第九章 线性回归和相关分析
线性相关分析和线性回归

相关关系从单变量从发,在一个样本数据中想知道某一指标在样本中的离散程度用方差(样本偏离均值的平均距离的平方数,也叫总变差)或者标准差(样本偏离均值的平均距离)表示。
两个变量的时候,这两个变量在样本中的离散程度用协方差(类比于方差)表示。
协方差表示的是总变差,描述的是两个变量的总体误差(总体误差的期望)。
协方差:协方差:cov(X,Y)=E[(X−E[X])(Y−E[Y])]数据点的协方差:2数据点的协方差:(x1−ux)(y1−uy)+(x2−ux)(y2−uy)2如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值时另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值(用上图公式表示的是每一个点与均值的误差值都是正数);如果两个变量的变化趋势相反,即其中一个变量大于自身的期望值时另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值(用上图公式表示的是每一个点与均值的误差值都是负数)。
协方差为正值,表示两个变量正相关;协方差为负值,表示两个变量负相关;协方差为0则表示不相关(每一个点与均值的误差值有正有负)。
相关系数协方差的数值可以衡量两个变量的关系,在同一物理量纲之下有一定的作用,但同样的两个量采用不同的量纲使它们的协方差在数值上表现出很大的差异。
(举个向量的栗子,两个向量的夹角大小表示相关关系,但是两向量的长度不影响夹角的大小,协方差的计算类似于计算向量的距离,向量的距离也可以表示向量之间的关系,但是会受到向量长度的影响)。
因此,相关关系需要去掉量纲的影响,使用协方差同时除以X 和Y的标准差,这就是相关系数(皮尔逊相关系数)相关系数:相关系数r:cov(X,Y)σxσy相关系数r的取值范围是[-1,1],正值表示正相关,负值表示负相关。
当相关系r>0.6时,可以认为两个变量之前强相关,0.3<=r<=0.6时,可以认为是中等相关,当r<0.3时认为弱相关,r=0时表示不相关。
线性回归与相关分析

线性回归与相关分析一、引言线性回归和相关分析是统计学中常用的两种数据分析方法。
线性回归用于建立两个或多个变量之间的线性关系,而相关分析则用于衡量变量之间的相关性。
本文将介绍线性回归和相关分析的基本原理、应用场景和计算方法。
二、线性回归线性回归是一种建立自变量和因变量之间线性关系的统计模型。
它的基本思想是通过找到最佳拟合直线来描述自变量与因变量之间的关系。
线性回归模型可以表示为:Y = β0 + β1X + ε,其中Y表示因变量,X表示自变量,β0和β1分别表示截距和斜率,ε表示误差项。
线性回归的目标是最小化观测值与模型预测值之间的差异,常用的优化方法是最小二乘法。
线性回归的应用场景非常广泛。
例如,我们可以利用线性回归来分析广告费用和销售额之间的关系,或者分析学生学习时间和考试成绩之间的关系。
线性回归还可以用于预测未来趋势。
通过建立一个合适的线性回归模型,我们可以根据历史数据来预测未来的销售额或者股票价格。
在计算线性回归模型时,我们首先需要收集相关的数据。
然后,可以使用统计软件或者编程语言如Python、R等来计算最佳拟合直线的参数。
通过计算截距和斜率,我们可以得到一个最佳拟合线,用于描述自变量和因变量之间的关系。
此外,我们还可以借助评价指标如R 平方来衡量模型的拟合程度。
三、相关分析相关分析是一种用于衡量两个变量之间相关性的统计方法。
它可以帮助我们判断变量之间的线性关系的强度和方向。
相关系数是表示相关性的一个指标,常用的相关系数有皮尔逊相关系数和斯皮尔曼相关系数。
皮尔逊相关系数适用于测量两个连续变量之间的线性关系,其取值范围在-1到1之间。
