多元线性相关与回归分析
偏最小二乘回归多元线性回归分析典型相关分析主成分分析

偏最小二乘回归是一种新型的多元统计数据分析方法,它与1983年由伍德与阿巴诺等人首次提出。
近十年来,它在理论、方法与应用方面都得到了迅速的发展。
密西根大学的弗耐尔教授称偏最小二乘回归为第二代回归分析方法。
偏最小二乘回归方法在统计应用中的重要性主要的有以下几个方面:(1)偏最小二乘回归是一种多因变量对多自变量的回归建模方法。
(2)偏最小二乘回归可以较好地解决许多以往用普通多元回归无法解决的问题。
在普通多元线形回归的应用中,我们常受到许多限制。
最典型的问题就是自变量之间的多重相关性。
如果采用普通的最小二乘方法,这种变量多重相关性就会严重危害参数估计,扩大模型误差,并破坏模型的稳定性。
变量多重相关问题十分复杂,长期以来在理论与方法上都未给出满意的答案,这一直困扰着从事实际系统分析的工作人员。
在偏最小二乘回归中开辟了一种有效的技术途径,它利用对系统中的数据信息进行分解与筛选的方式,提取对因变量的解释性最强的综合变量,辨识系统中的信息与噪声,从而更好地克服变量多重相关性在系统建模中的不良作用。
(3)偏最小二乘回归之所以被称为第二代回归方法,还由于它可以实现多种数据分析方法的综合应用。
由于偏最小二乘回归在建模的同时实现了数据结构的简化,因此,可以在二维平面图上对多维数据的特性进行观察,这使得偏最小二乘回归分析的图形功能十分强大。
在一次偏最小二乘回归分析计算后,不但可以得到多因变量对多自变量的回归模型,而且可以在平面图上直接观察两组变量之间的相关关系,以及观察样本点间的相似性结构。
这种高维数据多个层面的可视见性,可以使数据系统的分析内容更加丰富,同时又可以对所建立的回归模型给予许多更详细深入的实际解释。
一、 偏最小二乘回归的建模策略\原理\方法 1.1建模原理设有 q 个因变量{q y y ,...,1}与p 自变量{p x x ,...,1}。
为了研究因变量与自变量的统计关系,我们观测了n 个样本点,由此构成了自变量与因变量的数据表X={p x x ,...,1}与.Y={q y y ,...,1}。
多元线性回归及相关分析

r12 r11 r22 r R (rij ) M M 21 r M 1 rM 2 第二步:求得其逆矩阵: c12 c11 c 22 c R 1 (c ij ) M M 21 c M M 1 c 2
一个m元线性回归方程可给定为:
ˆ y a b1 x1 b2 x2 bm xm
a是x1,x2,…,xm 都为0时y 的点估计值;b1是by1· 23…m 的 简写,它是在x2,x3,…,xm 皆保持一定时,x1 每增加一个单
位对y的效应,称为x2,x3,…,xm 不变(取常量)时x1 对y 的偏
1.多元相关分析
多元相关或复相关(multiple correlation):在M=m+1个变量中,m个自变
量和1个依变量的总相关。
多元相关系数(multiple correlation coefficient):在m个自变量和1个依变 量的多元相关中,多元相关系数记作 Ry/12…m ,读作依变量y和m个自变 量的多元相关系数。
Uy/12…m=b1SP1y+b2SP2y+...+bmSPmy
(2)多元线性回归方程的假设检验
建立回归方程后,须分析依变量Y与这m个自变量之间
是否确有线性回归关系,可用F检验。
(F-检验)显著性检验一般步骤:
1.提出假设:H0:β1=β2=...=βm=0;HA:β1,β2,...βm不全为0 2.选择适合检验的统计量
回归系数(partial regression coefficient) 。
a y b1x1 b2 x 2 ... bmxm
用矩阵表示为:
报告中的多元回归和相关性分析

报告中的多元回归和相关性分析引言:多元回归和相关性分析是统计学中常用的分析方法,它们能够帮助我们理解变量之间的关系,从而做出科学的预测和决策。
本文将详细讨论多元回归和相关性分析的相关概念、方法和应用,并结合实际案例进行解析。
一、多元回归分析多元回归分析是一种建立数学模型,通过统计方法探究因变量与多个自变量之间的关系的分析方法。
它可以帮助我们确定自变量对因变量的影响程度,并揭示变量之间的相互作用。
在多元回归分析中,我们需要解决共线性、选择合适的变量和模型拟合等问题,通过逐步回归法和变量筛选等方法进行优化。
二、多元回归的应用1. 预测房价通过多元回归分析来预测房价是房地产行业常用的方法。
