若圆的半径为r,则圆的面积S与r之间的函数关系是:A. S = πrB. S = 2πrC. S = πr2 (答案)D. S = 2πr2九、在比例尺为1:50000的地图上,两城市间的图上距离为2cm,则这两城市间的实际距离为:A. 1kmB. 100mC. 1000m (答案)D. 10km十、已知数据x₁,x₁,…,x₁的平均数为5,若每个数据都加3,则新数据的平均数为:A. 2B. 5C. 8 (答案)D. 10。

中考重庆数学试题卷及答案

中考重庆数学试题卷及答案

中考重庆数学试题卷及答案重庆市中考数学试题卷一、选择题(每题3分,共36分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 已知一个长方体的长、宽、高分别为10cm、8cm和6cm,其体积是多少立方厘米?A. 240B. 480C. 360D. 6003. 下列哪个表达式的结果为偶数?A. 21 + 17B. 23 + 19C. 22 + 18D. 24 + 164. 如果一个数除以3的余数是2,那么这个数除以5的结果是什么?A. 无余数B. 余数1C. 余数2D. 余数35. 下列哪个选项的因数个数最多?A. 12B. 9C. 15D. 206. 一个数的60%加上它的40%等于这个数的多少?A. 100%B. 90%C. 80%D. 110%7. 一个班级有40名学生,其中2/5是男生,那么这个班级有多少名女生?A. 16B. 24C. 32D. 368. 一个数的1/4加上它的3/4等于这个数的多少?A. 1/2B. 1C. 3/4D. 4/49. 下列哪个选项的数值是最小的?A. πB. √2C. 2.71828D. 110. 如果一个数的1/3与它的2/3相等,那么这个数是多少?A. 0B. 1C. 2D. 311. 一个正方形的面积是64平方厘米,它的周长是多少厘米?A. 16B. 32C. 48D. 6412. 下列哪个选项的数值最接近于1000?A. 999B. 1000C. 1001D. 1002二、填空题(每题4分,共24分)13. 一个数的1.5倍是45,那么这个数是_________。

14. 一本书的价格是35元,打8折后的价格是_________元。

15. 一个长方体的体积是120立方厘米,长是10厘米,宽是6厘米,那么它的高是_________厘米。

16. 一个数的75%是30,那么这个数的50%是_________。

17. 一个班级有50名学生,其中3/4是优秀学生,那么这个班级有多少名非优秀学生?_________名。

中考应用题精选(含答案)

中考应用题精选(含答案)

中考应用题精选(含答案)中考应用题精选(含答案)一、小明购买水果小明去水果店购买了一些苹果和橙子,苹果的单价为5元/斤,橙子的单价为4元/斤。

小明共购买了9斤水果,支付了43元。

1. 请问小明购买了多少斤苹果,多少斤橙子?解答:设小明购买的苹果为x斤,橙子为y斤,则由题意可得以下方程组:x + y = 9 (1)5x + 4y = 43 (2)(1)式乘以4,再与(2)式相减可得:4x + 4y - 5x - 4y = 36 - 43 => -x = -7 => x = 7所以小明购买了7斤苹果,9 - 7 = 2斤橙子。

2. 小明购买水果总共需要支付多少金额?解答:设小明购买的苹果总价为a元,橙子总价为b元,由题意可得以下方程组:a +b = 43 (3)5a + 4b = 9 * 5 (4)将(3)式乘以4,再与(4)式相减可得:4a + 4b - 5a - 4b = 172 - 45 => -a = 127 => a = -127(舍去)所以小明购买水果总共需要支付43元。

二、小明的年龄问题小明的爷爷今年87岁,小明今年10岁。

已知小明的爸爸在小明出生时是小明年龄的2倍,现在的爸爸年龄是小明年龄的3倍。

1. 请问小明的爸爸今年多少岁?解答:设小明的爸爸今年为x岁,则可得以下方程:10 - x = 2(x - 10) (5)将(5)式化简,得:10 - x = 2x - 203x = 30x = 10所以小明的爸爸今年10岁。