当相关系数接近1时,表示两个变量呈正相关,即随着一个变量增加,另一个变量也增加。
当相关系数接近-1时,表示两个变量呈负相关,即随着一个变量增加,另一个变量减小。
当相关系数接近0时,表示两个变量之间没有线性关系。
斯皮尔曼相关系数适用于测量两个有序变量之间的单调关系,其取值范围也在-1到1之间。
回归分析与相关分析

回归分析与相关分析导言回归分析与相关分析是统计学中常用的两种分析方法,用于研究变量之间的关系。
在本文中,我们将对回归分析和相关分析进行详细探讨,并介绍它们的原理、应用和实例。
一、回归分析回归分析是通过建立一个数学模型来描述一个或多个自变量与因变量之间的关系。
它可以帮助我们预测因变量的取值,并理解自变量对因变量的影响程度。
1.1 简单线性回归简单线性回归是回归分析中最常见的一种方法,它假设自变量和因变量之间存在线性关系。
通过最小二乘法,我们可以得到最佳拟合直线,从而预测因变量的取值。
1.2 多元线性回归多元线性回归是对简单线性回归的拓展,它可以同时考虑多个自变量对因变量的影响。
通过最小二乘法,我们可以得到最佳的多元回归方程,从而预测因变量的取值。
1.3 逻辑回归逻辑回归是回归分析在分类问题上的一种应用。
它能够根据自变量的取值,预测因变量的类别。
逻辑回归常用于预测二分类问题,如预测一个学生是否会被大学录取。
二、相关分析相关分析是研究两个或多个变量之间相关关系的一种方法。
它可以帮助我们了解变量之间的关联程度,以及一个变量是否能够作为另一个变量的预测因子。
2.1 皮尔逊相关系数皮尔逊相关系数是一种衡量两个连续变量之间线性相关程度的统计量。
它的取值范围在-1到1之间,当相关系数接近1时,表示两个变量正相关;当相关系数接近-1时,表示两个变量负相关;当相关系数接近0时,表示两个变量无相关关系。
2.2 斯皮尔曼相关系数斯皮尔曼相关系数是一种衡量两个变量之间的非线性相关程度的统计量。
它的取值范围也在-1到1之间,但它适用于衡量非线性关系和顺序关系。
斯皮尔曼相关系数广泛应用于心理学和社会科学领域。
应用实例为了更好地理解回归分析与相关分析的应用,让我们通过一个实际案例来说明。
假设我们想研究某个国家的人均GDP与教育水平之间的关系。
我们收集了10个州的数据,包括每个州的人均GDP和受教育程度指数。
我们可以利用回归分析来建立一个数学模型,从而预测人均GDP与受教育水平之间的关系。
概率论--线性回归

i =1
=(6050.6-0.632×14047)/9=60.37 2. 一元线性回归的假设检验(相关系数法) 问题:变量Y与X间是否存在线性相关关系? 相关系数法:是基于试验数据检验变量间线性相关关系 是否显著的一种方法。
Chapter 9 回归分析
12
Mathematical Statistics
有
R =
l xz l xx l zz
=-0.996
︱R︱=0.996>0.765=R0.01(8), 可以认为X与Y存在显著的指数相关关系。
Chapter 9 回归分析
21
Mathematical Statistics
2 2 i i
∑xy
− 10 x y = − 24.554
19
Mathematical Statistics
Chapter 9 回归分析
ˆ ˆ a ′ = z − bx = 6.527 + 0.2976 × 5.5 = 8.1642
从而
ˆ z = 8 .1642 − 0 .2976 x
ˆ a′ ˆ bx
Chapter 9 回归分析
5
Mathematical Statistics
记 Y i 为 Y i 的估计值 , 则
Y
Y
i
i
= a + b xi + ε i = Y i + ε i
这可写成 :
ε = Y −Y = Y − ( a + b x ) 这表明 ε 是 Y的实际观测值与
