高一物理最新教案-高一物理直线运动复习 精品

合集下载

高一物理最新教案-《直线运动》[原创]-人教版 精品

高一物理最新教案-《直线运动》[原创]-人教版 精品

第一章直线运动一、机械运动【机械运动】物体相对于其他物体的位置改变,或者物体在空间的位置随时间的连续变化叫做机械运动.要点例说(1) 机械运动是最简单最普遍的运动形式,宇宙中的一切,大到天体,小到分子、原子,都处在永恒的运动中.(2) 宇宙中的一切物体都在不停地运动着,通常所说的运动和静止是相对的,是指一个物体相对于所选定的参照系而言的.(3) 机械运动按运动的轨迹可以分为直线运动和曲线运动两大类,在直线运动中,按速度的分类又可以分为匀速直线运动和变速直线运动两类.【参照系】为了研究某物体的运动而假定为不动的另一个物体,叫参照系,也叫参照物.【静止】在力学中,一个物体相对于另一个物体的位置不发生变化,则这个物体相对于被参照的物体是静止的,静止是相对的,运动是绝对的,自然界中没有绝对的静止.要点例说(1) 从不同的参照系来描述物体的运动结果是不同的,只有选定参照系之后,才能开始描述、研究物体的运动.例如,在高速公路上行驶的汽车,研究坐在车厢中的乘客,若选车厢为参照系,则乘客相对车厢是静止的;若选高速公路旁边的树、电线杆或房屋作参照系,则乘客是随汽车一起运动的.(2) 参照系的选择没有一定的限制,但应考虑尽可能地使物体的运动描述起来方便、简单.在研究地面上的物体的运动时,常选地球为参照系,即假设地球是静止不动的;在研究太阳系中行星的运动时,太阳就是最恰当的参照系,即假定太阳静止不动.【质点】在研究物体的运动时,不考虑物体的大小和形状,而把物体看作一个有质量的点,这个用来代替物体的有质量的点叫做质点.要点例说(1) 质点是力学中的一个抽象概念,是理想化的模型,物体能否被视为质点,完全取决于研究问题的性质,而不是看物体的实际体积的大小.例如计算一列火车从上海到北京行驶的时间,可以把火车视为质点,而计算一列火车通过长江大桥的时间,就不能把火车看为质点,(2) 一般来讲,在研究地球上的物体运动时,除非涉及到物体的转动,都可以把物体看作为质点.【时刻和时间】时间是物质存在的一种客观形式,因为物质是不断运动和变化的,这种运动和变化的持续性和顺序性就是用时间来标志的.时刻表示的是瞬时(也称即时),时间则是量度两时刻之间的间隔长短的物理量.习惯上把短暂到几乎接近于零的时间叫瞬时,也就是时刻.在国际单位制中,时间的单位是秒(s),常用的单位还有年、月、小时(h)、分钟(min)等.要点例说(1) 用一根无限长的只表示先后次序不表示方向的带有箭头的线来描述时刻与时间,这一带箭头的线叫做时间轴.时间轴上的每一个点表示一个时刻,时间相当于轴上 的一段距离,时刻只有先后,时间才有长短,沿时间轴的箭头方向,轴上每点代表的时刻依次落后;轴上两点的距离越长,它代表的时间越长.如图1-1-1所示的时间轴,O 、A 、B 、C 、D 等各点均表示时刻,所对应的时刻分别为0时刻、第1秒末、第2秒末、第3秒AOB CDE1s 2s3s4s 5s 0 图1-1-1末、……,也可称为第1秒初、第2秒初、第3秒初、第4秒初、…….OA 、OB 、OC 、OD 等表示的是时间,所对应的时间分别为1秒内、2秒内, 3秒内、…….OA 、AB 、BC 、CD 等也表示的是时间,所对应的时间分别为第1秒内,第2秒内,第3秒内、…….(2) 时间与时刻的关系为:时间等于两个时刻的差值.