青岛版九年级上学期数学期末测试题(包含二次函数)

合集下载

青岛市初三数学九年级上册期末试卷及答案

青岛市初三数学九年级上册期末试卷及答案

青岛市初三数学九年级上册期末试卷及答案一、选择题1.当函数2(1)y a x bx c =-++是二次函数时,a 的取值为( )A .1a =B .1a =-C .1a ≠-D .1a ≠2.入冬以来气温变化异常,在校学生患流感人数明显增多,若某校某日九年级8个班因病缺课人数分别为2、6、4、6、10、4、6、2,则这组数据的众数是( ) A .5人 B .6人C .4人D .8人3.已知关于x 的函数y =x 2+2mx +1,若x >1时,y 随x 的增大而增大,则m 的取值范围是( ) A .m ≥1B .m ≤1C .m ≥-1D .m ≤-14.如图,点I 是△ABC 的内心,∠BIC =130°,则∠BAC =( )A .60°B .65°C .70°D .80°5.在Rt △ABC 中,∠C=90°,BC=4,AC=3,CD ⊥AB 于D ,设∠ACD=α,则cosα的值为( ) A .45B .34C .43 D .356.sin30°的值是( ) A .12 B .22C 3D .17.已知圆内接正六边形的边长是1,则该圆的内接正三角形的面积为( ) A 43B .3C 33D 328.某天的体育课上,老师测量了班级同学的身高,恰巧小明今日请假没来,经过计算得知,除了小明外,该班其他同学身高的平均数为172cm ,方差为k 2cm ,第二天,小明来到学校,老师帮他补测了身高,发现他的身高也是172cm ,此时全班同学身高的方差为'k 2cm ,那么'k 与k 的大小关系是( )A .'k k >B .'k k <C .'k k =D .无法判断9.二次函数2y ax bx c =++(a ,b ,c 为常数,且0a ≠)中的x 与y 的部分对应值如下表:x2- 1- 0 1 2y5 0 3-4-3-以下结论:①二次函数2y ax bx c =++有最小值为4-; ②当1x <时,y 随x 的增大而增大;③二次函数2y ax bx c =++的图象与x 轴只有一个交点; ④当13x 时,0y <.其中正确的结论有( )个A .1B .2C .3D .410.如图,已知一组平行线////a b c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且 1.5AB =,2BC =, 1.8DE =,则EF =( )A .4.4B .4C .3.4D .2.411.下列对于二次函数y =﹣x 2+x 图象的描述中,正确的是( )A .开口向上B .对称轴是y 轴C .有最低点D .在对称轴右侧的部分从左往右是下降的12.如图,A 、B 、C 、D 是⊙O 上的四点,BD 为⊙O 的直径,若四边形ABCO 是平行四边形,则∠ADB 的大小为( )A .30°B .45°C .60°D .75°13.如图,在O 中,AB 是O 的直径,点D 是O 上一点,点C 是弧AD 的中点,弦CE AB ⊥于点F ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CF BC 、于点P Q 、,连接AC .给出下列结论:①BAD ABC ∠=∠;②GP GD =;③点P 是ACQ的外心;④AP AD ⋅CQ CB =⋅.其中正确的是( )A .①②③B .②③④C .①③④D .①②③④14.如图是二次函数y =ax 2+bx+c 图象的一部分,图象过点A(﹣3,0),对称轴为直线x =﹣1,下列结论:①b 2>4ac ;②2a+b =0;③a+b+c >0;④若B(﹣5,y 1)、C(﹣1,y 2)为函数图象上的两点,则y 1<y 2.其中正确结论是( )A .②④B .①③④C .①④D .②③15.如图,△ABC 中AB 两个顶点在x 轴的上方,点C 的坐标是(﹣1,0),以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A′B′C′,且△A′B′C′与△ABC 的位似比为2:1.设点B 的对应点B′的横坐标是a ,则点B 的横坐标是( )A .12a -B .1(1)2a -+ C .1(1)2a -- D .1(3)2a -+ 二、填空题16.如图,已知Rt ABC ∆中,90ACB ∠=︒,8AC =,6BC =,将ABC ∆绕点C 顺时针旋转得到MCN ∆,点D 、E 分别为AB 、MN 的中点,若点E 刚好落在边BC 上,则sin DEC ∠=______.17.将边长分别为2cm ,3cm ,4cm 的三个正方形按如图所示的方式排列,则图中阴影部分的面积为______2cm .18.二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)的图像上部分点的横坐标x 和纵 坐标y 的对应值如下表 x … -1 0123 … y…-3 -3 -1 39…关于x 的方程ax 2+bx +c =0一个负数解x 1满足k <x 1<k +1(k 为整数),则k =________.19.如图,在Rt △ABC 中,BC AC ⊥,CD 是AB 边上的高,已知AB =25,BC =15,则BD =__________.20.如图,已知O 的半径为2,ABC ∆内接于O ,135ACB ∠=,则AB =__________.21.将抛物线y=﹣2x 2+1向左平移三个单位,再向下平移两个单位得到抛物线________; 22.在英语句子“Wish you success”(祝你成功)中任选一个字母,这个字母为“s”的概率是 .23.已知圆锥的侧面积为20πcm 2,母线长为5cm ,则圆锥底面半径为______cm . 24.一组数据3,2,1,4,x 的极差为5,则x 为______.25.二次函数2y ax bx c =++的图象如图所示,若点()11,A y ,()23,B y 是图象上的两点,则1y ____2y (填“>”、“<”、“=”).26.如图,ABC 是⊙O 的内接三角形,AD 是△ABC 的高,AE 是⊙O 的直径,且AE=4,若CD=1,AD=3,则AB 的长为______.27.如图,1ABB △,12AB B ,△A 2B 2B 3 是全等的等边三角形,点 B ,B 1,B 2,B 3 在同一条 直线上,连接 A 2B 交 AB 1 于点 P ,交 A 1B 1 于点 Q ,则 PB 1∶QB 1 的值为___.28.顶点在原点的二次函数图象先向左平移1个单位长度,再向下平移2个单位长度后,所得的抛物线经过点(0,﹣3),则平移后抛物线相应的函数表达式为_____. 29.已知学校航模组设计制作的火箭的升空高度h (m )与飞行时间t (s )满足函数表达式21220h t t =-++,则火箭升空的最大高度是___m30.如图,AE 、BE 是△ABC 的两个内角的平分线,过点A 作AD ⊥AE .交BE 的延长线于点D .若AD =AB ,BE :ED =1:2,则cos ∠ABC =_____.三、解答题31.(1)计算:()212cos6020202π-⎛⎫++-︒ ⎪⎝︒⎭(2)若关于x 的方程22210x x m ++-=有两个相等的实数根,求m 的值.32.某养殖场计划用96米的竹篱笆围成如图所示的①、②、③三个养殖区域,其中区域①是正方形,区域②和③是矩形,且AG ∶BG =3∶2.设BG 的长为2x 米.(1)用含x的代数式表示DF=;(2)x为何值时,区域③的面积为180平方米;(3)x为何值时,区域③的面积最大?最大面积是多少?33.二次函数y=ax2+bx+c中的x,y满足下表x…-1013…y…0310…不求关系式,仅观察上表,直接写出该函数三条不同类型的性质:(1);(2);(3).34.为倡导“低碳生活”,常选择以自行车作为代步工具,如图1所示是一辆自行车的实物图.车架档AC与CD的长分别为45cm,60cm,且它们互相垂直,座杆CE的长为20cm,点A,C,E在同一条直线上,且∠CAB=75°,如图2.(1)求车架档AD的长;(2)求车座点E到车架档AB的距离.(结果精确到1 cm.参考数据: sin75°="0.966," cos75°=0.259,tan75°=3.732)35.如图,抛物线y=-x2+bx+3与x轴交于A,B两点,与y轴交于点C,其中点A(-1,0).过点A作直线y=x+c与抛物线交于点D,动点P在直线y=x+c上,从点A出发,以每秒2个单位长度的速度向点D运动,过点P作直线PQ∥y轴,与抛物线交于点Q,设运动时间为t(s).(1)直接写出b,c的值及点D的坐标;(2)点 E是抛物线上一动点,且位于第四象限,当△CBE的面积为6时,求出点E 的坐标;(3)在线段PQ最长的条件下,点M在直线PQ上运动,点N在x轴上运动,当以点D、M、N为顶点的三角形为等腰直角三角形时,请求出此时点N的坐标.四、压轴题36.如图1:在Rt △ABC 中,AB =AC ,D 为BC 边上一点(不与点B ,C 重合),试探索AD ,BD ,CD 之间满足的等量关系,并证明你的结论.小明同学的思路是这样的:将线段AD 绕点A 逆时针旋转90°,得到线段AE ,连接EC ,DE .继续推理就可以使问题得到解决.(1)请根据小明的思路,试探索线段AD ,BD ,CD 之间满足的等量关系,并证明你的结论;(2)如图2,在Rt △ABC 中,AB =AC ,D 为△ABC 外的一点,且∠ADC =45°,线段AD ,BD ,CD 之间满足的等量关系又是如何的,请证明你的结论;(3)如图3,已知AB 是⊙O 的直径,点C ,D 是⊙O 上的点,且∠ADC =45°. ①若AD =6,BD =8,求弦CD 的长为 ; ②若AD+BD =14,求2AD BD CD ⎛⎫⋅+⎪ ⎪⎝⎭的最大值,并求出此时⊙O 的半径.37.研究发现:当四边形的对角线互相垂直时,该四边形的面积等于对角线乘积的一半,如图1,已知四边形ABCD 内接于O ,对角线AC BD =,且AC BD ⊥.(1)求证:AB CD =; (2)若O 的半径为8,弧BD 的度数为120︒,求四边形ABCD 的面积;(3)如图2,作OM BC ⊥于M ,请猜测OM 与AD 的数量关系,并证明你的结论. 38.已知点(4,0)、(2,3)-为二次函数图像抛物线上两点,且抛物线的对称轴为直线2x =.(1)求抛物线的解析式;(2)将抛物线平移,使顶点与原点重合,已知点(,1)M m -,点A 、B 为抛物线上不重合的两点(B 在A 的左侧),且直线MA 与抛物线仅有一个公共点.①如图1,当点M 在y 轴上时,过点A 、B 分别作AP y ⊥轴于点P ,BQ x ⊥轴于点Q .若APM △与BQO △ 相似, 求直线AB 的解析式;②如图2,当直线MB 与抛物线也只有一个公共点时,记A 、B 两点的横坐标分别为a 、b .当点M 在y 轴上时,直接写出m am b--的值为 ;当点M 不在y 轴上时,求证:m am b--为一个定值,并求出这个值.39.如图,抛物线2y x bx c =-++与x 轴的两个交点分别为(1,0)A ,(30)B ,.抛物线的对称轴和x 轴交于点M .(1)求这条抛物线对应函数的表达式;(2)若P 点在该抛物线上,求当PAB △的面积为8时,求点P 的坐标.