我们可以将房价作为因变量,面积、位置、房屋年龄等因素作为自变量,建立回归模型来预测房价。
通过分析模型的系数和显著性水平,我们可以了解各自变量对房价的影响程度,为购房者和开发商提供决策依据。
2. 分析消费者行为在市场营销中,多元回归分析可以帮助企业了解消费者行为和购买决策的影响因素。
例如,我们可以将销售量作为因变量,广告投入、促销力度、竞争对手销售量等因素作为自变量,建立回归模型来分析各个因素对销售量的影响。
通过分析模型结果,企业可以制定有针对性的市场策略,以提高销售业绩。
三、相关性分析相关性分析是一种用于测量两个变量之间关系强度的统计方法。
它可以帮助我们了解变量之间的相关关系,进一步了解变量的影响机制。
在相关性分析中,我们通常使用皮尔逊相关系数、斯皮尔曼相关系数等指标来度量相关关系的程度。
四、相关性分析的应用1. 测量市场风险在金融领域,相关性分析可以帮助投资者测量不同资产的相关关系,从而评估市场风险。
通过计算各资产之间的相关系数,投资者可以了解资产之间的关联程度,从而进行风险分散和资产配置。
2. 确定特征与目标的相关性在机器学习和数据挖掘领域,相关性分析可以帮助我们确定输入特征与目标变量之间的相关性。
通过分析各个特征与目标变量的相关系数,我们可以选择最有价值的特征,提高机器学习模型的准确性和解释能力。
线性相关与回归(简单线性相关与回归、多重线性回归、Spearman等级相关)

(3)r与b的假设检验等价
4.相关与回归的区别和联系
(4) 可以用回归解释相关
r
2
SS回归 SS总
r2称为决定系数(coefficient of determination), 其越接近于1,回归直线拟和的效果越好。
例1 为研究中年女性体重指数和收缩压的关系,随机测量 了16名40岁以上的女性的体重指数和收缩压(见数据文件 p237.sav)。
ˆ a bX Y
ˆ :是Y(实测值)的预测值(predicted value), Y
是直线上点的纵坐标。对于每一个X值,根据直线 回归方程都可以计算出相应的Y预测值。
(具体计算过程参见《卫生统计学》第4版)。
2.b和a的意义 a:是回归直线在Y轴上的截距,即X=0时Y的预测值。 b:是回归直线的斜率,又称为回归系数。 表示当X改变一个单位时,Y的预测值平均改变|b| 个单位。 3.b和a的估计 最小二乘方法(the method of least squares): 各实测点到直线的纵向距离的平方和最小。
|r|越大,两变量相关越密切(前提:r有统计学意义)
2.相关类型 正相关:0<r1
负相关-1r<0
2.相关类型 零相关 r =0
曲线相关
3.r的假设检验 r为样本相关系数,由于抽样误差,实际工作中r一般都 不为0。要判断两变量之间是否存在相关性,需要检验 总体相关系数是否为0。 H0:=0 H1: 0
关于独立性:
所有的观测值是相互独立的。如果受试对象仅被随机 观测一次,那么一般都会满足独立性的假定。但是出 现下列三种情况时,观测值不是相互独立的:时间序 列、重复测量等情况。
SPSS软件在“Linear Regression:Statistics”对话 框中,提供了Durbin-Watson统计量d,以检验自相 关系数是否为0。当d值接近于2,则残差之间是不相 关的。
回归分析概念相关多元回归分析

回归分析概念相关多元回归分析回归分析是一种统计学方法,用于研究因变量和一个或多个自变量之间的关系。
它可以用来预测或解释因变量在自变量变化时的变化情况。
相关分析是回归分析的一种特殊情况,用于研究两个变量之间的关系。
它通过计算两个变量之间的相关系数来衡量它们的线性相关程度。
相关系数的取值范围在-1到1之间,接近1表示正相关,接近-1表示负相关,接近0表示无相关。
与相关分析相比,多元回归分析可以同时研究一个因变量和多个自变量之间的关系。
它通过拟合一个线性模型来预测或解释因变量的变化。
多元回归分析的最常见形式是多元线性回归,它可以用来研究因变量在多个自变量变化时的变化情况。
在多元回归分析中,每个自变量都有一个回归系数,代表它对因变量的影响程度。
多元回归分析需要满足一些假设,包括线性假设(因变量和自变量之间的关系是线性的)、独立性假设(观测之间是相互独立的)、等方差性假设(残差的方差是恒定的)和正态性假设(残差是正态分布的)。
如果这些假设不成立,可能需要采取一些特殊技术,如非线性回归或转换变量。
多元回归分析的步骤包括数据收集、模型建立、模型拟合和结果解释。