如8点上课指的是时刻,8点45下课指的也是时刻,两时刻的差值45分钟就是一节课的时间.(3) 时间是一个只有长短,没有方向的物理量.时间具有连续性、单向性,序列性,并且总是不断向前逝去.【位移】从物体运动的初位置到末位置的有向线段叫做位移.在国际单位制中,位移的单位是米(m),此外还有厘米(cm),千米(km)等. 要点例说(1) 位移是矢量,它的大小是运动物体初位置到末位置间的直线距离;它的方向是从初位置指向末位置.(2) 位移只与物体的始末位置有关,与运动的实际轨迹以及运动形式均无关.如图1-1-2,某人将一物体从高处o 竖直上抛,先向上运动到最高点a ,然后落至地面b ,则有向线段ob 就表示位移.(3) 位移的正负只有在规定位移的正方向才有意义,如图1-1-3所示为位移轴,设O 点为零位置,则A 位置的3表示质点由O 到A 的位移为3m ,或A 在O 的正方向3m 的位置处;B 位置的-4表示质点由O 到B 的位移为-4m ,或B 在O 的反方向4m 的位置处.如果设O 为学校的校门中点,校门前有东西走向的马路.如果用图1-1-3描述图1-1-2竖直向上抛出物体的位移,并设抛出点O 为零位置,竖直向上为正方向,则A 点就表示物体在离开抛出点竖直向上3m 高处的a 点,B 点就表示物体在离开抛出点竖直向下4m 处的b 点.图1-1-2图1-1-3【路程】质点从空间中的一个位置运动到另一个位置,运动轨迹的长度叫做路程.(1) 路程是一个过程量,与质点的实际运动过程有关,只有当质点做单向直线运动时,位移的大小才等于路程.如图2-1-2,某人将一物体从高处a竖直上抛,最后落至地面b,则物体运动的路径(虚线)长度就是路程.(2) 路程只有大小,没有方向,是一个标量.(3) 路程的单位是长度单位,在国际单位制中是米(m),常用的还有厘米(cm),千米(km)等.热点题型例1 (1995年江西省会考试题)甲、乙两车在同一条公路上向东行驶,甲车的速度大于乙车的速度,这时A.以甲车为参考系,乙车在向东行驶B.以甲车为参考系,乙车在向西行驶C.以乙车为参考系,甲车在向东行驶D.以乙车为参考系,甲车在向西行驶解析物体相对于所选定的参考系来说运动的情况如何,取决于该物体对参考系的位置的变化情况.本题中甲乙两车同向运动,若以甲车为参考系可分两种情况:①甲车在乙车前面,因甲车速度更大,则乙车跟甲车越来越远,乘客看到乙车相对甲车向西行驶.②甲车在乙车后面,因甲车速度更大,则看到乙车相对甲车也是向西行驶靠近甲车,距离来越近.同理,若以乙车为参考系,则同样分两种情况,且均观察到甲车是在向东行驶的.所以选项B、C正确.例2 (1998年湖北省会考试题)从高为5m处以某一速度竖直向下抛出一小球,在与地面后弹起上升到高为2m处被接住,则这段过程中A.小球的位移为3m,方向竖直向下,路程为7mB.小球的位移为7m,方向竖直向上,路程为7mC.小球的位移为3m,方向竖直向下,路程为3mD .小球的位移为7m ,方向竖直向上,路程为3m解析 物体初末位置的高度差3m 即为位移的大小,末位置在初位置正下方,故位移方向竖直向下;落地轨迹长5m ,弹起轨迹长2m ,总路程则为7m .例3 (2002年上海高考试题)太阳从东边升起,从西边落下,是地球上的自然现象,但在某些条件下,在纬度较高地区上空飞行的飞机上,旅客可以看到太阳从西边升起的奇妙现象,这些条件是A .时间必须是在清晨,飞机正在由东向西飞行,飞机的速率必须较大B .时间必须是在清晨,飞机正在由西向东飞行,飞机的速率必须较大C .