(3)点G 是抛物线上一个动点,点E 从点B 出发,沿x 轴的负半轴运动,速度为每秒1个单位,同时点F 由点M 出发,沿对称轴向下运动,速度为每秒2个单位,设运动的时间为t .①若点G 到AE 和MF 距离相等,直接写出点G 的坐标.②点C 是抛物线的对称轴上的一个动点,以FG 和FC 为边做矩形FGDC ,直接写出点E 恰好为矩形FGDC 的对角线交点时t 的值.40.一个四边形被一条对角线分割成两个三角形,如果分割所得的两个三角形相似,我们就把这条对角线称为相似对角线.(1)如图,正方形ABCD 的边长为4,E 为AD 的中点,点F ,H 分别在边AB 和CD上,且1AF DH ==,线段CE 与FH 交于点G ,求证:EF 为四边形AFGE 的相似对角线;(2)在四边形ABCD 中,BD 是四边形ABCD 的相似对角线,120A CBD ∠=∠=,2AB =,BD =CD 的长;(3)如图,已知四边形ABCD 是圆O 的内接四边形,90A ∠=,8AB =,6AD =,点E 是AB 的中点,点F 是射线AD 上的动点,若EF 是四边形AECF 的相似对角线,请直接写出线段AF 的长度(写出3个即可).【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】由函数是二次函数得到a-1≠0即可解题. 【详解】解:∵2(1)y a x bx c =-++是二次函数,∴a-1≠0, 解得:a≠1, 故选你D. 【点睛】本题考查了二次函数的概念,属于简单题,熟悉二次函数的定义是解题关键.2.B解析:B 【解析】 【分析】找出这组数据出现次数最多的那个数据即为众数. 【详解】解:∵数据2、6、4、6、10、4、6、2,中数据6出现次数最多为3次, ∴这组数据的众数是6. 故选:B. 【点睛】本题考查众数的概念,出现次数最多的数据为这组数的众数.3.C解析:C【解析】【分析】根据函数解析式可知,开口方向向上,在对称轴的右侧y随x的增大而增大,在对称轴的左侧,y随x的增大而减小.【详解】解:∵函数的对称轴为x=222b mma-=-=-,又∵二次函数开口向上,∴在对称轴的右侧y随x的增大而增大,∵x>1时,y随x的增大而增大,∴-m≤1,即m≥-1故选:C.【点睛】本题考查了二次函数的图形与系数的关系,熟练掌握二次函数的性质是解题的关键.4.D解析:D【解析】【分析】根据三角形的内接圆得到∠ABC=2∠IBC,∠ACB=2∠ICB,根据三角形的内角和定理求出∠IBC+∠ICB,求出∠ACB+∠ABC的度数即可;【详解】解:∵点I是△ABC的内心,∴∠ABC=2∠IBC,∠ACB=2∠ICB,∵∠BIC=130°,∴∠IBC+∠ICB=180°﹣∠CIB=50°,∴∠ABC+∠ACB=2×50°=100°,∴∠BAC=180°﹣(∠ACB+∠ABC)=80°.故选D.【点睛】本题主要考查了三角形的内心,掌握三角形的内心的性质是解题的关键.5.A解析:A【解析】【分析】根据勾股定理求出AB的长,在求出∠ACD的等角∠B,即可得到答案.【详解】如图,在Rt△ABC中,∠C=90°,BC=4,AC=3,∴AB5==,∵CD⊥AB,∴∠ADC=∠C=90°,∴∠A+∠ACD=∠A+∠B,∴∠B=∠ACD=α,∴4cos5BCcos BABα===.故选:A.【点睛】此题考查解直角三角形,求一个角的三角函数值有时可以求等角的对应函数值. 6.A解析:A【解析】【分析】根据特殊角的三角函数值计算即可.【详解】解:sin30°=12.故选:A.【点睛】本题考查了特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.7.C解析:C【解析】【分析】根据圆内接正六边形的边长是1可得出圆的半径为1,利用勾股定理可求出该内接正三角形的边长为3,高为32,从而可得出面积.【详解】解:由题意可得出圆的半径为1,∵△ABC 为正三角形,AO=1,AD BC ⊥,BD=CD ,AO=BO , ∴1DO 2=,32AD =,∴BD ==,∴BC =∴1322ABC S =⨯=. 故选:C .【点睛】本题考查的知识点是正多边形的性质以及解直角三角形,根据圆内接正多边形的边长求出圆的半径是解此题的关键.8.B解析:B【解析】【分析】设该班的人数有n 人,除小明外,其他人的身高为x 1,x 2……x n-1,根据平均数的定义可知:算上小明后,平均身高仍为172cm ,然后根据方差公式比较大小即可.【详解】解:设该班的人数有n 人,除小明外,其他人的身高为x 1,x 2……x n-1,根据平均数的定义可知:算上小明后,平均身高仍为172cm 根据方差公式:()()()22212111721721721n k x x x n -⎡⎤=-+-++-⎣⎦- ()()()()2222'1211172172172172172n x x k x n -⎡⎤=-+-++-+-⎣⎦ ()()()2221211172172172n x x x n -⎡⎤=-+-++-⎣⎦∵111n n <- ∴()()()()()()222222121121111721721721721721721n n x x x x x x n n --⎡⎤⎡⎤-+-++-<-+-++-⎣⎦⎣⎦-即'k k <故选B .【点睛】此题考查的是比较方差的大小,掌握方差公式是解决此题的关键.9.B解析:B【分析】根据表中数据,可获取相关信息:抛物线的顶点坐标为(1,-4),开口向上,与x 轴的两个交点坐标是(-1,0)和(3,0),据此即可得到答案.【详解】①由表格给出的数据可知(0,-3)和(2,-3)是一对对称点,所以抛物线的对称轴为202+=1,即顶点的横坐标为x=1,所以当x=1时,函数取得最小值-4,故此选项正确; ②由表格和①可知当x <1时,函数y 随x 的增大而减少;故此选项错误;③由表格和①可知顶点坐标为(1,-4),开口向上,∴二次函数2y ax bx c =++的图象与x 轴有两个交点,一个是(-1,0),另一个是(3,0);故此选项错误;④函数图象在x 轴下方y<0,由表格和③可知,二次函数2y ax bx c =++的图象与x 轴的两个交点坐标是(-1,0)和(3,0),∴当13x时,y<0;故此选项正确;综上:①④两项正确,故选:B .【点睛】本题综合性的考查了二次函数的性质,解题的关键是能根据二次函数的对称性判断:纵坐标相同两个点的是一对对称点. 10.D解析:D【解析】【分析】根据平行线等分线段定理列出比例式,然后代入求解即可.【详解】解:∵////a b c ∴AB DE BC EF= 即1.5 1.82EF = 解得:EF=2.4 故答案为D .【点睛】本题主要考查的是平行线分线段成比例定理,利用定理正确列出比例式是解答本题的关键.11.D解析:D【解析】【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的结论是否正确,从而可以解答本题.解:∵二次函数y=﹣x2+x=﹣(x12-)2+14,∴a=﹣1,该函数的图象开口向下,故选项A错误;对称轴是直线x=12,故选项B错误;当x=12时取得最大值14,该函数有最高点,故选项C错误;在对称轴右侧的部分从左往右是下降的,故选项D正确;故选:D.【点睛】本题考查了二次函数的性质,掌握函数解析式和二次函数的性质是解题的关键.12.A解析:A【解析】【详解】解:∵四边形ABCO是平行四边形,且OA=OC,∴四边形ABCO是菱形,∴AB=OA=OB,∴△OAB是等边三角形,∴∠AOB=60°,∵BD是⊙O的直径,∴点B、D、O在同一直线上,∴∠ADB=12∠AOB=30°故选A.13.B解析:B【解析】【分析】①由于AC与BD不一定相等,根据圆周角定理可判断①;②连接OD,利用切线的性质,可得出∠GPD=∠GDP,利用等角对等边可得出GP=GD,可判断②;③先由垂径定理得到A为CE的中点,再由C为AD的中点,得到CD AE=,根据等弧所对的圆周角相等可得出∠CAP=∠ACP,利用等角对等边可得出AP=CP,又AB为直径得到∠ACQ为直角,由等角的余角相等可得出∠PCQ=∠PQC,得出CP=PQ,即P为直角三角形ACQ斜边上的中点,即为直角三角形ACQ的外心,可判断③;④正确.证明△APF∽△ABD,可得AP×AD=AF×AB,证明△ACF∽△ABC,可得AC2=AF×AB,证明△CAQ∽△CBA,可得AC2=CQ×CB,由此即可判断④;解:①错误,假设BAD ABC ∠=∠,则BD AC =,AC CD =,∴AC CD BD ==,显然不可能,故①错误.②正确.连接OD . GD 是切线,DG OD ∴⊥,90GDP ADO ∴∠+∠=︒,OA OD =,ADO OAD ∴∠=∠,90APF OAD ∠+∠=︒,GPD APF ∠=∠,GPD GDP ∴∠=∠,GD GP ∴=,故②正确.③正确.AB CE ⊥,∴AE AC =,AC CD =,∴CD AE =,CAD ACE ∴∠=∠,PC PA ∴=, AB 是直径,90ACQ ∴∠=︒,90ACP QCP ∴∠+∠=︒,90CAP CQP ∠+∠=︒,PCQ PQC ∴∠=∠,PC PQ PA ∴==,90ACQ ∠=︒,∴点P 是ACQ ∆的外心.故③正确.④正确.连接BD .90AFP ADB ∠=∠=︒,PAF BAD ∠=∠,APF ABD ∴∆∆∽, ∴AP AF AB AD=, AP AD AF AB ∴⋅=⋅,CAF BAC ∠=∠,90AFC ACB ∠=∠=︒,ACF ABC ∴∆∆∽,可得2AC AF AB =,ACQ ACB ∠=∠,CAQ ABC ∠=∠,CAQ CBA ∴∆∆∽,可得2AC CQ CB =⋅,AP AD CQ CB ∴⋅=⋅.故④正确,故选:B .【点睛】本题考查相似三角形的判定和性质、垂径定理、圆周角定理、切线的性质等知识,解题的关键是正确现在在相似三角形解决问题,属于中考选择题中的压轴题.14.C解析:C【解析】【分析】根据抛物线与x 轴有两个交点可得△=b 2﹣4ac>0,可对①进行判断;由抛物线的对称轴可得﹣2b a=﹣1,可对②进行判断;根据对称轴方程及点A 坐标可求出抛物线与x 轴的另一个交点坐标,可对③进行判断;根据对称轴及二次函数的增减性可对④进行判断;综上即可得答案.【详解】∵抛物线与x 轴有两个交点,∴b 2﹣4ac >0,即:b 2>4ac ,故①正确,∵二次函数y =ax 2+bx+c 的对称轴为直线x =﹣1,∴﹣2b a=﹣1, ∴2a =b ,即:2a ﹣b =0,故②错误.∵二次函数y =ax 2+bx+c 图象的一部分,图象过点A (﹣3,0),对称轴为直线x =﹣1, ∴二次函数与x 轴的另一个交点的坐标为(1,0),∴当x =1时,有a+b+c =0,故结论③错误;④∵抛物线的开口向下,对称轴x =﹣1,∴当x <﹣1时,函数值y 随着x 的增大而增大,∵﹣5<﹣1则y 1<y 2,则结论④正确故选:C .【点睛】本题主要考查二次函数图象与系数的关系,对于二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左侧;当a 与b 异号时(即ab <0),对称轴在y 轴右侧;常数项c 决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△=b2-4ac决定:△>0时,抛物线与x轴有2个交点;△= 0时,抛物线与x轴有1个交点;△<0时,抛物线与x轴没有交点.15.D解析:D【解析】【分析】设点B的横坐标为x,然后表示出BC、B′C的横坐标的距离,再根据位似变换的概念列式计算.