多元回归分析SPSS
spss多元回归分析的报告怎么做

spss多元回归分析的报告怎么做:怎么做回归报告分析s pss 多元线性回归spss操作spss回归分析结果解释spss多元线性回归结果篇一:SPSS多元线性回归分析实例操作步骤SPSS 统计分析多元线性回归分析方法操作与分析实验目的:引入1998~2008年上海市城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率和房屋空置率作为变量,来研究上海房价的变动因素。
实验变量:以年份、商品房平均售价(元/平方米)、上海市城市人口密度(人/平方公里)、城市居民人均可支配收入(元)、五年以上平均年贷款利率(%)和房屋空置率(%)作为变量。
实验方法:多元线性回归分析法软件:spss19.0操作过程:第一步:导入Excel数据文件1. open data document——open data——open;2. Opening excel data source——OK.第二步:1.在最上面菜单里面选中Analyze——Regression——Linear ,Dependent(因变量)选择商品房平均售价,Independents(自变量)选择城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率、房屋空置率;Method选择Stepwise.进入如下界面:2.点击右侧Statistics,勾选Regression Coefficients(回归系数)选项组中的Estimates;勾选Residuals(残差)选项组中的Durbin-Watson、Casewise diagnostics默认;接着选择Model fit、Collinearity diagnotics;点击Continue.3.点击右侧Plots,选择*ZPRED(标准化预测值)作为纵轴变量,选择DEPENDNT(因变量)作为横轴变量;勾选选项组中的Standardized Residual Plots(标准化残差图)中的Histogram、Normal probability plot;点击Continue.4.点击右侧Save,勾选Predicted Vaniues(预测值)和Residuals (残差)选项组中的Unstandardized;点击Continue.5.点击右侧Options,默认,点击Continue.6.返回主对话框,单击OK.输出结果分析:1.引入/剔除变量表该表显示模型最先引入变量城市人口密度(人/平方公里),第二个引入模型的是变量(转载于: 写论文网:spss 多元回归分析的报告怎么做)城市居民人均可支配收入(元),没有变量被剔除。
SPSS多元线性回归分析教程

线性回归分析的SPSS操作本节内容主要介绍如何确定并建立线性回归方程。
包括只有一个自变量的一元线性回归和和含有多个自变量的多元线性回归。
为了确保所建立的回归方程符合线性标准,在进行回归分析之前,我们往往需要对因变量与自变量进行线性检验。
也就是类似于相关分析一章中讲过的借助于散点图对变量间的关系进行粗略的线性检验,这里不再重复。
另外,通过散点图还可以发现数据中的奇异值,对散点图中表示的可能的奇异值需要认真检查这一数据的合理性。
1、一元线性回归分析1.数据以本章第三节例3的数据为例,简单介绍利用SPSS如何进行一元线性回归分析。
数据编辑窗口显示数据输入格式如下图7-8(文件7-6-1.sav):图7-8:回归分析数据输入2.用SPSS进行回归分析,实例操作如下:2.1.回归方程的建立与检验(1)操作①单击主菜单Analyze / Regression / Linear…,进入设置对话框如图7-9所示。
从左边变量表列中把因变量y选入到因变量(Dependent)框中,把自变量x选入到自变量(Independent)框中。
在方法即Method一项上请注意保持系统默认的选项Enter,选择该项表示要求系统在建立回归方程时把所选中的全部自变量都保留在方程中。
所以该方法可命名为强制进入法(在多元回归分析中再具体介绍这一选项的应用)。
具体如下图所示:图7-9 线性回归分析主对话框②请单击Statistics…按钮,可以选择需要输出的一些统计量。
如Regression Coefficients(回归系数)中的Estimates,可以输出回归系数及相关统计量,包括回归系数B、标准误、标准化回归系数BETA、T值及显著性水平等。
Model fit项可输出相关系数R,测定系数R2,调整系数、估计标准误及方差分析表。
上述两项为默认选项,请注意保持选中。
设置如图7-10所示。
设置完成后点击Continue返回主对话框。
图7-10:线性回归分析的Statistics选项图7-11:线性回归分析的Options选项回归方程建立后,除了需要对方程的显著性进行检验外,还需要检验所建立的方程是否违反回归分析的假定,为此需进行多项残差分析。
SPSS多元线性回归分析实例操作步骤-spss做多元线性回归

SPSS 统计分析多元线性回归分析方法操作与分析实验目的:引入1998~2008年上海市城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率和房屋空置率作为变量,来研究上海房价的变动因素。