时间必须是在傍晚,飞机正在由东向西飞行,飞机的速率必须较大D .时间必须是在傍晚,飞机正在由西向东飞行,飞机的速率不能太大 解析 如图1-1-4所示,太阳光照射在地球上,地球左半球为白天,右半球为黑天,地球自西向东转(见图中箭头方向),A 点表示清晨,B 点表示傍晚.在A 点向东或向西,在B 点向东飞行均不能看到“太阳从西边升起”,只有在B 点向西飞行(即追赶快要落山的太阳)才能看到“太阳从西边升起”的奇观.二、位移和时间的关系【匀速直线运动】物体在一条直线上运动,如果在任何相等的时间里位移都相等,这种运动叫做匀速直线运动,简称匀速运动.【变速直线运动】物体在一条直线上运动,如果在相等的时间里位移不相等,这种运动就叫做变速直线运动.【位移-时间图象】在平面直角坐标系中,用纵轴表示位移s ,用横轴表示时间t,自转方向图1-1-4就可以在坐标系中表示出匀速直线运动的位移和时间关系的图象了,这种图象就叫做位移时间图象(s -t 图象,简称位移图象).要点例说(1) 匀速直线运动是一种最简单的运动,在任何相等的时间内位移与时间的比值上恒定是匀速运动的特征.(2) 匀速运动的位移公式 vt s =反映了匀速运动位移随时间变化的规律,即位移与时间成正比的关系.(3) 匀速运动的位移图象是一条倾斜的直线,如图1-2-1所示,直线的斜率值表示速度的大小,利用这种图象可以找出任何时刻的位移和发生这一位移所用的时间,求出匀速运动的速度大小.在同一坐标中也可以比较不同物体的运动速度大小.在图2-2-1中,图线a 的斜率为20240=,则20=a v m/s ;同理,0=b v ,表示物体静止在30m 的位置;5=c v m/s ;10-=d v m/s ,d 的速度与a 、c 的速度方向相反.(4) 变速直线运动的位移图象不是直线,是曲线,如图1-2-2所示,图线a 所描述的物体的运动是开始时单位时间内的位移较小,到后来单位时间内的位移就变得很大,即开始时物体的速度很小,后来速度变得很大;图线b 所描述的物体的运动是开始时单位时间内的位移较大,到后来单位时间内的位移就变得很小,即开始时物体的速度很大,后来速度变得很小.(5) 位移图线不是质点运动的轨迹.位移图象的物理意义是:图象上的某一点表示运动物体在某时刻所处的位置,图线的斜率则反映物体运动速度的快慢,斜率越大表明物体运动越快.热点题型s /图1-2-1s /图1-2-2例4 (1997年浙江省会考试题)甲、乙两物体朝同一方向做匀速直线运动,已知甲的速度大于乙的速度,在t =0时,乙在甲之前一定距离处,则两个物体运动的位移图象应是精析 本题是应用位移图象来反应物体运动规律的问题.对同一方向的匀速直线运动的位移图象,斜率大的表示速度大,由图得,甲的斜率大,即B 、C 两图中甲的斜率符合题意;又因为在t =0时,乙在甲之前,若以甲为参考系,乙的位移大于零,即乙的位移图象与s 轴有一截距,即A 、C 两图中乙有截距符合题意.综合上面分析,选项C 正确.例5 (1998年浙江省会考试题) 设向东的方向为正,有一辆汽车以15m/s 的速度从东向西匀速行驶,则汽车运动的位移与时间关系图象可能是下图中的哪一个?精析 本题是认识与理解匀速直线运动图象的问题,位移图象可以反映位移的大小与方向,本题设定向东为正方向,汽车由东向西行驶,位移为负,且匀速直线运动物体的位移图象是一条倾斜的直线,所以选项D 正确.例6图1-2-5所示为A 、B 两人骑自行车在同一直线上运动的位移图象,由图象知tt ttABCD图1-2-3AB图1-2-4A .A 、B 两人同向行驶 B .A 、B 两人在第1s 末后相遇C .