【详解】设点B的横坐标为x,则B、C间的横坐标的长度为﹣1﹣x,B′、C间的横坐标的长度为a+1,∵△ABC放大到原来的2倍得到△A′B′C,∴2(﹣1﹣x)=a+1,解得x=﹣12(a+3),故选:D.【点睛】本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.二、填空题16.【解析】【分析】根据旋转性质及直角三角形斜边中线等于斜边一半,求出CD=CE=5,再根据勾股定理求DE长,的值即为等腰△CDE底角的正弦值,根据等腰三角形三线合一构建直角三角形求解.【详解】【解析】【分析】根据旋转性质及直角三角形斜边中线等于斜边一半,求出CD=CE=5,再根据勾股定理求DE 长,sin DEC的值即为等腰△CDE底角的正弦值,根据等腰三角形三线合一构建直角三角形求解.【详解】如图,过D点作DM⊥BC,垂足为M,过C作CN⊥DE,垂足为N,在Rt△ACB中,AC=8,BC=6,由勾股定理得,AB=10,∵D为AB的中点,∴CD=15 2AB= ,由旋转可得,∠MCN=90°,MN=10,∵E为MN的中点,∴CE=15 2MN,∵DM⊥BC,DC=DB,∴CM=BM=13 2BC=,∴EM=CE-CM=5-3=2,∵DM=14 2AC,∴由勾股定理得,DE=25,∵CD=CE=5,CN⊥DE,∴DN=EN=5 ,∴由勾股定理得,CN=25,∴sin∠DEC=25 CNCE.25.【点睛】本题考查旋转性质,直角三角形的性质和等腰三角形的性质,能够用等腰三角形三线合一的性质构建直角三角形解决问题是解答此题的关键.17.【解析】【分析】首先对图中各点进行标注,阴影部分的面积等于正方形BEFL的面积减去梯形BEN K的面积,再利用相似三角形的性质求出BK、EN的长从而求出梯形的面积即可得出答案.【详解】解:如解析:13 3【解析】【分析】首先对图中各点进行标注,阴影部分的面积等于正方形BEFL的面积减去梯形BENK的面积,再利用相似三角形的性质求出BK、EN的长从而求出梯形的面积即可得出答案.【详解】解:如图所示,∵四边形MEGH为正方形,∴NE GH∴△AEN~△AHG∴NE:GH=AE:AG∵AE=2+3=5,AG=2+3+4=9,GH=4∴NE:4=5:9∴NE=20 9同理可求BK=8 9梯形BENK的面积:1208143 2993⎛⎫⨯+⨯=⎪⎝⎭∴阴影部分的面积:1413 3333⨯-=故答案为:13 3.【点睛】本题主要考查的知识点是图形面积的计算以及相似三角形判定及其性质,根据相似的性质求出相应的边长是解答本题的关键.18.-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1 的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3解析:-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3代入y=ax2+bx+c得3 1 3ca b c a b c-=⎧⎪-=++⎨⎪-=-+⎩,解得113abc=⎧⎪=⎨⎪=-⎩,∴y=x²+x-3,∵△=b2-4ac=12-4×1×(-3)=13,∴=,∵1x<0,∴1x=−1<0,∵-4≤-3,∴322 -≤≤-,∴-≤ 2.5 -,∵整数k满足k<x1<k+1,∴k=-3,故答案为:-3.【点睛】本题考查了二次函数的图象和性质,解题的关键是求出二次函数的解析式.19.9【解析】【分析】利用两角对应相等两三角形相似证△BCD∽△BAC,根据相似三角形对应边成比例得比例式,代入数值求解即可.【详解】解:∵,,∴∠ACB=∠CDB=90°,∵∠B=∠B,解析:9 【解析】【分析】利用两角对应相等两三角形相似证△BCD ∽△BAC ,根据相似三角形对应边成比例得比例式,代入数值求解即可.【详解】解:∵BC AC ⊥,CD AB ⊥,∴∠ACB=∠CDB=90°,∵∠B=∠B,∴△BCD ∽△BAC,∴BC BD AB BC = , ∴152515BD =, ∴BD=9.故答案为:9.【点睛】本题考查利用相似三角形的性质求线段长,证明两三角形相似注意题中隐含条件,如公共角,对顶角等,利用相似的性质得出比例式求解是解答此题的关键.20.【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB 的度数,然后根据勾股定理即可求得AB 的长.详解:连接AD 、AE 、OA 、OB ,∵⊙O 的半径为2,△AB解析:22【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB 的度数,然后根据勾股定理即可求得AB 的长.详解:连接AD 、AE 、OA 、OB ,∵⊙O 的半径为2,△ABC 内接于⊙O ,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴AB=22,故答案为:22.点睛:本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.21.【解析】【分析】根据抛物线平移的规律计算即可得到答案.【详解】根据题意:平移后的抛物线为.【点睛】此题考查抛物线的平移规律:对称轴左加右减,函数值上加下减,掌握规律并熟练运用是解题的关解析:()2231y x =-+-【解析】【分析】根据抛物线平移的规律计算即可得到答案.【详解】根据题意:平移后的抛物线为()2231y x =-+-.【点睛】此题考查抛物线的平移规律:对称轴左加右减,函数值上加下减,掌握规律并熟练运用是解题的关键. 22.【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为.考点:概率公式.解析:【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为42=147. 考点:概率公式.23.4【解析】【分析】由圆锥的母线长是5cm ,侧面积是20πcm2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm,侧面积解析:4【解析】【分析】由圆锥的母线长是5cm,侧面积是20πcm2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm,侧面积是20πcm2,根据圆锥的侧面展开扇形的弧长为:2405Slrπ===8π,再根据锥的侧面展开扇形的弧长等于圆锥的底面周长,可得822lrπππ===4cm.故答案为:4.【点睛】本题考查圆锥的计算,掌握公式正确计算是解题关键.24.-1或6【解析】【分析】由题意根据极差的公式即极差=最大值-最小值.可能是最大值,也可能是最小值,分两种情况讨论.【详解】解:当x是最大值,则x-(1)=5,所以x=6;当x是最小值,解析:-1或6【解析】【分析】由题意根据极差的公式即极差=最大值-最小值.x可能是最大值,也可能是最小值,分两种情况讨论.【详解】解:当x是最大值,则x-(1)=5,所以x=6;当x是最小值,则4-x=5,所以x=-1;故答案为-1或6.本题考查极差的定义,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值,同时注意分类的思想的运用.25.>【解析】【分析】利用函数图象可判断点,都在对称轴右侧的抛物线上,然后根据二次函数的性质可判断与的大小.【详解】解:∵抛物线的对称轴在y 轴的左侧,且开口向下,∴点,都在对称轴右侧的抛物线解析:>【解析】【分析】利用函数图象可判断点()11,A y ,()23,B y 都在对称轴右侧的抛物线上,然后根据二次函数的性质可判断1y 与2y 的大小.【详解】解:∵抛物线的对称轴在y 轴的左侧,且开口向下,∴点()11,A y ,()23,B y 都在对称轴右侧的抛物线上,∴1y >2y .故答案为>.【点睛】本题考查二次函数图象上点的坐标特征,二次函数的性质.解决本题的关键是判断点A 和点B 都在对称轴的右侧.26.【解析】【分析】利用勾股定理求出AC ,证明△ABE∽△ADC,推出,由此即可解决问题.【详解】解:∵A D 是△ABC 的高,∴∠ADC=90°,∴,∵AE 是直径,∴∠ABE=90°,解析:5【分析】利用勾股定理求出AC ,证明△ABE ∽△ADC ,推出AB AE AD AC =,由此即可解决问题. 【详解】解:∵AD 是△ABC 的高,∴∠ADC=90°,∴AC ==∵AE 是直径,∴∠ABE=90°,∴∠ABE=∠ADC ,∵∠E=∠C ,∴△ABE ∽△ADC , ∴AB AE AD AC=, ∴3AB =∴AB =故答案为:5 【点睛】本题考查相似三角形的判定和性质,勾股定理、圆周角定理等知识,解题的关键是正确寻找相似三角形解决问题.27.【解析】【分析】根据题意说明PB1∥A2 B3,A1B1∥A2B2,从而说明△BB1P∽△BA2 B3,△BB1Q∽△BB2A2,再得到PB1 和A2B3的关系以及QB1和A2B2的关系,根据 解析:23【解析】【分析】根据题意说明PB 1∥A 2 B 3,A 1B 1∥A 2B 2,从而说明△BB 1P ∽△BA 2 B 3,△BB 1Q ∽△BB 2A 2,再得到PB 1 和A 2B 3的关系以及QB 1和A 2B 2的关系,根据A 2B 3=A 2B 2,得到PB 1和QB 1的比值.【详解】解:∵△ABB 1,△A 1B 1B 2,△A 2B 2B 3是全等的等边三角形,∴∠BB 1P=∠B 3,∠A 1B 1 B 2=∠A 2B 2B 3,∴PB 1∥A 2B 3,A 1B 1∥A 2B 2,∴△BB 1P ∽△BA 2 B 3,△BB 1Q ∽△BB 2A 2, ∴112331==3PB BB A B BB ,112221==2QB BB A B BB , ∴1231=3PB A B ,1221=2QB A B , ∵2322=A B A B , ∴PB 1∶QB 1=13A 2B 3∶12A 2 B 2=2:3. 故答案为:23. 【点睛】本题考查了相似三角形的判定和性质,等边三角形的性质,平行线的判定,正确的识别图形是解题的关键. 28.y =﹣(x+1)2﹣2【解析】【分析】根据坐标平移规律可知平移后的顶点坐标为(﹣1,﹣2),进而可设二次函数为,再把点(0,﹣3)代入即可求解a 的值,进而得平移后抛物线的函数表达式.【详解】解析:y =﹣(x +1)2﹣2【解析】【分析】根据坐标平移规律可知平移后的顶点坐标为(﹣1,﹣2),进而可设二次函数为()212y a x +-=,再把点(0,﹣3)代入即可求解a 的值,进而得平移后抛物线的函数表达式.【详解】由题意可知,平移后的函数的顶点为(﹣1,﹣2),设平移后函数的解析式为()212y a x +-=,∵所得的抛物线经过点(0,﹣3),∴﹣3=a ﹣2,解得a =﹣1,∴平移后函数的解析式为()212y x +=--,故答案为()212y x +=--.【点睛】本题考查坐标与图形变化-平移,解题的关键是掌握坐标平移规律:“左右平移时,横坐标左移减右移加,纵坐标不变;上下平移时,横坐标不变,纵坐标上移加下移减”。