i i i i i
估计值之差,即拟合误 差。
5.42 5.32
18
Mathematical Statistics
9 第九章 回归与相关

估计。
一)、加权最小二乘估计 假定各观测值的权重为Wi,求解回归方 程就要使得以下加权后的残差平方和最小
ss残W Wi Yi aw bw X
2
bw
aW
WX WY WXY W l l WX WX W WY b WX Y b W
二、直线回归方程的求法 直线方程为: a为Y轴上的截距;b为斜率,表示X 每改变一个单位,Y的变化的值,称为回 归系数; 表示在X值处Y的总体均数 估计值。为求a和b两系数,根据数学上 的最小二乘法原理,可导出a和b的算式 如下:
例9-1 某地方病研究所调查了8名正常 儿童的尿肌酐含量(mmol/24h)如表91。估计尿肌酐含量(Y)对其年龄(X) 的关系。
表14,rs界值表,P<0.01,故可认为当地居 民死因的构成和各种死因导致的潜在工作损 失年数WYPLL的构成呈正相关。 二、相同秩次较多时rs的校正 当X及Y中,相同秩次个数多时,宜用下式校 正
第四节
加权直线回归
在一些情况下,根据专业知识考虑 并结合实际数据,某些观察值对于估计 回归方程显得更“重要”,而有些不 “重要”,此时可以采用加权最小二乘
lYY的分析 如图9-4,p点的纵坐标被回归直线与均数 截成三个线段:
图9-4
平方和划分示意图
第一段 第二段
第三段
上述三段代数和为:
移项:
p点是散点图中任取一点,将所有的点子都
按上法处理,并将等式两端平方后再求和,
则有:
它们各自的自由度分别为: 可计算统计量F:
SS回 SS 残
2
F
回 残
表9-3某省1995年到1999年居民死因构成与WYPLL构成
第9章相关与回归分析ppt课件

9.1 相关关系
散点图的作用就是通过两个数值型变量之间在二维平面的直角坐标中 的分布图形,粗略地把握变量之间相关关系的基本态势。例如变量之间 的线性特征越显著,说明其相关关系越强,反之则越弱;两个变量之间 的数值呈同方向变化为正相关,否则为负相关。
借助散点图还可以概略地区分和识别变量之间的非线性相关的具体类 型,为回归分析确定回归方程的具体形式提供依据,这也是散点图的重 要功能。例如,通过散点图展示的图形特征,初步地分辨出相关关系是 直线,还是二次曲线、三次曲线、指数曲线、对数曲线、S曲线等。所 以,散点图不仅是相关分析,也是回归分析中经常使用的最简便的基本 分析工具。
2019年12月6日/*
《统计学教程》
第9章 相关与回归分析
9.2 一元线性回归
关于随机误差,线性回归理论模型具有以下三项假定。
(1) 0均值。剩余变动为不可观测的随机误差,其数学期望为0。
(2)方差齐性。对于所有的自变量x,随机误差的方差相同。
(3)独立性。各项随机误差之间,以及各项随机误差与对应的自变量 之间均不相关,即有
2019年12月6日/*
《统计学教程》
第9章 相关与回归分析
9.1 相关关系
相关系数的取值范围为 1r1。
当相关系数的取值为正时,说明变量和变量的数值变化是同方向的, 即为正相关;若相关系数的取值为负,则说明变量和变量的数值变化是 反方向的,即为负相关。
相关系数的正负取值取决于Lxy的正负。
E y01x
(9.9)
一元线性回归方程在直角坐标系中为一条直线,所以也称为直线回归 方程。
2019年12月6日/*
《统计学教程》
第9章 相关与回归分析
9.2 一元线性回归
回归分析与相关分析

回归分析与相关分析回归分析是通过建立一个数学模型来研究自变量对因变量的影响程度。
回归分析的基本思想是假设自变量和因变量之间存在一种函数关系,通过拟合数据来确定函数的参数。
回归分析可以分为线性回归和非线性回归两种。
线性回归是指自变量和因变量之间存在线性关系,非线性回归是指自变量和因变量之间存在非线性关系。