在数据收集阶段,需要收集因变量和自变量的数据。
在模型建立阶段,需要选择适当的自变量,并建立一个数学模型。
在模型拟合阶段,需要使用统计软件拟合模型,并计算回归系数和拟合优度。
在结果解释阶段,需要解释回归系数的含义,并进行模型的诊断和解释。
多元回归分析有很多应用领域,包括经济学、社会科学、医学等。
它可以用来预测销售额、分析市场需求、评估政策效果等。
通过多元回归分析,研究人员可以深入了解因变量与多个自变量之间的复杂关系,并得出有关预测和解释的结论。
总结起来,回归分析是一种统计学方法,用于研究变量之间的关系。
相关分析是其特殊情况,用于研究两个变量之间的关系。
多元回归分析是同时研究一个因变量和多个自变量之间的关系。
多元回归分析的步骤包括数据收集、模型建立、模型拟合和结果解释。
MBA管理统计学(中科大万红燕)第八章回归分析和相关分析

2010-7-23
销售额
12
第二节 相关分析
例1解:
xi = 2139, ∑ yi = 11966, ∑ xi2 = 179291 ∑ yi2 = 6947974, ∑ xi y i = 1055391, n = 30 ∑ r= n∑ xi yi ∑ xi ∑ yi (∑ xi ) 2 n∑ yi2 (∑ yi ) 2
2010-7-23
4
第一节 相关与回归分析的基本概念
三.相关分析与回归分析
相关分析和回归分析是研究现象之间相关关系 的两种基本方法. 相关分析:研究两个或两个以上随机变量之间 相关关系密切程度和相关方向的统计分析方法. 回归分析:研究某一随机变量(因变量)与其 他一个或几个变量(自变量)之间数量变动关 系形式的统计分析方法.
一.一元线性回归模型的建立 设因变量y(通常是随机变量)和一个自变量 (非随机变量)X之间有某种相关关系.在x的 不全相同的取值点x1,x2,…,xn作为独立观 察得到y的个观察值y1,y2,… ,yn记为( x1, y1 )( x2 , y2 ), … ,(xn , yn ). 根据这组数据寻求X与Y之间关系. 设一元线性回归模型为:yi=a+bxi+ ei
r=0.955248
2010-7-23 14
第二节 相关分析
25000 税收收入(亿元 亿元) 20000 15000 10000 5000 0
0 20000 40000 60000 80000 100000 120000 140000
GDP(亿元)
2010-7-23
15
第二节 相关分析
二.有序数据的相关系数(等级相关系数)
2010-7-23
8
多元线性回归分析简介

称
y ˆ0 ˆ1x1 ˆp xp
为 y 关于 x 的多元线性经验回归方程(函数),它表示 p+1 维空间中的一个超平面(经验回归平面)。
文档仅供参考,如有不当之处,请联系改正。
引进矩阵的形式:
设
y
y1
y2
,
X
1
1
x11 x21
有平方和分解公式 SS=SSR+SSE
文档仅供参考,如有不当之处,请联系改正。
定理 4.5'在 p 元回归分析问题中, SSR 与 SSE 相互独立,
且1
2
SSE
~
2(n
p
1)
;在原假设 H0 成立时,有
12ຫໍສະໝຸດ SSR~2(p)
。
因此取检验统计量 F=
SSR / p
H0成立时
F(p,n-p-1)
SSE / n p 1
( xi1, , xip , yi )( i 1,2,, n )到回归平面
y ˆ0 ˆ1x1 ˆp xp 的距离的大小。
文档仅供参考,如有不当之处,请联系改正。
一元回归分析中旳结论全部能够推广到多 元旳情形中来。
文档仅供参考,如有不当之处,请联系改正。
定理 4.2' 在 p 元回归分析问题中,(1) ˆ 服从 p+1 维正态分
min
0 ,1 , , p
Q(0,
1,
,p)
文档仅供参考,如有不当之处,请联系改正。
定理 4.1'在 p 元回归分析问题中, 的最小
二乘估计量为 ˆ X X 1 X Y 。
文档仅供参考,如有不当之处,请联系改正。
误差方差的估计:
多元回归和多重相关分析

Residual(SSE)
10
712.55525 71.25552
F = 51.96940 p-value = .0000
逐步回归法
是按一定的统计程序,经过多步拟合和检 验,从一系列的可供建立回归模型的自变 量中,逐步引入回归作用显著的自变量, 并从回归模型中逐步趋逐回归作用变得不 在显著的自变量,以最终求得“最优”回 归模型的技术.