(真题汇编)青岛版九年级上册数学期末测试卷

(真题汇编)青岛版九年级上册数学期末测试卷

青岛版九年级上册数学期末测试卷一、单选题(共15题,共计45分)1、如果一个一元二次方程的根是:x1=x2=1,那么这个方程是()A.(x+1)2=0B.(x﹣1)2=0C.x 2=1D.x 2+1=02、⊙O为△ABC的内切圆,那么点O是△ABC的()A.三条中线交点B.三条高的交点C.三条边的垂直平分线的交点 D.三条角平分线交点3、已知sinα=,求α.若以科学计算器计算且结果以“度,分,秒”为单位,最后应该按键()A. ACB.2 ndFC. MODED. DMS4、如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是()A.πB.C.3+πD.8﹣π5、从一艘船上测得海岸上高为42米的灯塔顶部的仰角是30度,船离灯塔的水平距离为()A. 米B. 米C.21米D.42米6、如图,⊙O上有一个动点A和一个定点B,令线段AB的中点是点P,过点B 作⊙O的切线BQ,且BQ=3,现测得的长度是,的度数是120°,若线段PQ的最大值是m,最小值是n,则mn的值是()A.3B.2C.9D.107、设a、b为x2+x﹣2011=0的两个实根,则a3+a2+3a+2014b=()A.2014B.﹣2014C.2011D.﹣20118、如图,已知在平行四边形ABCD 中,E 为CD 上一点,连结AE,BD,且AE,BD 交于点F,S△DEF : S△ABF = 4 : 25 ,则DE:AB 的值是( )A.2:5B.2:3C.3:5D.3:29、如果关于x的一元二次方程(m-1)x2+2x+1=0有两个不相等的实数根,那么m的取值范围是()A.m>2B.m<2C.m>2且m≠1D.m<2且m≠110、如图,⊙O的半径OD⊥弦AB于点C,连接BO并延长交⊙O于点E,连接CE,若AB=4,CD=1,则CE的长为()A. B.4 C. D.11、在半径为13的⊙O中,弦AB∥CD,弦AB和CD的距离为7,若AB=24,则CD的长为A.10B.C.10或D.10或12、如图,△ABC的顶点均在⊙O上,若∠A=36°,则∠OBC的度数为( )A.18°B.36°C.60°D.54°13、若关于x的一元二次方程x2+mx+m2﹣3m+3=0的两根互为倒数,则m的值等于()A.1B.2C.1或2D.014、如图,已知△ABC中,P是边AC上的一点,连接BP,以下条件不能判定△ABP∽△ACB的是()A.∠ABP=∠CB.∠APB=∠ABCC. =D. =15、某商品经过两次连续降价,每件售价由原来的55元降到了35元.设平均每次降价的百分率为x,则下列方程中正确的是()A.55 (1+x) 2=35B.35(1+x) 2=55C.55 (1-x) 2=35 D.35(1-x) 2=55二、填空题(共10题,共计30分)16、反比例函数的图象上有一点,且是一元二次方程x2-2x-8=0的两根,则=________.17、如图,在Rt△ABC中,∠B=90°,AB=2,以B为圆心,AB为半径画弧,恰好经过AC的中点D,则弧AD与线段AD围成的弓形面积是________.18、已知关于x的一元二次方程(m﹣1)x2+x+1=0有实数根,则m的取值范围是________ .19、如图,在平面直角坐标系中,正方形的对角线相交于点,将正方形以为位似中心,为位似比缩小,点的对应点的坐标是________20、如果关于x的方程x2﹣3x+k=0有两个相等的实数根,那么实数k的值是________.21、若方程3x2-10x + m = 0有两个同号不等的实数根,则m的取值范围是________22、已知直线l与⊙O相切,若圆心O到直线l的距离是5,则⊙O的半径为________.23、已知整数k<5,若△ABC的边长均满足关于x的方程x2﹣3x+8=0,则△ABC的周长是________ .24、若关于的有实数根,则的取值范围是________.25、如图,在四边形中,,交于F,使得且.若在线段上取一点G,满足:平分且,则的值为________.三、解答题(共5题,共计25分)26、已知x=1是关于x的一元二次方程x2﹣4mx+m2=0的根,求代数式的值.27、已知x=1是关于x的一元二次方程x2+3x﹣m=0的一个根,求m的值和方程的另一个根.28、如图,已知点O为Rt△ABC斜边AC上一点,以点O为圆心,OA长为半径的⊙O与BC相切于点E,与AC相交于点D,连接AE.求证:AE平分∠CAB;29、如图,在平面直角坐标系中,点A的坐标为(0,2),点P(t,0)在x轴上,B 是线段PA的中点.将线段PB绕着点P顺时针方向旋转900,得到线段PC,连结OB、BC.(1)判断PBC的形状,并简要说明理由;(2)当时,试问:以P、O、B、C为顶点的四边形能否为平行四边形?若能,求出相应的t 的值?若不能,请说明理由;(3)当t为何值时,AOP与APC相似?30、一铁棒欲通过一个直角走廊.如图,是该铁棒紧挨着墙角E通过时的两个特殊位置:当铁棒位于AB位置时,它与墙面OG所成的角∠ABO 51°18′;当铁棒底端B向上滑动1m(即BD 1m)到达CD位置时,它与墙面OG所成的角∠CDO 60°,求铁棒的长.(参考数据:sin51°18′ 0.780,cos51°18′ 0.625,tan51°18′ 1.248)参考答案一、单选题(共15题,共计45分)1、B2、D3、D4、D5、A6、C7、B8、A9、D10、A11、D12、D14、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、30、。

【新】青岛版九年级上册数学期末测试卷及含答案

【新】青岛版九年级上册数学期末测试卷及含答案

青岛版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、若关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0的常数项为0,则m的值等于()A.﹣2B.2C.﹣2或2D.02、要组织一次篮球比赛,赛制为主客场形式(每两队之间都需在主客场各赛一场),计划安排30场比赛,设邀请x个球队参加比赛,根据题意可列方程为( )A.x(x﹣1)=30B.x(x+1)=30C. =30D. =303、已知Rt△ABC中,∠C=90°,AC=4,BC=6,那么下列各式中,正确的是()A. B. C. D.4、已知矩形中,,,下列四个矩形相似的是()A. B. C. D.5、如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF等于()A.80°B.50°C.20°D.40°6、在正方形网格中,∠BAC如图放置,点A,B,C都在格点上,则sin∠BAC 的值为 ( )A. B. C. D.7、一个多边形的边长分别为2,3,4,5,6,另一个多边形和这个多边形相似,且最短边长为6,则最长边长为()A.18B.12C.24D.308、如图,在△ABC中,D、E分别为AB、AC边上的点,且∠AED=∠B,AD=3,AC=6,DB=5,则AE的长度为()A. B. C. D.49、若关于x的一元二次方程2x2﹣2x+3m﹣1=0有两个实数根x1、x2,且x1x2>x1+x2﹣4,则实数m的取值范围是()A.m>﹣B.m≤C.m<﹣D.﹣<m≤10、如图,AB为⊙O的切线,切点为B,连接AO,OA与⊙O交于点C,BD为⊙O 的直径,连接CD,若∠A=30°,⊙O的半径为4,则图中阴影部分的面积为()A. B. C. D.11、关于x的一元二次方程kx2+2x-1=0有两个不相等实数根,则k的取值范围是()A.k>-1B.k≥-1C.k≠0D.k>-1且k≠012、如图,⊙O的直径CD过弦EF的中点G,∠DCF=18°,则弧DE的度数等于()A.72°B.54°C.36°D.18°13、一个公共房门前的台阶高出地面2米,台阶拆除后,换成供轮椅行走的斜坡,数据如图所示,则下列关系或说法正确的是()A.斜坡AB的坡度是18°B.斜坡AB的坡度是tan18° C.AC=2tan18°米 D.AB= 米14、已知一个直角三角形的两条直角边恰好是方程2x2﹣9x+8=0的两根,则此三角形的面积为()A.1B.2C.3D.415、若m、n是方程的两个实数根,则的值为()A.0B.2C.-1D.3二、填空题(共10题,共计30分)16、如图,若内一点满足,则称点P为的布罗卡尔点,三角形的布罗卡尔点是法国数学教育家g雷尔首次发现,后来被数学爱好者法国军官布罗卡尔重新发现,并用他的名字命名,布罗卡尔点的再次发现,引发了研究“三角形几何”的热潮.已知中,,,为的布罗卡尔点,若,则________.17、已知关于x的方程(k-1)x2-2kx+k-3=0有两个不相等的实数根,则k的取值范围是________。