2. 请问小明的爷爷今年多少岁?解答:根据题意,小明的爷爷今年是小明爸爸的3倍,而小明爸爸今年是10岁,所以小明的爷爷今年87岁。

三、小明和小红的比例题小明和小红一起种植蔬菜,小明每天需要花费2小时来照料蔬菜园,小红每天需要花费3小时来照料蔬菜园。

已知小明比小红每天多照料蔬菜园1小时,两人一共照料蔬菜园13天。

1. 请问小明独自照料蔬菜园需要多少天才能完成任务?解答:设小明独自照料蔬菜园需要x天才能完成任务。

2020年重庆中考数学试题B卷答案及解析

2020年重庆中考数学试题B卷答案及解析

2020年重庆中考数学试题B卷答案及解析
第一题:计算题
解析:本题要求计算两个数相加的结果。

根据计算规则,我们可以
将两个数对齐并逐位相加,进位后再相加。

最后得到的结果即为答案。

答案:23
第二题:几何问题
解析:本题给出一个平面图形,要求计算其面积。

根据几何知识,
我们可以计算出图形的底和高,然后应用相应的计算公式求解。

答案:32平方单位
第三题:代数题
解析:本题涉及到代数运算。

我们需要根据给定的表达式,将变量
代入并进行计算。

最后得到的结果即为答案。

答案:17
第四题:应用题
解析:本题是一个实际问题,要求根据给定的条件进行分析并给出
合理的解答。

我们需要仔细阅读题目,理解其中的要求,并运用数学
知识进行推理和计算。

答案:答案略
第五题:证明题
解析:本题要求证明一个数学命题。

我们需要运用相关的数学定理和推理方法,从已知的条件出发,逐步推导出所需证明的结论。

最后给出证明过程和结论。

答案:略
通过以上解析,我们对2020年重庆中考数学试题B卷的题目类型和解答方法有了初步了解。

希望对同学们备考有所帮助。

祝大家取得好成绩!。

中考数学专题 初中三角函数应用题10道-含答案

中考数学专题 初中三角函数应用题10道-含答案

初中三角函数应用题10道(1)求步道AC 的长度(结果保留根号);(2)游客中心Q 在点A 的正东方向,步道AC 与步道BQ 交于点P 小明和爸爸分别从B 处和A 处同时出发去游客中心,小明跑步的速度是每分钟请计算说明爸爸的速度要达到每分钟多少米,他俩可同时到达游客中心.0.1)(参考数据:2 1.414≈,3 1.732≈,6 2.449≈)2.(2023春·重庆沙坪坝·九年级重庆八中校考阶段练习)下图是儿童游乐场里的一个娱乐项目转飞椅的简图,该设施上面有一个大圆盘(圆盘的半径是 3.5OA =米),圆盘离地面的高度1 6.5OO =米,且1OO ⊥地面l ,圆盘的圆周上等间距固定了一些长度相等的绳子,绳子的另一端系着椅子(将椅子看作一个点,比如图中的点B 和1B ),当旋转飞椅静止时绳子是竖直向下的,如图中的线段AB ,绳长为4.8米固定不变.当旋转飞椅启动时,圆盘开始旋转从而带动绳子和飞椅一起旋转,旋转速度越大,飞椅转得越高,当圆盘旋转速度达到最大时,飞椅也旋转到最高点,此时绳子与竖直方向所成的夹角为57α=︒.(参考数据:sin 570.84︒≈,cos570.55︒≈,tan 57 1.54︒≈)(1)求飞椅离地面的最大距离(结果保留一位小数);(2)根据有关部门要求,必须在娱乐设施周围安装安全围栏,而且任何时候围栏和飞椅的水平距离必须超过2米.已知该旋转飞椅左侧安装有围栏EF ,且EF l ⊥,19.8O E =米,请问圆盘最大旋转速度的设置是否合规?并说明理由.3.(2023春·重庆渝北·九年级校联考阶段练习)如图,某大楼的顶部竖有一块宣传牌AB ,小明在斜坡的坡脚D 处测得宣传牌底部B 的仰角为45︒,沿斜坡DE 向上走到E 处测得宣传牌顶部A 的仰角为31︒,已知斜坡DE 的坡度3:4,10DE =米,22DC =米,求宣传牌AB 的高度.(测角器的高度忽略不计,参考数据:sin 310.52︒≈,cos310.86︒≈,tan 310.6)︒≈。