在5s 内,A 行驶的路程比B 行驶的路程多D .在5s 内,A 行驶的位移比B 行驶的位移大 精析 本题是应用位移图象来研究不同物体运动的问题.从图中得,A 的位移减小,而B 的位移增大,再不变,后减小,所以开始AB 是相向运动的,两图象相交于第1s 末与第2s 末之间的一个时刻,即此时A 、B 相遇,5s 内A 位移为30m ,路程也是30m ,B 有往返,在5s 内位移为25m ,而路程是37.5m .三、运动的快慢的描述 速度【速度】速度是表示运动快慢和运动方向的物理量,它等于位移s 跟发生这段位移所用的时间t 的比值上,用v 表示速度,则有tsv =(1) 速度是矢量,有大小,也有方向.(2) 在国际单位制中速度的单位是米/秒(m/s),常用的还有厘米/秒(cm/s),千米/小时(km/h)等.【平均速度】在变直线运动中,运动物体的位移和所用时间的比值叫做这段时间内的平均速度.作变速直线运动的物体,如果在时间t 内,位移是s ,则平均速度v 为tsv =【瞬时速度】运动物体在某时刻或某位置的速度,叫瞬时速度,也称即时速度.瞬时速度即有大小,又有方向,是矢量【瞬时速率】瞬时速度的大小叫瞬时速率,简称速率,速率只有大小没有方向,是图1-2-5标量.要点例说(1) 平均速度对所有变速直线运动都适用,但只能粗略地描述变速运动.瞬时速度能精确的描述变速运动,某时刻的瞬时速度能反映该时刻物体运动的快慢和方向,(2) 描述变速运动的平均速度时一定要指明是哪段时间内或哪段位移的平均速度,所取的时间或位移不同,平均速度一般也不同.变速运动在不同时刻(或位置)的瞬时速度是不同的,因此,说变速运动的瞬时速度时应指明是哪一时刻(或哪一位置)的瞬时速度.这样才有意义.(3) 平均速度是运动物体通过的路程和所用时间的比值,是标量,在变速运动中,路程一般不等于位移的大小,因此,平均速率一般也不等于平均速度的大小,只有在单向直线运动中,平均速度大小才等于平均速率.严格的讲,对任何方向改变的曲线运动,平均速度是没有意义的,因为方向是无所谓平均的,所以课本与本书中所讲的平均速度实际上是指平均速率.(4) 在力学中,讲到的速度,一般都是指瞬时速度,瞬时速度常简略说成速度,加速运动或减速运动的速度都是指瞬时速度大小的变化.而不是指平均速度.(5) 速度是位移对时间的变化率,即物体所经过的位移和通过这一位移所用时间之比.一般来说,当t ∆较大时,这一比值反映了平均速度,v ts=∆∆.当0→∆t 时,这一比值的极限反映了瞬时速度v tst =∆∆→∆0lim.匀速直线运动的平均速度等于瞬时速度. 速率是路程对时间的变化率,即物体所经过的路程和通过这一路程所用时间之比.一般来说,当t ∆较大时,这一比值反映了平均速率,v ts=∆∆.当0→∆t 时,这一比值的极限反映了瞬时速率v tst =∆∆→∆0lim .速率只表示物体运动的快慢,而不表示运动的方向.(6) 除了单向直线运动以外,所有其他的运动(包括直线运动和曲线运动),路程一般都不等于位移大小,平均速率也并不表示平均速度的大小.不过不论哪一种运动,瞬时速率一定是瞬时速度的大小.热点题型例7 (1999年上海高考试题)天文观测表明,几乎所有远处的恒星(或星系)都在以各自的速度背离我们而运动,离我们越远的星体,背离我们运动的速度(称为退行速度)越大;也就是说,宇宙在膨胀,不同星体的退行速度v 和它们离我们的距离成正比,即v =Hr ,式中H 为一常量,称为哈勃常数,已由天文观察测定.