青岛版九年级数学上册期末测试卷及答案期末检测试卷1

青岛版九年级数学上册期末测试卷及答案期末检测试卷1

期末检测试卷一、选择题(每小题3分,共24分)1.下面是一天中四个不同时刻两个建筑物的影子:将它们按时间先后顺序进行排列,正确的是()A.③④②①B.②④③①C.③④①②D.③①②④【考点】平行投影.【分析】根据影子变化规律可知道时间的先后顺序.【解答】解:从早晨到傍晚物体的指向是:西﹣西北﹣北﹣东北﹣东,影长由长变短,再变长.所以正确的是③④①②.故选C.【点评】本题考查平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚物体的指向是:西﹣西北﹣北﹣东北﹣东,影长由长变短,再变长.2.如图,在Rt△ABC中,∠ACB=90°,BC=1,AB=2,则下列结论正确的是()A.sinA=B.tanA=C.cosB=D.tanB=【考点】特殊角的三角函数值;锐角三角函数的定义.【分析】根据三角函数的定义求解.【解答】解:∵在Rt△ABC中,∠ACB=90°,BC=1,AB=2.∴AC===,∴sinA==,tanA===,cosB==,tanB==.故选D.【点评】解答此题关键是正确理解和运用锐角三角函数的定义.3.如图,分別将三角形、矩形、菱形、正方形各边向外平移1个单位并适当延长,得到下列图形,其中变化前后的两个图形不一定相似的有()A.1对B.2对C.3对D.4对【考点】相似图形.【分析】利用相似图形的判定方法:对应角相等,对应边成比例的图形相似,进而判断即可.【解答】解:∵三角形、矩形对应边外平移1个单位后,对应边的比值不一定相等,∴变化前后的两个三角形、矩形都不相似,∵菱形、正方形边长改变后对应比值仍相等,且对应角相等,∴变化前后的两个菱形、两个正方形相似,故选:B.【点评】此题主要考查了相似图形的判定,正确掌握相似图形的判定方法是解题关键.4.计算:cos30°+sin60°tan45°=()A.1 B.C.D.【考点】特殊角的三角函数值.【分析】根据特殊角三角函数值,可得实数的运算,根据实数的运算,可得答案.【解答】解:原式=+×1=.故选:C.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.5.将抛物线y=x2向下平移2个单位长度,再向右平移1个单位长度后,得到的抛物线的表达式为()A.y=(x﹣1)2+2 B.y=(x+1)2﹣2 C.y=(x﹣2)2﹣1 D.y=(x﹣1)2﹣2【考点】二次函数图象与几何变换.【专题】几何变换.【分析】先利用顶点式得到抛物线y=x2的顶点坐标为(0,0),再根据点利用的规律得到点(0,0)平移后所得对应点的坐标为(1,﹣2),然后根据顶点式写出平移后抛物线的解析式.【解答】解:抛物线y=x2的顶点坐标为(0,0),点(0,0)向下平移2个单位,再向右平移1个单位所得对应点的坐标为(1,﹣2),所以所得到的抛物线的解析式是y=(x﹣1)2﹣2.故选D.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.6.如图,在△ABC中,点D、E分别是边AB和AC上的点,AD=2BD,DE∥BC,S△ABC=36,则S△ADE=()A.9 B.16 C.18 D.24【考点】相似三角形的判定与性质.【分析】由平行线的性质得出△ADE∽△ABC,得出相似三角形的面积比等于相似比的平方: =()2=,即可得出结果.【解答】解:∵AD=2BD,∴AD=AB,∴=,∵DE∥BC,∴△ADE∽△ABC,∴=()2=,∴S△ADE=×36=16;故选:B.【点评】本题考查了相似三角形的判定与性质;证明三角形相似得出面积比等于相似比的平方是解决问题的关键.7.如图,已知线段AB两个端点的坐标分别为A(6,6),B(8,4),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点D的坐标为()A.C.或(﹣4,2)【考点】位似变换;坐标与图形性质.【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k解答.【解答】解:线段AB两个端点的坐标分别为A(6,6),B(8,4),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则点B 与点D 是对应点,则点D 的坐标为(8×,4×),即(4,2),故选:A .【点评】本题考查的是位似变换的概念和性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或﹣k .8.对于二次函数y=﹣2(x ﹣1)(x+3),下列说法正确的是( )A .图象的开口向上B .图象与y 轴交点坐标是(0,6)C .当x >﹣1时,y 随x 的增大而增大D .图象的对称轴是直线x=1【考点】二次函数的性质.【分析】将函数图形变成顶点式,依照二次函数的性质对比四个选项即可得出结论.【解答】解:A 、y=﹣2(x ﹣1)(x+3),∵a=﹣2<0,∴图象的开口向下,故本选项错误;B 、y=﹣2(x ﹣1)(x+3)=﹣2x 2﹣4x+6,当x=0时,y=6,即图象与y 轴的交点坐标是(0,6),故本选项正确;C 、y=﹣2(x ﹣1)(x+3)=﹣2(x+1)2+8,即当x >﹣1,y 随x 的增大而减少,故本选项错误;D 、y=﹣2(x ﹣1)(x+3)=﹣2(x+1)2+8,即图象的对称轴是直线x=﹣1,故本选项错误.故选B .【点评】本题考查二次函数的性质,解题的关键是将二次函数关系式变为顶点式,联立二次函数性质对比四个选项即可.二、填空题(每小题3分,共18分)9.观察图1中的三种视图,在图2中与之对应的几何体是 ③ (填序号)【考点】由三视图判断几何体.【分析】首先根据主视图中有两条虚线,发现该几何体的应该有两条从正面看不到的棱,然后结合俯视图及提供的三个几何体确定正确的序号.【解答】解:结合主视图和俯视图发现几何体的背面应该有个凸起,故淘汰①②,选③,故答案为:③.【点评】本题考查了由三视图判断几何体的知识,解题的关键是结合三视图及三个几何体确定正确的答案,难度不大.10.小华的爸爸存入银行1万元,先存一个一年定期,一年后将本息自动转存另一个一年定期,两年后共得本息10609元.设存款的年利率为x,则由题意列方程应为10000(1+x)2=10609 .【考点】由实际问题抽象出一元二次方程.【分析】根据题意可得一年后的本息和为:10000(1+x),则两年后的本息和为:10000(1+x)(1+x),进而得出答案.【解答】解:设存款的年利率为x,则由题意列方程应为:10000(1+x)2=10609.故答案为:10000(1+x)2=10609.【点评】此题主要考查了由实际问题抽象出一元二次方程,正确表示出第2年的本息和是解题关键.11.如图,把两个全等的矩形ABCD和矩形CEFG拼成如图所示的图案,则∠AFC= 45 °.【考点】矩形的性质;等腰直角三角形.【分析】根据矩形的性质得出AB=CE,BC=EF,∠B=∠E=90°,根据SAS推出△ABC≌≌△CEF,根据全等得出∠BAC=∠FCE,AC=CF,求出△ACF是等腰直角三角形,即可得出答案.【解答】解:∵四边形ABCD和四边形CEFG是全等的矩形,∴AB=CE,BC=EF,∠B=∠E=90°,在△ABC和△CEF中,,∴△ABC≌≌△CEF(SAS),∴∠BAC=∠FCE,AC=CF,∵∠B=90°,∴∠BAC+∠ACB=90°,∴∠ACB+∠FCE=90°,∴∠ACF=90,∴△ACF是等腰直角三角形,∴∠AFC=45°.故答案为:45.【点评】本题考查了矩形的性质,全等三角形的性质和判定的应用,能根据定理推出三角形ACF是等腰直角三角形是解此题的关键.12.如图,某公园入口处原有三级台阶,每级台阶高为18cm,深为30cm,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起始点为C,现设计斜坡BC的坡度i=1:5,则AC的长度是210 cm.【考点】解直角三角形的应用-坡度坡角问题.【分析】首先过点B作BD⊥AC于D,根据题意即可求得AD与BD的长,然后由斜坡BC的坡度i=1:5,求得CD的长,继而求得答案.【解答】解:过点B作BD⊥AC于D,根据题意得:AD=2×30=60(cm),BD=18×3=54(cm),∵斜坡BC的坡度i=1:5,∴BD:CD=1:5,∴CD=5BD=5×54=270(cm),∴AC=CD﹣AD=270﹣60=210(cm).∴AC的长度是210cm.故答案为:210.【点评】此题考查了解直角三角形的应用:坡度问题.此题难度适中,注意掌握坡度的定义,注意数形结合思想的应用与辅助线的作法.13.如图,菱形ABCD的对角线AC=4cm,把它沿对角线AC方向平移1cm得到菱形EFGH,则图中阴影部分图形的面积与四边形EMCN的面积之比为.【考点】菱形的性质;平移的性质.【分析】首先得出△MEC∽△DAC,则=,进而得出=,即可得出答案.【解答】解:∵ME∥AD,∴△MEC∽△DAC,∴=,∵菱形ABCD的对角线AC=4cm,把它沿着对角线AC方向平移1cm得到菱形EFGH,∴AE=1cm,EC=3cm,∴=,∴=,∴图中阴影部分图形的面积与四边形EMCN的面积之比为: =.故答案为:.【点评】此题主要考查了菱形的性质以及相似三角形的判定与性质,得出=是解题关键.14.已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点的坐标分别为(﹣1,0),(3,0).对于下列结论:①abc>0,;b2﹣4ac>0;③当x1<x2<0时,y1>y2;④当﹣1<x<3时,y>0.其中正确的有①②③个.【考点】二次函数图象与系数的关系.【分析】首先根据对称轴公式结合a的取值可判定出b<0,根据a、b、c的正负即可判断出①的正误;抛物线与x轴有两个不同的交点,则△=b2﹣4ac>0,故②正确;根据二次函数的性质即可判断出③的正误;由图象可知:当﹣1<x<3时,y<0,即可判断出④的正误.【解答】解:根据图象可得:抛物线开口向上,则a>0.抛物线与y交与负半轴,则c<0,对称轴:x=﹣>0,∴b<0,∴abc>0,故①正确;∵它与x轴的两个交点分别为(﹣1,0),(3,0),则△=b2﹣4ac>0,故②正确∵抛物线与x轴的两个交点分别为(﹣1,0),(3,0),∴对称轴是x=1,∵抛物线开口向上,∴当x<1时,y随x的增大而减小,∴当x1<x2<0时,y1>y2;故③正确;由图象可知:当﹣1<x<3时,y<0,故④错误;故正确的有①②③.故答案为①②③.【点评】此题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定抛物线的开口方向,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右..三、作图题(共4分)15.画出如图所示几何体的主视图、左视图.【考点】作图-三视图.【分析】分别找到从正面,左面,上面看得到的图形即可,看到的棱用实线表示;实际存在,没有被其他棱挡住,又看不到的棱用虚线表示.【解答】【点评】此题主要考查了画几何体的三视图;用到的知识点为:主视图,左视图与俯视图分别是从物体的正面,左面,上面看得到的图形.四、解答题(本题共9小题,共74分)16.解方程:(1)x2﹣6x=11(配方法)(2)(x+5)(x+1)=12.【考点】解一元二次方程-因式分解法;解一元二次方程-配方法.【分析】(1)先配方,再开方,即可得出两个一元一次方程,求出方程的解即可;(2)整理后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(1)x2﹣6x=11x2﹣6x+9=11+9(x﹣3)2=20,x﹣3=x1=3+2,x2=3﹣2;(2)(x+5)(x+1)=12,整理得:x2+6x﹣7=0,(x+7)(x﹣1)=0,x+7=0,x﹣1=0,x1=﹣7,x2=1.【点评】本题考查了解一元二次方程的应用,能选择适当的方法解一元二次方程转是解此题的关键.17.如图,某高尔夫球手击出的高尔夫求的运动路线是一条抛物线,当球水平运动了24m时达到最高点.落球点C比击球点A的海拔低1m,它们的水平距离为50m.(1)按如图所示的直角坐标系,求球的高度y(m)关于水平距离x(m)的函数关系式;(2)与击球点相比,球运动到最高点时有多高?【考点】二次函数的应用.【分析】(1)根据待定系数法,可得函数解析式;(2)根据自变量,可得函数值.