重庆市中考数学应用题附答案

重庆市中考数学应用题附答案

中考应用题解应用题的一般步骤:解应用题的一般步骤可以归结为:“审、设、列、解、验、答”.1、“审”是指读懂题目,弄清题意,明确题目中的已知量,未知量,以及它们之间的关系,审题时也可以利用图示法,列表法来帮助理解题意.2、“设”是指设元,也就是未知数.包括设直接未知数和设间接未知数以及设辅助未知数(较难的题目).3、“列”就是列方程,这是非常重要的关键步骤,一般先找出能够表达应用题全部含义的一个相等关系,然后列代数式表示相等关系中的各个量,就得到含有未知数的等式,即方程.4、“解”就是解方程,求出未知数的值.5、“验”就是验解,即检验方程的解能否保证实际问题有意义.6、“答”就是写出答案(包括单位名称).应用题类型:几种常见类型和等量关系如下:1、行程问题:s=.基本量之间的关系:路程=速度×时间,即:vt常见等量关系:(1)相遇问题:甲走的路程+乙走的路程=原来甲、乙相距的路程.(2)追及问题(设甲速度快):①同时不同地:甲用的时间=乙用的时间;甲走的路程-乙走的路程=原来甲、乙相距的路程.②同地不同时:甲用的时间=乙用的时间-时间差;甲走的路程=乙走的路程.2、工程问题:基本量之间的关系:工作量=工作效率×工作时间.常见等量关系:甲的工作量+乙的工作量=甲、乙合作的工作总量.3、增长率问题:基本量之间的关系:现产量=原产量×(1+增长率).4、百分比浓度问题:基本量之间的关系:溶质=溶液×浓度.5、水中航行问题:基本量之间的关系:顺流速度=船在静水中速度+水流速度;逆流速度=船在静水中速度-水流速度.6、市场经济问题:基本量之间的关系:商品利润=售价-进价;商品利润率=利润÷进价;利息=本金×利率×期数;本息和=本金+本金×利率×期数.一元一次方程方程应用题归类分析1. 和、差、倍、分问题:(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考应用题解应用题的一般步骤:解应用题的一般步骤可以归结为:“审、设、列、解、验、答”.1、“审”是指读懂题目,弄清题意,明确题目中的已知量,未知量,以及它们之间的关系,审题时也可以利用图示法,列表法来帮助理解题意.2、“设”是指设元,也就是未知数.包括设直接未知数和设间接未知数以及设辅助未知数(较难的题目).3、“列”就是列方程,这是非常重要的关键步骤,一般先找出能够表达应用题全部含义的一个相等关系,然后列代数式表示相等关系中的各个量,就得到含有未知数的等式,即方程.4、“解”就是解方程,求出未知数的值.5、“验”就是验解,即检验方程的解能否保证实际问题有意义.6、“答”就是写出答案(包括单位名称).应用题类型:几种常见类型和等量关系如下:1、行程问题:s=.基本量之间的关系:路程=速度×时间,即:vt常见等量关系:(1)相遇问题:甲走的路程+乙走的路程=原来甲、乙相距的路程.(2)追及问题(设甲速度快):①同时不同地:甲用的时间=乙用的时间;甲走的路程-乙走的路程=原来甲、乙相距的路程.②同地不同时:甲用的时间=乙用的时间-时间差;甲走的路程=乙走的路程.2、工程问题:基本量之间的关系:工作量=工作效率×工作时间.常见等量关系:甲的工作量+乙的工作量=甲、乙合作的工作总量.3、增长率问题:基本量之间的关系:现产量=原产量×(1+增长率).4、百分比浓度问题:基本量之间的关系:溶质=溶液×浓度.5、水中航行问题:基本量之间的关系:顺流速度=船在静水中速度+水流速度;逆流速度=船在静水中速度-水流速度.6、市场经济问题:基本量之间的关系:商品利润=售价-进价;商品利润率=利润÷进价;利息=本金×利率×期数;本息和=本金+本金×利率×期数.一元一次方程方程应用题归类分析1. 和、差、倍、分问题:(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。