X1(侨胞旅游人数) 4.917499 1.003854 4.899 .0006
X2(外国旅游人数) -15.762767 16.185008 -.974 .3531
(Constant)
6.825275 6.953243 .982 .3495
相关系数
可决系数 经调整的 可决系数 估计标准误差
Multiple R
SSE X1, X 2 , X 3 n 1 k
3962.4 - 3624.2
=
9.51
284.5 16 -1- 3
4. 5.
结F论F: 合 , 所同以批拒数绝对H利0 润额有显著的偏回归.
建立回归模型的步骤
找出被选变量 试建回归模型 评核回归模型 修改回归模型 解释并应用回归模型
第十四章 多元回归和多重相关 分析
研究多个变量之间的关系
多元线性回归方程 一个因变量和多个自变量
总体回归方程
Yi 0 1 X1i 2 X2i k X ki i
y123k 0 1 X1i 2 X2i k Xki
样本回归方程
yi b0 b1 X1i b2 X2i bk X ki ei
1. H0:
F
分子为引入第K个变量后可 解释变差的增加量,或者说 为引入第K个变量后不可解 释变差的减少量
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三节 多元线性相关与回归分析一、标准的多元线性回归模型上一节介绍的一元线性回归分析所反映的是1个因变量与1个自变量之间的关系。
但是,在现实中,某一现象的变动常受多种现象变动的影响。
例如,消费除了受本期收入水平的影响外,还会受以往消费和收入水平的影响;一个工业企业利润额的大小除了与总产值多少有关外,还与成本、价格等有关。
这就是说,影响因变量的自变量通常不是一个,而是多个。
在许多场合,仅仅考虑单个变量是不够的,还需要就一个因变量与多个自变量的联系来进行考察,才能获得比较满意的结果。
这就产生了测定与分析多因素之间相关关系的问题。
研究在线性相关条件下,两个和两个以上自变量对一个因变量的数量变化关系,称为多元线性回归分析,表现这一数量关系的数学公式,称为多元线性回归模型。
多元线性回归模型是一元线性回归模型的扩展,其基本原理与一元线性回归模型相类似,只是在计算上比较麻烦一些而已。
限于本书的篇幅和程度,本节对于多元回归分析中与一元回归分析相类似的内容,仅给出必要的结论,不作进一步的论证。
只对某些多元回归分析所特有的问题作比较详细的说明。
多元线性回归模型总体回归函数的一般形式如下:t kt k t t u X X Y ++⋯++=βββ221 (7.51)上式假定因变量Y 与(k-1)个自变量之间的回归关系可以用线性函数来近似反映.式中,Y t 是变量Y 的第t个观测值;X jt 是第j 个自变量X j 的第t个观测值(j=1,2,……,k);u t 是随机误差项;β1,β2,… ,βk 是总体回归系数。
βj 表示在其他自变量保持不变的情况下,自变量X j 变动一个单位所引起的因变量Y 平均变动的数额,因而又叫做偏回归系数。
该式中,总体回归系数是未知的,必须利用有关的样本观测值来进行估计。
假设已给出了n个观测值,同时1ˆβ,2ˆβ…,k βˆ为总体回归系数的估计,则多元线性回归模型的样本回归函数如下:t kt k t t e X X Y ++⋯++=βββˆˆˆ221 (7.52) (t =1,2,…,n)式中,e t 是Y t 与其估计t Y ˆ之间的离差,即残差。
与一元线性回归分析相类似,为了进行多元线性回归分析也需要提出一些必要的假定。
多元线性回归分析的标准假定除了包括上一节中已经提出的关于随机误差项的假定外,还要追加一条假定。
这就是回归模型所包含的自变量之间不能具有较强的线性关系,同时样本容量必须大于所要估计的回归系数的个数即n >k 。
我们称这条假定为标准假定6。
二、多元线性回归模型的估计(一)回归系数的估计多元线性回归模型中回归系数的估计同样采用最小二乘法。