实验变量:以年份、商品房平均售价(元/平方米)、上海市城市人口密度(人/平方公里)、城市居民人均可支配收入(元)、五年以上平均年贷款利率(%)和房屋空置率(%)作为变量。
实验方法:多元线性回归分析法软件:spss19.0操作过程:第一步:导入Excel数据文件1.open data document——open data——open;2.Opening excel data s ource——OK.第二步:1.在最上面菜单里面选中Analyze——Regression——Linear,Depende n(t因变量)选择商品房平均售价,Independents(自变量)选择城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率、房屋空置率;Method 选择Stepwise.进入如下界面:2.点击右侧Statistics,勾选Regression Coefficients(回归系数)选项组中的Estimates;勾选Residuals(残差)选项组中的Durbin-Watson、Casewise diagnostics 默认;接着选择Model fit、Collinearity diagnotics;点击Continue.3.点击右侧Plots,选择*ZPRED(标准化预测值)作为纵轴变量,选择DEPENDN T(因变量)作为横轴变量;勾选选项组中的Standardized Residual Plo t(s标准化残差图)中的Histogram、Normal probability plot;点击Continue.4.点击右侧Save,勾选Predicted Vaniues(预测值)和Residuals(残差)选项组中的Unstandardized;点击Continue.5.点击右侧Options,默认,点击Continue.a. Predictors: (Constant), 城市人口密度 (人/平方公里)b. Predictors: (Constant), 城市人口密度 (人/平方公里), 城市居民人均可支配收入(元)c. Dependent Variable: 商品房平均售价(元/平方米)Variables Entered/Removed aModel 1Variables Entered 城市人口密度 (人/平方公里)Variables Removed2城市居民人均可支配收入(元)Method. Stepwise (Criteria: Probability-of-F-to-enter <= .050,Probability-of-F-to-remove >= .100).. Stepwise (Criteria: Probability-of-F-to-enter <= .050,Probability-of-F-to-remove >= .100).a. Dependent Variable: 商品房平均售价(元/平方米)该表显示模型的拟合情况。
spss多元线性回归分析

因变量:度量变量
自变量:度量变量(e.g., 收入)或非度量变量
(e.g.,职位)
建立统计关系(statistical relationship)
Total cost
=fixed cost + variable cost
Байду номын сангаас
No. Credit Card
自变量解释的变异=因变量总变异-SSE= 22-5.5=16.5
R方=自变量解释的变异/因变量总变异=16.5/22=0.75
回归方程:Y = b0 +b1 V1 +b2 V2 + ε
预测值 = 0.482 +0.63 V1+0.216 V2
对于第1个家庭:
= 0.482 + 0.63*2 +0.216*14 = 4.76
回归方程: = 2.87 + 0.97 V1
对于第1个家庭:
= 2.87 + 0.97*2 = 4.81
实际观测值 Y = 4
残差:4-4.81 = -0.81
残差平方:(-0.81)* (-0.81)= 0.66
SSE
残差平方和
R方:自变量解释了多少因变量的总变异
1 线性回归基本理论
2 多元线性回归的步骤
3 使用SPSS进行多元线性回归
4 回归值预测和残差分析
5 多重共线性分析
6 逐步回归
7 层次线性回归
SPSS多元线性回归分析教程

线性回归分析的SPSS操作本节内容主要介绍如何确定并建立线性回归方程。
包括只有一个自变量的一元线性回归和和含有多个自变量的多元线性回归。
为了确保所建立的回归方程符合线性标准,在进行回归分析之前,我们往往需要对因变量与自变量进行线性检验。
也就是类似于相关分析一章中讲过的借助于散点图对变量间的关系进行粗略的线性检验,这里不再重复。
另外,通过散点图还可以发现数据中的奇异值,对散点图中表示的可能的奇异值需要认真检查这一数据的合理性。
1、一元线性回归分析1.数据以本章第三节例3的数据为例,简单介绍利用SPSS如何进行一元线性回归分析。
数据编辑窗口显示数据输入格式如下图7-8(文件7-6-1.sav):图7-8:回归分析数据输入2.用SPSS进行回归分析,实例操作如下:2.1.回归方程的建立与检验(1)操作①单击主菜单Analyze / Regression / Linear…,进入设置对话框如图7-9所示。