【解答】解:(1)以海拔0米为x轴,过最高点为y轴,可设函数关系式:y=ax2+b,函数图象过(﹣24,0)(26,﹣1),把坐标点(﹣24,0),(26,﹣1)代入y=ax2+b,得,解得函数关系式为:y=﹣0.01x2+5.76;(2)当x=0时,y=b=5.76,答:球运动到最高点时最高为5.76米.【点评】本题考查了二次函数的应用,建立平面直角坐标系是解题关键.18.小明、小颖和小凡做“石头、剪刀、布”游戏,游戏规则如下:由小颖和小凡做“石头、剪刀、布”游戏,如果两人的手势相同,那么小明获胜;如果两人手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖中的获胜者.假设小颖和小凡每次出这三种手势的可能性相同:(1)请用树状图或列表的方法表示一次游戏中所有可能出现的结果;(2)这个游戏规则对三人公平吗?请说明理由.【考点】游戏公平性;列表法与树状图法.【分析】(1)列表得出所有等可能的情况数,找出两人手势相同的情况,求出小凡获胜的概率即可;(2)找出小明与小颖获胜的情况数,求出两人获胜的概率,比较即可得到结果.【解答】解:(1)列出表格,如图所示:石头剪刀布石头(石头,石头)(剪刀,石头)(布,石头)剪刀(石头,剪刀)(剪刀,剪刀)(布,剪刀)布(石头,布)(剪刀,布)(布,布)由列表可知所有等可能的情况有9种;(2)小明获胜的情况有3种,小颖获胜的情况有3种,∴P(小明获胜)=P(小颖获胜)==,∴P(小凡获胜)=,∴这个游戏对三人公平.【点评】此题考查了游戏公平性,以及列表法与树状图法,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平19.在某次反潜演习中,我军舰A测得离开海平面的下潜潜艇C的俯角为37°,位于军舰A正上方1100米的反潜飞机B測得此时潜艇C的俯角为67°,求前艇C离开海平面的下潜深度.(参考数据:sin37°≈,cos37°≈,tan37°≈,sin67°≈,cos67°≈,tan26°≈)【考点】解直角三角形的应用-仰角俯角问题.【分析】作CD⊥AB于点D.设AD=x米,在直角△ACD中利用三角函数利用x表示出CD,然后在直角△ACD 中利用三角函数即可列方程求得x的值.【解答】解:作CD⊥AB于点D.设AD=x米,∵在直角△ACD中,∠ACD=37°,tan∠ACD=,∴CD====.∴BD=AB+AD=1100+x,∵直角△ACD中,∠DBC=23°,tan∠ACD=,∴=,解得:x=.答:潜艇下潜深度是米.【点评】本题考查俯角的定义,要求学生能借助俯角构造直角三角形并解直角三角形.20.如图,正比例函数y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象交于点A、B两点,已知点A的横坐标为1,点B的纵坐标为﹣3.(1)请直接写出A、B两点的坐标;(2)求处这两个函数的表达式;(3)根据图象写出正比例函数的值不小于反比例函数的值的x的取值范围.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据题意得出A、B关于原点成中心对称,根据中心对称的性质从而求得A(1,3),B(﹣1,﹣3),(2)把A(1,3)代入y=k1x(k1≠0)与y=即可求得k1,k2;(3)根据图象和交点A、B的坐标即可求得.【解答】解:(1)∵正比例函数y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象交于点A、B两点,∴A、B关于原点成中心对称,∵点A的横坐标为1,点B的纵坐标为﹣3.∴A(1,3),B(﹣1,﹣3),(2)把A(1,3)代入正比例函数y=k1x(k1≠0)与反比例函数y=(k2≠0),得k1=3,k2=3,∴这两个函数的表达式为y=3x和y=;(3)由图象可知:正比例函数的值不小于反比例函数的值的x的取值范围为﹣1≤x<0或x>1.【点评】本题考查了反比例函数和一次函数的交点问题,根据题意求得A、B的坐标是解题的关键.21.已知,如图,在▱ABCD中,AC是对角线,AB=AC,点E、F分别是BC、AD的中点,连接AE,CF.(1)四边形AECF是什么特殊四边形?证明你的结论;(2)当△ABC的角满足什么条件时,四边形AECF是正方形?证明你的结论.【考点】正方形的判定;平行四边形的性质.【分析】(1)平行四边形的性质得出AD=BC,AD∥BC,求出AF=CE,AF∥CE,求出四边形AECF是平行四边形,求出∠AEC=90°,即可得出答案;(2)求出AE=EC=BC,即可得出答案.【解答】(1)四边形AECF是矩形,证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵E、F分别是BC、AD的中点,∴AF=AD,CE=BC,∴AF=CE,AF∥CE,∴四边形AECF是平行四边形,∵AB=AC,E为BC的中点,∴AE⊥BC,∴∠AEC=90°,∴四边形AECF是矩形;(2)当△ABC满足∠BAC=90°时,四边形AECF是正方形,证明:∵∠BAC=90°,E为BC的中点,∴AE=EC=BC,∵四边形AECF是矩形,∴四边形AECF是正方形,∴当△ABC满足∠BAC=90°°时,四边形AECF是正方形.【点评】本题考查了矩形的判定、菱形的判定、正方形的判定,平行四边形的性质和判定,等腰三角形的性质,直角三角形的性质的应用,能综合运用知识点进行推理是解此题的关键.22.某商店购进一批单价为30元的日用商品,如果以单价40元销售,那么每星期可售出400件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.设销售单价为x(元)(x>40)时,该商品每星期获得的利润y(元).(1)求出y与x之间的函数关系式及自变量x的取值范围;(2)求出销售单价为多少元时,每星期获得的利润最大?最大利润是多少?【考点】二次函数的应用;二次函数的最值;根据实际问题列二次函数关系式.【专题】应用题;函数思想;二次函数的应用.【分析】(1)根据“实际销量=原计划销量﹣因价格提高减少的销量”表示出销售量,再根据:每周利润=每件利润×实际销售量可列出函数关系式;由销售量≥0确定x的取值范围;(2)将(1)中函数关系式配方成顶点式,依据顶点式可得其最大值.【解答】解:(1)根据题意,当销售单价定为x元时,其每周销售量为:400﹣20(x﹣40),则该商品每星期获得的利润y=(x﹣30)[400﹣20(x﹣40)]=﹣20x2+1800x﹣36000,即y=﹣20x2+1800x﹣36000,∵其每周销售量400﹣20(x﹣40)≥0且x>40,∴40<x≤60;(2)由(1)知y=﹣20x2+1800x﹣36000,配方得:y=﹣20(x﹣45)2+4500,∵﹣20<0,且40<45<60,∴当x=45时,y最大值=4500,答:销售单价为45元时,每星期获得的利润最大,最大利润是4500元.【点评】本题主要考查二次函数的实际应用能力,将实际问题根据相等关系建立二次函数关系是关键.23.如图,正方形ABCD的四个顶点分别在正方形EFGH的四条边上,我们称正方形EFGH是正方形ABCD的外接正方形.探究一:巳知边长为1的正方形ABCD,是否存在一个外接正方形EFGH,它的面积是正方形ABCD面积的2倍?如图,假设存在正方形EFGH,它的面积是正方形ABCD的2倍.因为正方形ABCD的面积为1,则正方形EFGH的面积为2,所以EF=FG=GH=HE=,设EB=x,则BF=﹣x,∵Rt△AEB≌Rt△BFC∴BF=AE=﹣x在Rt△AEB中,由勾股定理,得x2+(﹣x)2=12解得,x1=x2=∴BE=BF,即点B是EF的中点.同理,点C,D,A分别是FG,GH,HE的中点.所以,存在一个外接正方形EFGH,它的面积是正方形ABCD面积的2倍探究二:巳知边长为1的正方形ABCD,是否存在一个外接正方形EFGH,它的面积是正方形ABCD面积的3倍?(仿照上述方法,完成探究过程)探究三:巳知边长为1的正方形ABCD,不存在一个外接正方形EFGH,它的面积是正方形ABCD面积的4倍?(填“存在”或“不存在”)探究四:巳知边长为1的正方形ABCD,是否存在一个外接正方形EFGH,它的面积是正方形ABCD面积的n 倍?(n>2)(仿照上述方法,完成探究过程)【考点】四边形综合题.【分析】探究二,根据探究一的解答过程、运用一元二次方程计算即可;探究三,根据探究一的解答过程、运用一元二次方程根的判别式解答;探究四,根据探究一的解答过程、运用一元二次方程根的判别式解答.【解答】解:探究二:因为正方形ABCD的面积为1,则正方形EFGH的面积为3,所以EF=FG=GH=HE=,设EB=x,则BF=﹣x,∵Rt△AEB≌Rt△BFC∴BF=AE=﹣x在Rt△AEB中,由勾股定理,得x2+(﹣x)2=12整理得x2﹣x+1=0b2﹣4ac=3﹣4<0,此方程无解,不存在一个外接正方形EFGH,它的面积是正方形ABCD面积的3倍;探究三:因为正方形ABCD的面积为1,则正方形EFGH的面积为4,所以EF=FG=GH=HE=2,设EB=x,则BF=2﹣x,∵Rt△AEB≌Rt△BFC∴BF=AE=2﹣x在Rt△AEB中,由勾股定理,得x2+(2﹣x)2=12整理得2x2﹣4x+3=0b2﹣4ac=16﹣24<0,此方程无解,不存在一个外接正方形EFGH,它的面积是正方形ABCD面积的3倍,故答案为:不存在;探究四:因为正方形ABCD的面积为1,则正方形EFGH的面积为n,所以EF=FG=GH=HE=,设EB=x,则BF=﹣x,∵Rt△AEB≌Rt△BFC∴BF=AE=﹣x在Rt△AEB中,由勾股定理,得x2+(﹣x)2=12整理得2x2﹣2x+n﹣1=0b2﹣4ac=8﹣4n<0,此方程无解,不存在一个外接正方形EFGH,它的面积是正方形ABCD面积的n倍.【点评】本题考查的是正方形的性质、全等三角形的判定和性质以及一元二次方程的解法,读懂探究一的解答过程、正确运用一元二次方程根的判别式是解题的关键.24.已知,如图,在△ABC中,已知AB=AC=5cm,BC=6cm.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,直线QD从点C出发,沿CB方向匀速运动,速度为1cm/s,且QD⊥BC,与AC,BC分别交于点D,Q;当直线QD停止运动时,点P也停止运动.连接PQ,设运动时间为t(0<t<3)s.解答下列问题:(1)当t为何值时,PQ∥AC?(2)设四边形APQD的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使S四边形APQD:S△ABC=23:45?若存在,求出t的值;若不存在,请说明理由.【考点】相似形综合题.【分析】(1)设当ts时PQ∥AC,再用t表示出BP与BQ的长,根据相似三角形的性质即可得出结论;(2)分别过点A、P作AN⊥BC,PN⊥BC于点N、M,根据勾股定理求出AN的长,再由相似三角形的性质求出PM的长,根据三角形的面积公式即可得出结论;(3)分别用t表示出四边形APQD与三角形ABC的面积,进而可得出结论.【解答】解:(1)当ts时PQ∥AC,∵点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,直线QD从点C出发,沿CB方向匀速运动,速度为1cm/s,∴BP=t,BQ=6﹣t.∵PQ∥AC,∴△BPQ∽△BAC,∴=,即=,解得t=(s).答:当t为s时,PQ∥AC;(2)过点A、P作AN⊥BC,PN⊥BC于点N、M,∵AB=AC=5cm,BC=6cm,∴BN=CN=3cm,∴AN===4cm.∵AN⊥BC,PN⊥BC,∴△BPM∽△BAN,∴=,即=,解得PM=,∴S△BPQ=BQPM=(6﹣t)=﹣+t.∵AB=AC=5cm,∴∠C=45°,∴QC=DQ,∴S△CDQ=CQDQ=t2.∵S△ABC=BCAN=×6×4=12,∴y=S四边形APQD=S△ABC﹣S△CDQ﹣S△BPQ=12﹣t2﹣(﹣+t)=12﹣t2﹣t(0<t<3);(3)存在.∵由(2)知,S四边形APQD=S△ABC﹣S△CDQ﹣S△BPQ=12﹣t2﹣(﹣+t)=12﹣t2﹣t,S△ABC=12,∴=,解得t1=﹣12+,t2=﹣12﹣(舍去).答:当t=(﹣12+)s时,S四边形APQD:S△ABC=23:45.【点评】本题考查的是相似形综合题,涉及到相似三角形的判定与性质、等腰直角三角形等知识,根据题意作出辅助线,构造出直角三角形是解答此题的关键.。