设2221)ˆˆˆ(kt k t t X X Y βββ-⋯--∑= (7.53)根据微积分中求极小值的原理,可知残差平方和Q存在极小值,欲使Q达到最小,Q对1ˆβ、2ˆβ…,k βˆ的偏导数必须等于零。
将Q对1ˆβ、2ˆβ…,k βˆ求偏导数,并令其等于零,加以整理后可得到以下k个方程式:∑=∑+⋯+∑+∑t t kt t k t t Y X X X X X 2222221ˆˆˆβββ (7.54) ………以上k元一次方程组称为正规方程组或标准方程组,通过求解这一方程组便可以得到1ˆβ、2ˆβ…,k βˆ。
求解多元回归方程,用矩阵形式来表达较为简便1[1]。
记则总体回归函数(7.51)式可以写为:Y =XB +U (7.55) 样本回归函数(7.52)式可以写为:Y =X Βˆ+e (7.56) 标准方程组(7.54)式可以写为:(X' X)Βˆ=X' Y (7.57) 式中X'表示X 的转置矩阵。
(X'X)是一个k×k的对称矩阵,根据标准假定6,k个自变量之间不存在高度的线性相关,因此其逆矩阵存在。
在(7.57)式的两边同时左乘(X'X)-1,可以得到:Βˆ=(X'X)-1X'Y (7.58) 上式是回归系数最小二乘估计的一般形式。
实际求解多元回归方程中的回归系数的估计值,通常需要依靠电子计算机。
在电子计算机技术十分发达的今天,多元回归分析的计算已经变得相当简单。
利用现成的软件包如EXCEL 等,只要将有关数据输入电子计算机,并指定因变量和相应的自变量,立刻就能得到计算结果。
因此,对于从事应用研究的人们来说,更为重要的是要能够理解输入和输出之间相互对应的关系,以及对电子计算机输出的结果做出正确的解释。
限于篇幅,这里不给出具体的数值计算实例。
而在下一节中,我们将结合实际的例子,讲解如何利用EXCEL 进行多元线性回归分析。
(二)总体方差的估计除了回归系数以外,多元线性回归模型中还包含了另一个未知参数,那就是随机误差项的方差σ2。
与一元回归分析相类似,多元线性回归模型中的σ2也是利用残差平方和除以其自由度来估计的。
即有:S2=k n e t -∑2 (7.59)上式中,n是样本观测值的个数;k是方程中回归系数的个数;在(k1[1] 这里给出的矩阵形式具有一般性,对于一元线性回归模型也同样适用。
对于尚未学过矩阵代数的读者,可以不必掌握这一部分内容。
-1)元回归模型中,标准方程组有k个方程式,残差必须满足k个约束条件,因此其自由度为(n -k)。
数学上可以证明,S2是σ2的无偏估计。
S2的正平方根S 又叫做回归估计的标准误差。
S越小表明样本回归方程的代表性越强。
在编制计算机程序时,残差平方和一般不是按照其定义式计算,而是利用以下公式计算:∑=2t e e'e =Y'Y - Β'ˆX'Y (7.60) 上式是残差平方和的矩阵形式。
式中的“′”表示求转置;Y 是因变量样本观测值向量;X 是自变量样本观测值矩阵;Β'ˆ是回归系数估计值向量的转置向量。
(三)最小二乘估计量的性质与一元线性回归模型类似,多元线性回归模型中回归系数的最小二乘估计量也是随机变量。
数学上可以证明,在标准假定条件可以得到满足的情况下,多元回归模型中回归系数最小二乘估计量的期望值同样等于总体回归系数的真值,即有:E(Bˆ)=B (7.61) 回归系数最小二乘估计量的方差、协方差矩阵为:Var(B ˆ)=E(B ˆ-B )(Bˆ-B )' =σ2(X'X )-1 (7.62)该矩阵主对角元素是各回归系数估计量的方差E(j βˆ-βj )2,其他元素是各回归系数估计量之间的协方差E(j βˆ-βj ) (i βˆ-βi ) (i ≠j )。
在此基础上,还可以进一步证明回归系数的最小二乘估计量是最优线性无偏估计量和一致估计量。
也就是说,在标准的多元线性回归模型中,高斯.马尔可夫定理同样成立。