从左边变量表列中把因变量y选入到因变量(Dependent)框中,把自变量x选入到自变量(Independent)框中。
在方法即Method一项上请注意保持系统默认的选项Enter,选择该项表示要求系统在建立回归方程时把所选中的全部自变量都保留在方程中。
所以该方法可命名为强制进入法(在多元回归分析中再具体介绍这一选项的应用)。
具体如下图所示:图7-9 线性回归分析主对话框②请单击Statistics…按钮,可以选择需要输出的一些统计量。
如Regression Coefficients(回归系数)中的Estimates,可以输出回归系数及相关统计量,包括回归系数B、标准误、标准化回归系数BETA、T值及显著性水平等。
Model fit项可输出相关系数R,测定系数R2,调整系数、估计标准误及方差分析表。
上述两项为默认选项,请注意保持选中。
设置如图7-10所示。
设置完成后点击Continue返回主对话框。
图7-10:线性回归分析的Statistics选项图7-11:线性回归分析的Options选项回归方程建立后,除了需要对方程的显著性进行检验外,还需要检验所建立的方程是否违反回归分析的假定,为此需进行多项残差分析。
SPSS多元回归分析

多元回归分析影响因变量的因素不是一个而是多个,我们称这类回问题为多元回归分析。
可以建立因变量y与各自变量x j(j=1,2,3,…,n)之间的多元线性回归模型:其中:b0是回归常数;b k(k=1,2,3,…,n)是回归参数;e是随机误差。
多元回归在病虫预报中的应用实例:某地区病虫测报站用相关系数法选取了以下4个预报因子;x1为最多连续10天诱蛾量(头);x2为4月上、中旬百束小谷草把累计落卵量(块);x3为4月中旬降水量(毫米),x4为4月中旬雨日(天);预报一代粘虫幼虫发生量y (头/m2)。
分级别数值列成表2-1。
预报量y:每平方米幼虫0~10头为1级,11~20头为2级,21~40头为3级,40头以上为4级。
预报因子:x1诱蛾量0~300头为l级,301~600头为2级,601~1000头为3级,1000头以上为4级;x2卵量0~150块为1级,15l~300块为2级,301~550块为3级,550块以上为4级;x3降水量0~10.0毫米为1级,10.1~13.2毫米为2级,13.3~17.0毫米为3级,17.0毫米以上为4级;x4雨日0~2天为1级,3~4天为2级,5天为3级,6天或6天以上为4级。
表2-1数据保存在“DATA6-5.SAV”文件中。
1)准备分析数据在SPSS数据编辑窗口中,创建“年份”、“蛾量”、“卵量”、“降水量”、“雨日”和“幼虫密度”变量,并输入数据。
再创建蛾量、卵量、降水量、雨日和幼虫密度的分级变量“x1”、“x2”、“x3”、“x4”和“y”,它们对应的分级数值可以在SPSS数据编辑窗口中通过计算产生。
编辑后的数据显示如图2-1。
图2-1或者打开已存在的数据文件“DATA6-5.SAV”。
2)启动线性回归过程单击SPSS主菜单的“Analyze”下的“Regression”中“Linear”项,将打开如图2-2所示的线性回归过程窗口。
图2-2 线性回归对话窗口3) 设置分析变量设置因变量:用鼠标选中左边变量列表中的“幼虫密度[y]”变量,然后点击“Dependent”栏左边的向右拉按钮,该变量就移到“Dependent”因变量显示栏里。
9.3-spss多元回归分析教案

n
n
(yˆi y)2
(yi yˆ)2
R2
i1 n
ห้องสมุดไป่ตู้
1
i1 n
(yi y)2
(yi y)2
i1
i1
说明:R2体现了回归方程所能解释的因变量变差的比例;1-R2则体现了因
变量总变差中,回归方程所无法解释的比例。R2越接近于1,则说明回
归平方和占了因变量总变差平方和的绝大部分比例,因变量的变差主要
由自变量的不同取值造成,回归方程对样本数据点拟合得好。Spss中
1、多重共线性分析(仅多元回归分析检验)
多重共线性是指解释变量之间存在线性相关关系的现象,该现象的 存在会导致:有可能回归方程的F统计量高度显著,而每个t统计量不显 著,严重影响回归效果。测度多重共线性一般有以下方式:
(spass操作:分析-回归-线性-在统计量对话框中选共线性分析) 1、容差越大则与方程中其他自变量的共线性越低,应进入方程. 具有太小容
分布在对角线上,可以判断残差服从正态分布。
2、检验残差的独立性(DW检验)。
n
(et et1)2
DW检验用来检验残差的自相关。 DW t2 n
2(1)
检验统计量为:
et2
t2
◇判断:DW=2表示无自相关,在0-2之间说明存在正自相关,在2-4之
间说明存在负的自相关。一般情况下,DW值在1.5-2.5之间即可说明
残差是指由回归方程计算得到的预测值与实际样本值之间的差距,定
义为: e i y i y ˆ i y i ( 0 1 x 1 2 x 2 . .p x . p )
对于线性回归分析来讲,如果方程能够较好的反映被解释变量的特征 和规律性,那么残差序列中应不包含明显的规律性。
SPSS多元线性回归分析教程

Enter。
Variables Entered/Removed
ModelVariables EnteredVariables RemovedMethod
1X.Enter
a All requested variables entered.