青岛版初中数学九年级上册期末检测试卷(3套)含答案

青岛版初中数学九年级上册期末检测试卷(3套)含答案

青岛版数学九年级上册期末检测试卷1一.选择题1.下列哪个方程是一元二次方程()A.2x+y=1 B.x2+1=2xy C.x2+=3 D.x2=2x﹣3 2.制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是()A.360元B.720元C.1080元D.2160元3.把一元二次方程(x+3)(x﹣5)=2化成一般形式,得()A.x2+2x﹣17=0 B.x2﹣8x﹣17=0 C.x2﹣2x=17 D.x2﹣2x﹣17=0 4.sin60°+tan45°的值等于()A.B.C.D.15.已知⊙P的半径为5,点P的坐标为(2,1),点Q的坐标为(0,6),则点Q与⊙P的位置关系是()A.点Q在⊙P外B.点Q在⊙P上C.点Q在⊙P内D.不能确定6.已知,在Rt△ABC中,∠C=90°,AB=5,BC=3,则sin A的值是()A.B.C.D.7.已知两个相似三角形一组对应高分别是15和5,面积之差为80,则较大三角形的面积为()A.90 B.180 C.270 D.36008.一元二次方程x2+6x+9=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根9.如图,AB是⊙O的直径,∠BOD=120°,点C为的中点,AC交OD于点E,OB =2,则AE的长为()A.B.C.D.10.已知一元二次方程ax2+bx+c=0(a≠0)①若方程两根为﹣1和2,则2a+c=0;②b>a+c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;③若b=2a+3c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;④若m是方程ax2+bx+c=0的一个根,则一定有b2﹣4ac=(2am+b)2成立其中正确的是()A.只有①②③B.只有①③④C.只有①②③④D.只有①④11.如图,在等腰△ABC中,AB=AC,tan C=2,BD⊥AC于点D,点G是底边BC上一点,过点G向两腰作垂线段,垂足分别为E、F,若BD=4,GE=1.5,则BF的长度为()A.0.75 B.0.8 C.1.25 D.1.3512.如图,分别以△ABC的三个顶点为圆心作⊙A、⊙B、⊙C,且半径都是0.5cm,则图中三个阴影部分面积之和等于()A.cm2B.cm2C.cm2D.cm2二.填空题13.在△ABC中,∠A、∠B为锐角,且|tan A﹣1|+(﹣cos B)2=0,则∠C=°.14.已知⊙O的半径为3cm,点A、B、C是直线l上的三个点,点A、B、C到圆心O的距离分别为2cm,3cm,5cm,则直线l与⊙O的位置是.15.一个等边三角形边长的数值是方程x2﹣3x﹣10=0的根,那么这个三角形的周长为.16.两个相似三角形的相似比为2:3,他们的周长差为30,则较大三角形的周长为.17.如图,等边三角形ABC的外接圆⊙O的半径OA的长为2,则其内切圆半径的长为.三.解答题18.计算(1)2sin30°﹣tan60°+tan45°;(2)tan245°+sin230°﹣3cos230°19.用适当的方法解下列方程:(1)(x﹣2)2﹣16=0(2)5x2+2x﹣1=0.20.如图,在△ABC中,D,E分别是边AB,AC上的点,连接DE,且∠ADE=∠ACB.(1)求证:△ADE∽△ACB;(2)如果E是AC的中点,AD=8,AB=10,求AE的长.21.如图,AD是△ABC的中线,tan B=,cos C=,AC=.求:(1)BC的长;(2)∠ADC的正弦值.22.如图,⊙O是△ABC的外接圆,圆心O在AB上,M是OA上一点,过M作AB的垂线交BC的延长线于点E,点F是ME上的一点,且EF=CF.(1)求证:直线CF是⊙O的切线;(2)若∠B=2∠A,AB=8,且AC=CE,求BM的长.。

青岛版九年级上册数学期末测试卷

青岛版九年级上册数学期末测试卷

青岛版九年级上册数学期末测试卷一、单选题(共15题,共计45分)1、如图,△ABC为⊙O的内接三角形,AB=2,∠C=30 ,则⊙O的半径为()A.1B.2C.3D.42、有一人患了流感,经过两轮传染后共有100人患了流感,每轮传染中平均一个人传染的人数x满足的方程为()A.1+x+x(1+x)=100B.x(1+x)=100C.1+x+x 2=100D.x2=1003、关于x的一元二次方程(m﹣1)x2+3x+m2﹣1=0的一根为0,则m的值是()A.﹣1B.﹣2C.±1D.±24、如图,△ABC中,AD⊥BC于D,且有下列条件:(1)∠B+∠DAC=90°;(2)∠B=∠DAC;(3)=;(4)AB2=BD·BC其中一定能够判定△ABC是直角三角形的共有()A.3个B.2个C.1个D.0个5、已知方程x2-5x+2=0的两个解分别为x1、x2,则x1+x2-x1•x2的值为()A.-7B.-3C.7D.36、一元二次方程y2﹣4=0的实数根是()A.2B.C.±2D.±7、等腰三角形的底和腰是方程x2﹣7x+12=0的两个根,则这个三角形的周长是()A.11B.10C.11或10D.不能确定8、在Rt△ABC中,∠C=90°,a=4,b=3,则sinA的值是()A. B. C. D.9、如图,正方形ABCD,点F在边AB上,且,CE⊥DF,垂足为点M,且交AD于点E,AC与DF交于点N,延长CB至G,使BG=BC,连接CM.有如下结论:①AE=BF;②AN=AD;③∠ADF=∠GMF;④S△ANF =S△ABC,上述结论中,正确的是()A.①②B.①③C.①②③D.②③④10、如图,已知⊙O的半径为5,弦AB长度为8,则⊙O上到弦AB所在直线的距离为2的点有()个.A.1B.2C.3D.411、将一元二次方程5x2 -1=4x化成一般形式后,二次项系数、一次项系数和常数项分别为()A.5、-1、4B.5、4、-1C.5、-4、-1D.5、-1、-412、如图,∠APD=90°,AP=PB=BC=CD,则下列结论成立的是()A.ΔPAB∽ΔPDAB.ΔABC∽ΔDCAC.ΔPAB∽ΔPCAD.ΔABC∽ΔDBA13、已知α,β是△ABC的两个角,且sinα,tanβ是方程2x2﹣3x+1=0的两根,则△ABC是()A.锐角三角形B.直角三角形或钝角三角形C.钝角三角形D.等边三角形14、下列命题:①方程的解是x=1;②有两边和一角相等的两个三角形全等;③顺次连接等腰梯形各边中点所得的四边形是菱形;④4的平方根是2。