三、多元线性回归模型的检验和预测(一)拟合程度的评价在多元线性回归分析中,总离差平方和的分解公式依然成立。
因此也可以用上一节所定义的决定系数作为评价模型拟合程度的一项指标。
不过,为了避免混淆,多元回归的决定系数用R2表示。
利用R2来评价多元线性回归方程的拟合程度,必须注意以下问题。
R2=1- ∑-∑22)(Y Y e t t(7.63) 由决定系数的定义可知,R2的大小取决于残差平方和∑2t e 在总离差平方和∑-2)Y Y t (中所占的比重。
在样本容量一定的条件下,总离差平方和与自变量的个数无关,而残差平方和则会随着模型中自变量个数的增加不断减少,至少不会增加。
因此,R2是自变量个数的非递减函数。
在一元线性回归模型中,所有模型包含的变量数目都相同,如果所使用的样本容量也一样,决定系数便可以直接作为评价拟合程度的尺度。
然而在多元线性回归模型中,各回归模型所含的变量的数目未必相同,以R2的大小作为衡量拟合优劣的尺度是不合适的。
因此,在多元回归分析中,人们更常用的评价指标是所谓的修正自由度的决定系数2R 。
该指标的定义如下:2R =1-∑---∑)1/()()/(22n Y Y k n e t t (7.64) =1-)()(k n n --1(1-R2)2[2] (7.65)式中,n是样本容量;k是模型中回归系数的个数。
(n-1)和(n-k)实际上分别是总离差平方和与残差平方和的自由度。
修正自由度的决定系数2R 具有以下特点:1. 2R ≤R2。
因为k≥1,所以根据2R 和R2各自的定义式可以得出这一结论。
对于给定的R2值和n值,k值越大2R 越小。
在进行回归分析时,一般总是希望以尽可能少的自变量去达到尽可能高的拟合程度。
2R 作为综合评价这两方面情况的一项指标显然比R2更为合适。
2. 2R 小于1,但未必都大于0。
在拟合极差的场合,2R 有可能取负值。
【例7-9】假设有7年的年度统计资料,现利用其对同一因变量拟合了两个样本回归方程。
方程一中:k=6,R2=0.82;方程二中:k=2,R2=0.80。
试对这两个回归方程的拟合程度做出评价。
解: 如果仅从R2考察,似乎方程一的拟合程度更佳。
但是,由于两个方程选用的自变量个数不同,这一结论是不正确的。
将上列数据代入(7.65)式,可得:方程一的2R =1-((7-1)/(7-6))(1-0.82)=-0.08方程二的2R =1-((7-1)/(7-2))(1-0.80)=0.76由此可见,方程二的实际拟合程度远远优于方程一。
(二)显着性检验多元线性回归模型的显着性检验同样包括两方面的内容,即回归系数的显着性检验与回归方程的显着性检验。
现分述如下:1.回归系数的显着性检验多元回归中进行这一检验的目的主要是为了检验与各回归系数对应的自变量对因变量的影响是否显着,以便对自变量的取舍做出正确的判断。
一般来说,当发现某个自变量的影响不显着时,应将其从模型中删除。
这样才能够做到以尽可能少的自变量去达到尽可能高的拟合优度。
多元模型中回归系数的检验同样采用t检验,其原理和基本步骤与一元回归模型中的t检验基本相同,这里不再赘述。
下面仅给出回归系数显着性检验t统计量的一般计算公式。
2[2]对于不包含常数项的回归方程,该公式不适用。
tj βˆ= j S j ββˆˆ j=1,2,…,k (7.66)式中,j βˆ是回归系数的估计值,Sj βˆ是j βˆ的标准差的估计值。
Sj βˆ按下式计算:Sj βˆ= jj S ψ⨯2 (7.67)式中,jj ψ是(X'X)-1的第j个对角线元素,S2是随机误差项方差的估计值。
(7.66)式的t统计量背后的原假设是H0:βj =0,因此t的绝对值越大表明βj 为0的可能性越小,即表明相应的自变量对因变量的影响是显着的。
2.回归方程的显着性检验多元线性回归模型包含了多个回归系数, 因此对于多元回归模型,除了要对单个回归系数进行显着性检验外,还要对整个回归模型进行显着性检验。