(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。

例1.根据2001年3月28日新华社公布的第五次人口普查统计数据,截止到2000年11月1日0时,全国每10万人中具有小学文化程度的人口为35701人,比1990年7月1日减少了3.66%,1990年6月底每10万人中约有多少人具有小学文化程度?分析:等量关系为:()-⨯=.年月底有的人数年月日人数1366%9062000111解:设1990年6月底每10万人中约有x人具有小学文化程度-=x1366%)35701(.x≈37057答:略.2. 等积变形问题:“等积变形”是以形状改变而体积不变为前提。

常用等量关系为:①形状面积变了,周长没变;②原料体积=成品体积。

例2. 用直径为90mm 的圆柱形玻璃杯(已装满水)向一个由底面积为1251252⨯mm 内高为81mm 的长方体铁盒倒水时,玻璃杯中的水的高度下降多少mm ?(结果保留整数π≈314.) 分析:等量关系为:圆柱形玻璃杯体积=长方体铁盒的体积下降的高度就是倒出水的高度解:设玻璃杯中的水高下降xmm π902125125812⎛⎝ ⎫⎭⎪=⨯⨯·x ππx x ==≈6256251993. 劳力调配问题:例3. 机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?解:设分别安排x 名、()85-x 名工人加工大、小齿轮31621085()[()]x x =- 4817002068170025x xx x =-==∴-=8560x 人4. 比例分配问题:这类问题的一般思路为:设其中一份为x ,利用已知的比,写出相应的代数式。

常用等量关系:各部分之和=总量。

例4. 三个正整数的比为1:2:4,它们的和是84,那么这三个数中最大的数是几?解:设一份为x ,则三个数分别为x ,2x ,4x分析:等量关系:三个数的和是84x x x x ++==248412 5. 数字问题(1)要搞清楚数的表示方法:一个三位数的百位数字为a ,十位数字是b ,个位数字为c (其中a 、b 、c 均为整数,且1≤a ≤9, 0≤b ≤9, 0≤c ≤9)则这个三位数表示为:100a+10b+c 。

(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2N 表示,连续的偶数用2n+2或2n —2表示;奇数用2n+1或2n —1表示。

例5. 一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大36,求原来的两位数等量关系:原两位数+36=对调后新两位数解:设十位上的数字X ,则个位上的数是2x ,10×2x+x=(10x+2x )+36解得x=4,2x=8.答:略.6. 工程问题:工程问题中的三个量及其关系为:工作总量=工作效率×工作时间经常在题目中未给出工作总量时,设工作总量为单位1。

例6. 一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?分析设工程总量为单位1,等量关系为:甲完成工作量+乙完成工作量=工作总量。

解:设乙还需x 天完成全部工程,设工作总量为单位1,由题意得,(115+112)×3+x 12=1, 解这个方程,15+14+x 12=1 12+15+5x=60 5x=33 ∴ x=335=635答:略.7. 行程问题:(1)行程问题中的三个基本量及其关系: 路程=速度×时间。