回归分析可用于预测、解释和控制因变量。
回归分析的应用非常广泛。
例如,在经济学中,回归分析可以用于研究收入与消费之间的关系;在医学研究中,回归分析可以用于研究生活方式与健康之间的关系。
回归分析的步骤包括确定自变量和因变量、选择合适的回归模型、拟合数据、检验模型的显著性和解释模型。
相关分析是一种用来衡量变量之间相关性的方法。
相关分析通过计算相关系数来度量变量之间的关系的强度和方向。
常用的相关系数有Pearson相关系数、Spearman相关系数和判定系数。
Pearson相关系数适用于连续变量,Spearman相关系数适用于顺序变量,判定系数用于解释变量之间的关系。
相关分析通常用于确定两个变量之间是否相关,以及它们之间的相关性强度和方向。
相关分析的应用也非常广泛。
例如,在市场研究中,相关分析可以用于研究产品价格与销量之间的关系;在心理学研究中,相关分析可以用于研究学习成绩与学习时间之间的关系。
相关分析的步骤包括确定变量、计算相关系数、检验相关系数的显著性和解释相关系数。
回归分析与相关分析的主要区别在于它们研究的对象不同。
回归分析研究自变量与因变量之间的关系,关注的是因变量的预测和解释;相关分析研究变量之间的关系,关注的是变量之间的相关性。
此外,回归分析通常是为了解释因变量的变化,而相关分析通常是为了量化变量之间的相关性。
综上所述,回归分析和相关分析是统计学中常用的两种数据分析方法。
回归分析用于确定自变量与因变量之间的关系,相关分析用于测量变量之间的相关性。
回归分析和相关分析在实践中有广泛的应用,并且它们的步骤和原理较为相似。
第九章 相关分析

第九章 相关分析
( y y)2
=
( y yc )2
+
( yc y)2
由此可以推导出:
( y yc ) ( y y) ( yc y)
2 2
2
2
Lyy (a bx a b x) Lyy b ( x x)
2 2
Lyy b Lxx
表明两变量完全不相关。 (4)当计算相关系数的原始数据较多(如50项以 上)时,认为相关系数在0.3以下为无相关, 0.3以上为有相关;0.3-0.5为低度相关;0.5-0.8 为显著相关;0.8以上为高度相关。
9
第九章 相关分析
相关系数计算分析例题
生产费用
序 月产量 号 1 1.2 2 2.0 3 3.1 4 3.8 5 5.0 6 6.1 7 7.2 8 8.0 ∑ 36.4
2 2
x n y y
2
2
0.97
说明产量和生产费用之间存在高度正相关。
第九章 相关分析
第三节
回 归 分 析
一、回 归 分 析 的 意 义 回归分析是对具有相关关系的两个或两个以 上变量之间的数量变化的一般关系进行测定,确 立一个相应的数学表达式,以便从一个已知量来 推测另一个未知量,为估算预测提供一个重要的 方法。 二、回 归 的 种 类 按自变量的个数分 按回归线的形态分 一元回归 多元回归 线性回归 非线性回归
Lxx x b b y Lyy
y br r x
Lyy L21 xx
第九章 相关分析
五 回归分析与相关分析的特点
1、回归分析必须区分自变量和因变量,而相关 分析不必区分。 2、回归分析的两个变量一个是自变量,一个是 因变量,通过给定自变量的值来推算因变量 的可能值;而相关分析的两个变量都是随机 变量。 3、回归分析中对于因果关系不甚明确的两个变量, 可以建立两个回归方程;而相关分析只能计算 出一个相关系数。 4、一种回归方程只能做一种推算,即只能给出自 变量的值来推算因变量的值,不能逆推。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章 线性回归和相关分析
9.1 什么叫做回归分析?直线回归方程和回归截距、回归系数的统计意义是什么,如何计算?如何对直线回归进行假设测验和区间估计?