合判据的自变量为止。
·Stepwise选项,逐步进入法,是向前选择法和向后剔除法的结合。根据在Option对话框中所设
定的判据,首先根据方差分析结果选择符合判据的自变量且对因变量贡献最大的进入回归方程。
根据向前选择法则进入自变量;然后根据向后剔除法,将模型中F值最小的且符合剔除判据的变
为120 的被试,均值95%的预测区间为:(76.42,84.56); 个体预测95%的预测区间为:(66.68,
94.30)。
二、多元线性回归
1.数据
以本章第四节例4为例,简单说明多元线性回归方程的建立与检验。数据输入如图7-14(文
件7-6-2.sav):
1995.791,残差平方和为710.209,总平方
和为2706.000,对应的F统计量的值为50.583,显著性水平小于0.05,可以认为所建立的回归方
程有效。
④
④④
④回归系数表
回归系数表回归系数表
回归系数表 列出了常数及非标准化回归系数的值及标准化的回归系数,同时对其进行显
Method后面的下拉框,在Method框中选择一种回归分析的方法。SPSS提供下列几种变量进入
回归方程的方法:
·Enter选项,强行进入法,即所选择的自变量全部进入回归模型,该选项是默认方式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多元线性回归分析预测法多元线性回归分析预测法(Multi factor line regression method,多元线性回归分析法)[编辑]多元线性回归分析预测法概述在市场的经济活动中,经常会遇到某一市场现象的发展和变化取决于几个影响因素的情况,也就是一个因变量和几个自变量有依存关系的情况。
而且有时几个影响因素主次难以区分,或者有的因素虽属次要,但也不能略去其作用。
例如,某一商品的销售量既与人口的增长变化有关,也与商品价格变化有关。
这时采用一元回归分析预测法进行预测是难以奏效的,需要采用多元回归分析预测法。
多元回归分析预测法,是指通过对两上或两个以上的自变量与一个因变量的相关分析,建立预测模型进行预测的方法。
当自变量与因变量之间存在线性关系时,称为多元线性回归分析。
[编辑]多元线性回归的计算模型[1]一元线性回归是一个主要影响因素作为自变量来解释因变量的变化,在现实问题研究中,因变量的变化往往受几个重要因素的影响,此时就需要用两个或两个以上的影响因素作为自变量来解释因变量的变化,这就是多元回归亦称多重回归。
当多个自变量与因变量之间是线性关系时,所进行的回归分析就是多元性回归。
设y为因变量,为自变量,并且自变量与因变量之间为线性关系时,则多元线性回归模型为:其中,b0为常数项,为回归系数,b1为固定时,x1每增加一个单位对y的效应,即x1对y的偏回归系数;同理b2为固定时,x2每增加一个单位对y的效应,即,x2对y的偏回归系数,等等。
如果两个自变量x1,x2同一个因变量y呈线相关时,可用二元线性回归模型描述为:其中,b0为常数项,为回归系数,b1为固定时,x2每增加一个单位对y的效应,即x2对y的偏回归系数,等等。
如果两个自变量x1,x2同一个因变量y呈线相关时,可用二元线性回归模型描述为:y = b0 + b1x1 + b2x2 + e建立多元性回归模型时,为了保证回归模型具有优良的解释能力和预测效果,应首先注意自变量的选择,其准则是:(1)自变量对因变量必须有显著的影响,并呈密切的线性相关;(2)自变量与因变量之间的线性相关必须是真实的,而不是形式上的;(3)自变量之彰应具有一定的互斥性,即自变量之彰的相关程度不应高于自变量与因变量之因的相关程度;(4)自变量应具有完整的统计数据,其预测值容易确定。
多元性回归模型的参数估计,同一元线性回归方程一样,也是在要求误差平方和()为最小的前提下,用最小二乘法求解参数。
以二线性回归模型为例,求解回归参数的标准方程组为解此方程可求得b0,b1,b2的数值。