(2)基本类型有① 相遇问题;② 追及问题;常见的还有:相背而行;行船问题;环形跑道问题。

(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。

并且还常常借助画草图来分析,理解行程问题。

例7. 甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

(1)慢车先开出1小时,快车再开。

两车相向而行。

问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。

故可结合图形分析。

(1)分析:相遇问题,画图表示为:甲 乙等量关系是:慢车走的路程+快车走的路程=480公里。

解:设快车开出x 小时后两车相遇,由题意得,140x+90(x+1)=480解这个方程,230x=390∴ x=11623 答:略. 分析:相背而行,画图表示为:600甲 乙等量关系是:两车所走的路程和+480公里=600公里。

解:设x 小时后两车相距600公里,由题意得,(140+90)x+480=600解这个方程,230x=120∴ x=1223答:略.(3)分析:等量关系为:快车所走路程-慢车所走路程+480公里=600公里。

解:设x 小时后两车相距600公里,由题意得,(140-90)x+480=600 50x=120 ∴ x=2.4答:略.分析:追及问题,画图表示为:甲 乙等量关系为:快车的路程=慢车走的路程+480公里。

解:设x 小时后快车追上慢车。

由题意得,140x=90x+480解这个方程,50x=480 ∴ x=9.6答:略.分析:追及问题,等量关系为:快车的路程=慢车走的路程+480公里。

解:设快车开出x 小时后追上慢车。

由题意得,140x=90(x+1)+48050x=570 解得, x=11.4答:略. 8. 利润赢亏问题(1)销售问题中常出现的量有:进价、售价、标价、利润等(2)有关关系式:商品利润=商品售价—商品进价=商品标价×折扣率—商品进价商品利润率=商品利润/商品进价商品售价=商品标价×折扣率例8. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?解:设进价为X 元,80%X (1+40%)—X=15,X=125答:略.9. 储蓄问题⑴ 顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。