青岛版初三数学二次函数测试题

青岛版初三数学二次函数测试题

青岛版初三数学二次函数测试题供学生学习使用。

一、精心选一选(12某4=48分)1.若一次函数y=3某-14的值大于1,则自变量某满足条件是()A、某<5B、某>5C、某=5D、某≠52.下列函数解析式中,y是某的反比例函数的是()A、圆的面积S与半径r的关系B、圆柱的体积一定,它的底面面积S与圆柱高h的关系C、长方形的周长一定,它的一边a与邻边b的关系D、家庭月收入一定,每月的支出某与存款额y的关系4.当k>0,某<0时,反比例函数y=的图像在()A、第一象限B、第二象限C、第三象限D、第四象限5.点(0,0)是()A、抛物线y=某2的最低点B、抛物线y=-某2的最低点C、抛物线y=某2的最高点D、抛物线y=-某2和y=某2的最高点6.下列关系式中,属于二次函数的是(某为自变量)()A.B.C.D.7.函数y=某2-2某+3的图象的顶点坐标是()A.(1,-4)B.(-1,2)C.(1,2)D.(0,3)8.抛物线y=2(某-3)2的顶点在()A.第一象限B.第二象限C.某轴上D.y轴上9.抛物线的对称轴是()A.某=-2B.某=2C.某=-4D.某=4供学生学习使用。

10.由二次函数y2(某3)21,可知()A.其图象的开口向下B.其图象的对称轴为直线某3C.其最小值为1D.当某3时,y随某的增大而增大11.在同一坐标系中,一次函数ya某1与二次函数y某2a的图像可能是()12.二次函数y某b某c的图象上有两点(3,-8)和(-5,-8),则此拋2物线的对称轴是()A.某=4B.某=3C.某=-5D.某=-1。

二、细心填一填(6某4=24分)1、常用来表示函数的方法有__________法;__________法;____________法。

2.y=2某2-b某+3的对称轴是直线某=1,则b的值为__________3.将抛物线y=某2-2某向上平移3个单位,再向右平移4个单位得到的抛物线是4.抛物线y2某24某1在某轴上截得的线段长度是5、函数y=k某+b,当某=-4时,y=9;当某=2时,y=-3,则当某_______时,y>0.6.若将二次函数y=某2-2某+3配方为y=(某-h)2+k的形式,则y=________.三、解答题(4某12=48分)1.讨论二次函数y=-2.5(某+3)2-2的性质。

青岛版九年级上册数学期末测试卷及含答案

青岛版九年级上册数学期末测试卷及含答案

青岛版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,已知△ABC,AB=BC,以AB为直径的圆交AC于点D,过点D的⊙O的切线交BC于点E.若CD=5,CE=4,则⊙O的半径是()A.3B.4C.D.2、已知关于x的一元二次方程x2+2x+a﹣1=0有两根为x1和x2,且x12﹣x 1x2=0,则a的值是()A.a=1B.a=1或a=﹣2C.a=2D.a=1或a=23、已知方程2x2﹣x﹣1=0的两根分别是x1和x2,则x1+x2的值等于()A.2B.﹣C.D.﹣14、将一个菱形放在2倍的放大镜下,则下列说法不正确的是()A.菱形的各角扩大为原来的2倍B.菱形的边长扩大为原来的2倍C.菱形的对角线扩大为原来的2倍D.菱形的面积扩大为原来的4倍5、已知,如图一张三角形纸片ABC,边AB长为10cm,AB边上的高为15cm,在三角形内从左到右叠放边长为2的正方形小纸片,第一次小纸片的一条边都在AB上,依次这样往上叠放上去,则最多能叠放的正方形的个数是( ).A.12B.13C.14D.156、在△ABC中,已知AB=AC=4cm,BC=6cm,D是BC的中点,以D为圆心作一个半径为3cm的圆,则下列说法正确的是()A.点A在⊙D外B.点A在⊙D 上C.点A在⊙D内D.无法确定7、若,,则以,为根的一元二次方程是()A. B. C. D.8、已知关于x的一元二次方程有两个不相等的实数根,那么m的值为()A. B. C. D.9、已知,在中,,,,作.小亮的作法如下:①作,②在上截取,③以为圆心,以5为半径画弧交于点,连结.如图,给出了小亮的前两步所画的图形.则所作的符合条件的()A.是不存在的B.有一个C.有两个D.有三个及以上10、如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan∠ABC的值为()A.1B.C.D.11、把方程(x- )(x+ )+(2x-1)2=0化为一元二次方程的一般形式是()A. B. C. D.512、按如图所示的方法折纸,下面结论正确的个数()①∠2=90°;②∠1=∠AEC;③△ABE∽△ECF;④∠BAE=∠3.A.1 个B.2 个C.3 个D.4 个13、若关于x的方程x2+(m+1)x+ =0的一个实数根的倒数恰是它本身,则m 的值是()A.﹣B.C.﹣或D.114、如图,四边形ABCD是⊙O的内接四边形,若∠B=80°,则∠ADC的度数是()A.60°B.80°C.90°D.100°15、已知弦AB把圆周分成1:5的两部分,则弦AB所对应的圆心角的度数为()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
(第1题图
)
九年级数学上学期期末测试题
一、选择题
1.下列图案中,不是中心对称图形的是( )
2.下列命题中,真命题是( ) A .对角线互相垂直且相等的四边形是菱形 B .对角线互相垂直的平行四边形是菱形 C .对角线互相平分且相等的四边形是菱形 D .对角线相等的四边形是菱形
3.若关于x 的一元二次方程(m-1)x 2+5x+m 2-3m+2=0的常数项为0,则m 的值等于( )
4.二次函数2y ax bx c =++的图像如图所示,则点c
Q a b ⎛⎫
⎪⎝⎭
,在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
5.用配方法解方程2
420x x -+=,下列配方正确的是( )
A .2(2)2x -=
B .2(2)2x +=
C .2
(2)2x -=- D .
2(2)6x -= 6.在平面直角坐标系中,如果抛物线y =2x 2分别向上、向右平移2个单位,那么新抛物线的解析式是( )
A .y =2(x + 2)2-2
B .y =2(x -2)2 + 2
C .y =2(x -2)2-2
D .y =2(x + 2)2 + 2 7.在同一直角坐标系中,函数y=kx -k 与(k ≠0)的图像
大致是( )
8.⊙O 的直径AB =10cm ,弦CD ⊥AB ,垂足为P .若OP :OB =
3:5,则CD 的长为( )
A .6cm
B .4cm
C .8 cm
D .91 cm 9.两圆的半径分别为R 和r ,圆心距为1,且R 、r 分别是方程
02092=+-x x 的两个根,则两圆的位置关系是 ( )
A 、相交
B 、外切
C 、内切
D 、外离 10.如图,在直角梯形ABCD 中,AD BC ∥,
90C = ∠,且AB AD BC >+,AB 是⊙O 的直径,
则直线CD 与⊙O 的位置关系为( ) A .相离
B .相切
C .相交
D .无法确定
11. 如图,⊙O 是△ABC 的内切圆,切点分别是D 、E 、F ,已知∠A=100°,∠C=30°,则∠DFE 的度数是( )
A.55°
B.60°
C.65°
D.70°
(第4题图)
x
x
k y =
第11题
第16题图
12. 已知等腰梯形的底角为45°,高为2,上底为2,则其面积为( ) A .2 B .6 C .8 D .12 二、填空题: 13.
函数y =
x 的取值范围是
.14.如图是反比例函数的图像,O 为原点,点A 是图像 上任意一点,AM ⊥x 轴,垂足为M ,如果△AOM 的面积 为2,那么反比例函数的解析式是
15.若菱形的两条对角线长分别是8、6,则这个菱形的面积是 16. 如右图抛物线y=-x 2
+bx +c 的图像与x 轴的一个交点(1,0),则抛物线与x 轴的另一个交点坐标是___________。

17.已知O 是△ABC 的内心,若∠A=50°,则∠BOC=
18. 已知扇形的弧长是2π,半径为10cm ,则扇形的面积是 cm 2
19. 体育测试时,初三一名学生推铅球,已知铅球所经过的路线为抛物线
212
1
2++-=x x y 的一部分,该同学的成绩是
三、解答题
20解方程: (x+1)(x-3)=12 ()()x x -=-52532
21.
22.一次函数b kx y +=的图像与反比例函数x
m
y =
的图象交于 A (-2 ,1),B (1 ,n )两点。

(1) 试确定上述反比例函数和一次函数的表达式;
(2)求△OAB 的面积。

(3)写出反比例函数值大于一次函数值的自变量x 的取值范围。

23、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元。

为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。

⑴若商场平均每天要盈利1200元,每件衬衫应降价多少元?
⑵每件衬衫降价多少元,商场平均每天盈利最多?
24.已知:在梯形ABCD中,AD∥BC,∠ABC=90°,
BC=2AD,E是BC的中点,连接AE、AC。

(1)点F是DC上一点,连接EF,交AC于点O(如图1),
求证:△AOE∽△COF;
(2)若点F是DC的中点,连接BD,交AE与点G(如
图2),求证:四边形EFDG是菱形。

25.某工厂现有甲种原料360kg,乙种原料290kg,计划用它们生产
A、B两种产品共50件,已知每生产一件A种产品,需要甲
种原料9kg、乙种原料3kg,获利700元,生产一件B种产品,需要甲种原料4kg、乙种原料10kg,可获利1200元。

(1)利用这些原料,生产A、B两种产品,有哪几种不同的方案?(2)设生产两种产品总利润为y(元),其中生产A中产品x(件),试写出y与x之间的函数解析式。

(3)利用函数性质说明,采用(1)中哪种生产方案所获总利润最大?最大利润是多少?。

相关文档
最新文档