亦可用下列矩阵法求得即[编辑]多元线性回归模型的检验[1]多元性回归模型与一元线性回归模型一样,在得到参数的最小二乘法的估计值之后,也需要进行必要的检验与评价,以决定模型是否可以应用。
1、拟合程度的测定。
与一元线性回归中可决系数r2相对应,多元线性回归中也有多重可决系数r2,它是在因变量的总变化中,由回归方程解释的变动(回归平方和)所占的比重,R2越大,回归方各对样本数据点拟合的程度越强,所有自变量与因变量的关系越密切。
计算公式为:其中,2.估计标准误差估计标准误差,即因变量y的实际值与回归方程求出的估计值之间的标准误差,估计标准误差越小,回归方程拟合程度越程。
其中,k为多元线性回归方程中的自变量的个数。
3.回归方程的显著性检验回归方程的显著性检验,即检验整个回归方程的显著性,或者说评价所有自变量与因变量的线性关系是否密切。
能常采用F检验,F统计量的计算公式为:根据给定的显著水平a,自由度(k,n-k-1)查F分布表,得到相应的临界值Fa,若F > F a,则回归方程具有显著意义,回归效果显著;F < Fa,则回归方程无显著意义,回归效果不显著。
4.回归系数的显著性检验在一元线性回归中,回归系数显著性检验(t检验)与回归方程的显著性检验(F检验)是等价的,但在多元线性回归中,这个等价不成立。
t检验是分别检验回归模型中各个回归系数是否具有显著性,以便使模型中只保留那些对因变量有显著影响的因素。
检验时先计算统计量ti;然后根据给定的显著水平a,自由度n-k-1查t分布表,得临界值ta或t a / 2,t > t− a或t a / 2,则回归系数b i与0有显著关异,反之,则与0无显著差异。
统计量t的计算公式为:其中,Cij是多元线性回归方程中求解回归系数矩阵的逆矩阵(x'x)− 1的主对角线上的第j个元素。
对二元线性回归而言,可用下列公式计算:其中,5.多重共线性判别若某个回归系数的t检验通不过,可能是这个系数相对应的自变量对因变量的影平不显著所致,此时,应从回归模型中剔除这个自变量,重新建立更为简单的回归模型或更换自变量。
也可能是自变量之间有共线性所致,此时应设法降低共线性的影响。
多重共线性是指在多元线性回归方程中,自变量之彰有较强的线性关系,这种关系若超过了因变量与自变量的线性关系,则回归模型的稳定性受到破坏,回归系数估计不准确。
需要指出的是,在多元回归模型中,多重共线性的难以避免的,只要多重共线性不太严重就行了。
判别多元线性回归方程是否存在严惩的多重共线性,可分别计算每两个自变量之间的可决系数r2,若r2 > R2或接近于R2,则应设法降低多重线性的影响。
亦可计算自变量间的相关系数矩阵的特征值的条件数k= λ1/ λp(λ1为最大特征值,λp为最小特征值),k<100,则不存在多重点共线性;若100≤k≤1000,则自变量间存在较强的多重共线性,若k>1000,则自变量间存在严重的多重共线性。
降低多重共线性的办法主要是转换自变量的取值,如变绝对数为相对数或平均数,或者更换其他的自变量。
6.D.W检验当回归模型是根据动态数据建立的,则误差项e也是一个时间序列,若误差序列诸项之间相互独立,则误差序列各项之间没有相关关系,若误差序列之间存在密切的相关关系,则建立的回归模型就不能表述自变量与因变量之间的真实变动关系。
D.W检验就是误差序列的自相关检验。
检验的方法与一元线性回归相同。
[编辑]多元线性回归分析预测法案例分析[编辑]案例一:公路客货运输量多元线性回归预测方法探讨[2]一、背景公路客、货运输量的定量预测,近几年来在我国公路运输领域大面积广泛地开展起来,并有效的促进了公路运输经营决策的科学化和现代化。
关于公路客、货运输量的定量预测方法很多,本文主要介绍多元线性回归方法在公路客货运输量预测中的具体操作。
根据笔者先后参加的部、省、市的科研课题的实践,证明了多元线性回归方法是对公路客、货运输量预测的一种置信度较高的有效方法。
二、多元线性回归预测线性回归分析法是以相关性原理为基础的.相关性原理是预测学中的基本原理之一。
由于公路客、货运输量受社会经济有关因素的综合影响。