利息的20%付利息税⑵ 利息=本金×利率×期数本息和=本金+利息利息税=利息×税率(20%)例9. 某同学把250元钱存入银行,整存整取,存期为半年。

半年后共得本息和252.7元,求银行半年期的年利率是多少?(不计利息税)分析:等量关系:本息和=本金×(1+利率)解:设半年期的实际利率为x ,250(1+x )=252.7,x=0.0108所以年利率为0.0108×2=0.0216二元一次方程组1.“今有鸡、兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”.题目大意:在现有鸡、兔在同一个笼子里,上边数有35个头,下边数有94只脚,求鸡、兔各有多少只.解:设有x 只鸡,y 只兔子,由题意得35,23,2494,12.x y x x y y +==⎧⎧⎨⎨+==⎩⎩解得2.《希腊文集》中有一些用童话形式写成的数学题.比如驴和骡子驮货物这道题,就曾经被大数学家欧拉改编过,题目是这样的:驴和骡子驮着货物并排走在路上,驴不住地埋怨自己驮的货物太重,压得受不了.骡子对驴说:“你发什么牢骚啊!我驮的货物比你重,假若你的货物给我一口袋,我驮上的货就比你驮的重一倍,而我若给你一口袋,咱俩驮的才一样多.”那么驴和骡子各驮几口袋货物?你能用方程组来解这个问题吗?解:设驴子驮x袋,骡子驮y袋,根据题意,得12(1),5,1 1.7. y x xy x y+=-=⎧⎧⎨⎨-=+=⎩⎩解得◆中考真题实战6.随着我国人口增长速度的减慢,小学入学儿童数量每年按逐渐减少的趋势发展,某地区2003年和2004年小学入学儿童人数之比为8:7,且2003•年入学人数的2倍比2004年入学人数的3倍少1 500•人,•某人估计2005•年入学儿童人数将超过2300人,请你通过计算,判断他的估计是否符合当前的变化趋势.解:设2003年入学儿童人数为x人,2004年入学儿童人数为y人,则可列78,2400, 231500,2100. x y xx y y==⎧⎧⎨⎨=-=⎩⎩解得∵2 300>2 100,∴他的估计不符合当前入学儿童逐渐减少的趋势一元一次不等式组及其应用1.如图所示,一筐橘子分给若干个儿童,如果每人分4个,•则剩下9个;如果每人分6个,则最后一个儿童分得的橘子数少于3个,问共有几个儿童,•分了多少个橘子?.1.设共有x个儿童,则共有(4x+9)个橘子,依题意,得0≤4x+9-6(x-1)<3解这个不等式组,得6<x≤7.5.因为x为整数,所以x取7.所以4x+9=4×7+9=37.故共有7个儿童,分了37个橘子.2.七(2)班有50名学生,老师安排每人制作一件A型和B型的陶艺品,学校现有甲种制作材料36kg,乙种制作材料29kg,制作A,B两种型号的陶艺品用料情况如下表:(1)设制作B型陶艺品x件,求x的取值范围;(2)请你根据学校现有材料,分别写出七(2)班制作A型和B型陶艺品的件数.2.(1)由题意得0.9(50)0.40.3(50)29x x x x -+≤⎧⎨-+≤⎩ 由①得x ≥18所以x 的取值范围是18≤x ≤20(x 为正整数).(2)制作A 型和B 型陶艺品的件数为①制作A 型陶艺品32件,制作B 型陶艺品18件;②制作A 型陶艺品31件,制作B 型陶艺品19件;③制作A 型陶艺品30件,制作B 型陶艺品20件.3. 2008年8月,北京奥运会帆船比赛在青岛国际帆船中心举行,•观看帆船比赛的船票分为两种:A种船票600/张,B 种船票120/张.•某旅行社要为一个旅行团代购部分船票,在购票费不超过5000元的情况下,购买A ,B 两种船票共15张,要求A 种船票的数量不少于B 种船票数量的一半,若设购买A 种船票x 张,请你解答下列问题:(1)共有几种符合题意的购票方案?写出解答过程;(2)根据计算判断:哪种购票方案更省钱?3.(1)由题意知B 种票有(15-x )张.根据题意得15,2600120(15)5000,x x x x -⎧≥⎪⎨⎪+-≤⎩ 解得5≤x ≤203. ∵x 为正整数, ∴满足条件的x 为5或6. ∴共有两种购票方案:方案一:A 种票5张,B 种票10张; 方案二:A 种票6张,B 种票9张.(2)方案一购票费用为 600×5元+120×10元=4200元;方案二购票费用为600×6元+120×9元=4680(元).∵4200元<4680元,∴方案一更省钱.4. “五一”黄金周期间,某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座两种客车,42座客车的租金每辆为320元,60•座客车的租金每辆为460元.(1)若学校单独租用这两种车辆各需多少钱?(2)若学校同时租用这两种客车8辆(可以坐不满),•而且要比单独租用一种车辆节省租金.请你帮助学校选择一种最节省的租车方案.4.(1)385÷42≈9.2 ∴单独租用42座客车需10辆,租金为320×10=3200元.385÷60≈6.4, ∴单独租用60座客车需7辆,租金为460×7=3220元.(2)设租用42座客车x 辆,则60座客车(8-x )辆,由题意得:4260(8)385,320460(8)3200.x x x x +-≥⎧⎨+-≤⎩解之得337≤x ≤5518. ∵x 取整数,∴x=4或5.当x=4时,租金为320×4+460×(8-4)=3120元; 当x=5时,租金为320×5+460×(8-5)=2980元.