9.2 a s 、b s 、x y s /、y s 、y s ˆ各具什么意义?如何计算(思考各计算式的异同)? 9.3 什么叫做相关分析?相关系数、决定系数各有什么具体意义?如何计算?如何对相关系数作假设测验?
9.4 什么叫做协方差分析?为什么要进行协方差分析?如何进行协方差分析(分几个步骤)?为什么有时要将i y 矫正到x 相同时的值?如何矫正?
9.5 测得不同浓度的葡萄糖溶液(x ,mg /l )在某光电比色计上的消光度(y )如下表,试计算:(1)直线回归方程y
ˆ=a +bx ,并作图;(2)对该回归方程作假设测验;(3)测得某样品的消光度为0.60,试估算该样品的葡萄糖浓度。
x 0 5 10 15 20 25 30 y
0.00
0.11
0.23
0.34
0.46
0.57
0.71
[答案:(1)y ˆ
=-0.005727+0.023429x ,(2)H0被否定,(3)25.85mg/l]
9.6 测得广东阳江≤25oC 的始日(x)与粘虫幼虫暴食高峰期(y)的关系如下表(x 和y 皆以8月31日为0)。
试分析:(1)≤25oC 的始日可否用于预测粘虫幼虫的暴食期;(2)回归方程及其估计标准误;(3)若某年9月5日是≤25oC 的始日,则有95%可靠度的粘虫暴食期在何期间?
年份 54 55 56 57 58 59 60 x 13 25 27 23 26 1 15 y
50
55
50
47
51
29
48
[答案:(1)r=0.8424;(2)y ˆ
=33.2960+0.7456x ,x y s /=4.96;(3)9月22日~10月23日]
9.7 研究水稻每一单茎蘖的饱粒重(y ,g)和单茎蘖重(包括谷粒)(x ,g)的关系,测定52个早熟桂花黄单茎蘖,得:SSx=234.4183,SSy=65.8386,SP=123.1724,b=0.5254,r=0.99;测定49个金林引单茎蘖,得SSx=65.7950,SSy=18.6334,SP=33.5905,b=0.5105,r=0.96。
试对两回归系数和相关系数的差异作假设测验,并解释所得结果的意义。
[答案:
2
1b b s -=0.0229,t <1;
2
1z z s -=0.2053,t=3.413]
9.8 下表为1963、1964、1965三年越冬代棉红铃虫在江苏东台的化蛹进度的部分资料,试作协方差分析。
x 日 期
(以6月10日为0)
y 化 蛹 进 度(%) 1963年
1964年
1965年
5 8 11 14 17 20 23 2
6 1
7 24 35 4
8 58 65 72 75 24 35 41 52 61 70 7
9 82 22 32 42 53 59 66 75 82
[答案:化蛹进度依日期的直线回归极显著,b=2.88(%/天);化蛹进度平均数间差异极显著,F=13.31,其中1963年显著落后]
9.9 下表为玉米品比试验的每区株数(x)和产量(y)的资料,试作协方差分析,并计算各品种在小区株数相同时的矫正平均产量。
品
种
区 组
总 和 平 均 I
Ⅱ Ⅲ IV
x
y
x
y
x
y
x y
x
y
x
y
A B C D E
10 12 17 14 12
18
36 40 21
42 8
13 15
14
10
17
38 36 23
36 6
8 13
17
10
14
28 35 24
38 8
11 11
15
16
15
30 29 20
52 32
44 56
60
48
64 132 140 88 168
8
11 14 15
12
16 33 35 22 42
总 和 65
157 60
150 54
139 61
146 240
592 总平均12 29.6
[答案:误差项回归的F=50.89,矫正平均数间F=90.15,各品种的矫正平均数依次为:)
(x x A y ==23.7,
)
(x x B y ==34.9,
)
(x x C y ==31.2,
)
(x x D y ==16.2,
)
(x x E y ==42.0]。