所以,多元线性回归预测首先是建立公路客、货运输量与其有关影响因素之间线性关系的数学模型。
然后通过对各影响因素未来值的预测推算出公路客货运输量的预测值。
三、公路客、货运输量多元线性回归预测方法的实施步骤1.影响因素的确定影响公路客货运输量的因素很多,主要包括以下一些因素:(1)客运量影响因素人口增长量裤保有量、国民生产总值、国民收入工农业总产值,基本建设投资额城乡居民储蓄额铁路和水运客运量等。
(2)货运量影响因素人口货车保有量(包括拖拉机),国民生产总值,国民收入、工农业总产值,基本建设投资额,主要工农业产品产量,社会商品购买力,社会商品零售总额.铁路和水运货运量菩。
上述影响因素仅是对一般而言,在针对具体研究对象时会有所增减。
因此,在建立模型时只须列入重要的影响因素,对于非重要因素可不列入模型中。
若疏漏了某些重要的影响因素,则会造成预测结果的失真。
另外,影响因素太少会造成模型的敏感性太强.反之,若将非重要影响因素列入模型,则会增加计算工作量,使模型的建立复杂化并增大随机误差。
影响因素的选择是建立预测模型首要的关键环节,可采取定性和定量相结合的方法进行.影响因素的确定可以通过专家调查法,其目的是为了充分发挥专家的聪明才智和经验。
具体做法就是通过对长期从事该地区公路运输企业和运输管理部门的领导干部、专家、工作人员和行家进行调查。
可通过组织召开座谈会.也可以通过采访,填写调查表等方法进行,从中选出主要影响因素为了避免影响因素确定的随意性,提高回归模型的精度和减少预测工作量,可通过查阅有关统计资料后,再对各影响因素进行相关度(或关联度)和共线性分析,从而再次筛选出最主要的影响因素.所谓相关度分析就是将各影响因素的时间序列与公路客货运量的时间序列做相关分杯事先确定—个相关系数,对相关系数小于的影响因素进行淘汰.关联度是灰色系统理论中反映事物发展变化过程中各因素之间的关联程度,可通过建空公路客、货运量与各影响影响因素之间关联系数矩阵,按一定的标准系数舍去关联度小的影响因素.所谓共线性是指某些影响因素之问存在着线性关系或接近于线性关系.由于公路运输经济自身的特点,影响公路客,货运输量的诸多因素之问总是存在着一定的相关性,持别是与国民经济有关的一些价值型指标。
我们研究的不是有无相关性问题而是共线性的程度,如果影响因素之间的共线性程度很高,首先会降低参数估计值的精度。
其次在回归方程建立后的统计检验中导致舍去重要的影响因素或错误的地接受无显著影响的因素,从而使整个预测工作失去实际意义。
关于共线性程度的判定,可利用逐步分析估计法的数理统计理论编制计算机程序来实现。
或者通过比较ri j和R2的大小来判定。
在预测学上,一般认为当ri j > R2时,共线性是严重的,其含义是,多元线性回归方程中所含的任意两个自变量xi,x j之间的相关系数r i j大于或等于该方程的样本可决系数R2时,说明自变量中存在着严重的共线性问题。
2.建立经验线性回归方程利用最小二乘法原理寻求使误差平方和达到撮小的经验线性回归方程:y——预测的客、货运量g——各主要影响因数3.数据整理对收集的历年客、货运输量和各主要影响因素的统计资料进行审核和加工整理是为了保证预测工作的质量。
资料整理主要包括下列内容:(1)资料的补缺和推算。
(2)对不可靠资料加以核实调整.对查明原因的异常值加以修正。
(3)对时间序列中不可比的资料加以调整和规范化;对按当年价格计算的价值指标应折算成按统。
4.多元线性回归模型的参数估计在经验线性回归模型中,是要估计的参数,可通过数理统计理论建立模型来确定。
在实际预测中,可利用多元线性回归复相关分析的计算机程序来实现·5.对模型参数的估计值进行检验。
此项工作的目的在于判定估计值是否满意、可靠。
一般检验工作须从以下几方面来进行。
•经济意义检验关于经济预测的数学模型,首先要检验模型是否有经济意义,γp若参数估计值的符号和大小与公路运输经济发展以及经济判别不符合时,这时所估计的模型就不能或很难解释公路运输经济的一般发展规律.就应抛弃这个模型.需要重新构造模型或重新挑选影响因素。