答:租用42座客车5辆,60座客车3辆时,租金最少.说明:若学生列第二个不等式时将“≤”号写成“<”号,也对.分式应用题1.(本题满分8分)在我市某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天;若由甲队先做20天,剩下的工程由甲、乙合做24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲乙两队全程合作完成该工程省钱?关键词】分式方程【答案】解:(1)设乙队单独完成需x 天根据题意,得11120()2416060x ⨯++⨯= 解这个方程,得x =90 经检验,x =90是原方程的解 ∴乙队单独完成需90天 (2)设甲、乙合作完成需y 天,则有11()16090y += 解得36y =(天) 甲单独完成需付工程款为60×3.5=210(万元) 乙单独完成超过计划天数不符题意(若不写此行不扣分).甲、乙合作完成需付工程款为36(3.5+2)=198(万元)答:在不超过计划天数的前提下,由甲、乙合作完成最省钱.2.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑.已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a 元,要使(2)中所有方案获利相同,a 值应是多少?此时,哪种方案对公司更有利?【关键词】分式方程、一次函数与一元一次不等式(组)【答案】解:(1)设今年三月份甲种电脑每台售价x 元xx 800001000100000=+ 解得: 4000=x经检验: 4000=x 是原方程的根,所以甲种电脑今年三月份每台售价4000元.(2)设购进甲种电脑x 台, 50000)15(3000350048000≤-+≤x x解得 106≤≤x 因为x 的正整数解为6,7,8,9,10, 所以共有5种进货方案(3) 设总获利为W 元,ax a x a x W 1512000)300()15)(30003800()35004000(-+-=---+-= 当300=a 时, (2)中所有方案获利相同.此时, 购买甲种电脑6台,乙种电脑9台时对公司更有利.3.北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率100%=⨯利润成本) 【关键词】分式方程及增根、不等式(组)的简单应用【答案】解:(1)设商场第一次购进x 套运动服,由题意得:6800032000102x x-=,解这个方程,得200x =.经检验,200x =是所列方程的根. 22200200600x x +=⨯+=. 所以商场两次共购进这种运动服600套.(2)设每套运动服的售价为y 元,由题意得:600320006800020%3200068000y --+≥, 解这个不等式,得200y ≥,所以每套运动服的售价至少是200元.4.跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同.(1)求每个甲种零件、每个乙种零件的进价分别为多少元?(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价-进价)超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来.【答案】(1)可列分式方程求解,但要注意检验,否则扣分;(2)依据题意列出不等式组,注意不等号中是否有等于,根据未知数都为整数,再结合不等式组的解集,确定未知数的具体数值,有几个值,即有几种方案.解:(1)设每个乙种零件进价为x 元,则每个甲种零件进价为(2)x -元.由题意得801002x x=-, 解得10x =.检验:当10x =时,(2)0x x -≠, ∴10x =是原分式方程的解.1028-=(元)答:每个甲种零件的进价为8元,每个乙种零件的进价为10元.(2)设购进乙种零件y 个,则购进甲种零件(35)y -个由题意得3595(128)(35)(1510)371y y y y -+⎧⎨--+->⎩≤,解得2325y <≤. y 为整数,24y ∴=或25.∴共有2种方案.分别是: 方案一:购进甲种零件67个,乙种零件24个; 方案二:购进甲种零件70个,乙种零件25个.解得10x = 经检验10x =是原分式方程的解 220x ∴=.答:冰箱、电视机分别购买20台、10台 10分练习8.某果品基地用汽车装运A 、B 、C 三种不同品牌的水果到外地销售,按规定每辆汽车只能装同种水果,且必须装满,其中A 、B 、C 三种水果的重量及利润按下表提供信息:(1)若用7辆汽车装运A 、C 两种水果共15吨到甲地销售,如何安排汽车装运A 、C 两种水果?(2)计划用20辆汽车装运A 、B 、C 三种不同水果共42吨到乙地销售(每种水果不少于2车),请你设计一种装运方案,可使果品基地获得最大利润,并求出最大利润.解:(1)设安排x 辆汽车装运A 种水果,则安排(7-x )辆汽车装运C 种水果.根据题意得,2.2x +2(7-x )=15解得,x=5,∴7-x=2答:安排5辆汽车装运A 种水果,安排2辆汽车装运C 种水果。

相关文档
最新文档