为解释上述现象,有人提出一种理论,认为宇宙是从一个大爆炸的火球开始形成的,假设大爆炸后各星体以不同的速度向外匀速运动,并设想我们就位于其中心,则速度大的星体现在离我们越远,这一结果与上述天文观测一致.由上述理论和天文观测结果,可估算宇宙的年龄T ,其计算式为T =___________.根据近期观测,哈勃常数光年⋅⨯=-m/s 1032H .其中光年是光在一年中行进的距离,由此估算宇宙的年龄约为_________年.解析 这是一道根据有关资料参数结合物理知识来解答的联系实际问题.由于爆炸后各星体做匀速运动,令宇宙年龄为T ,则星球现在与我们的距离为HrT vT r ==,由此得 HT 1=,代入数据即可算出宇宙的年龄约为1×1010年. 例8 (2000年上海高考试题)一架飞机水平匀速地在某同学头顶飞过,当他听到飞机的发动机声从头顶正止方传来时,发现飞机在他前上方约与地面成600角的方向上,据此可估算出此飞机的速度约为声速的______倍.解析 这是一道两个过程等时的匀速直线运动问题.设飞机在头项上方时距人的高度为h ,则t v h 声=;根据题意,人听到声音时飞走的距离为h 33,则t v h 飞=33,由此可解得声声飞v v v 0.5833≈=.例9 (2001年全国高考试题)某测量员是这样利用回声测距离的:他站在两平行峭壁之间某一位置鸣枪,经过1.00s 第一次听到回声,又经过0.50s 再次听到回声,已知声速为340m/s ,则两峭壁间的距离为_________m .解析 这是利用匀速直线运动规律来解决实际问题的题目.设枪声到两侧峭壁再反射回人耳的时间分别为t 1和t 2,t 1=1.0s ,t 2=1.5s ,由此得两峭壁间的距离425)(2121=+=声v t t s m . 例10 (2000年全国高考试题)一辆实验小车可沿水平地面(图中纸面)上的长直轨道匀速向右运动.有一台发出细光束的激光器装在小转台M 上,到轨道的距离M 为d =10m ,如图1-3-1所示.转台匀速转动,使激光束在水平面内扫描,扫描一周的时间为T =60s .光束转动方向如图中箭头所示.当光束与MN 的夹角为450时,光束正好射到小车上.如果再经过s 5.2=∆t 光束又射到小车上,则小车的速度为多少?(结果保留两位数字)解析 这是一道应用数学知识来解答物理的问题.分析问题时,要正确理解此题描述的物理情境.在t ∆内,光束转过的角度0015360=⨯∆=∆Ttϕ 如图1-3-2,有两种可能: (1) 光束照射小车时,小车正在接近N 点,t ∆内光束与MN 夹角由450变为300,小车走过L 1.速度应为tLv ∆=11.由图可知)30tan 45(tan 001-=d L .解上述三式并代入数据得m/s 7.11=v .(2) 光束照到小车时,小车正在远离N 点,t ∆内光束与MN 的夹角从450变为600,小车走过L 2,速度为tL v ∆=22,由图可知,)45tan 60(tan 002-=d L ,由上述二式交代入数据得m/s 9.22=v .图1-3-121图1-3-2例11 (2001年上海高考试题) 图1-3-3的A 是在高速公路上用超声波测速仪测量车速的示意图,测速仪发出并接收超声波脉冲信号,根据发出和接收到的信号间的时间差,测出被测物体的速度.图B 中P 1、P 2是测速仪发出的超声波信号,n 1、n 1分别是P 1、P 2由汽车反射回来的信号.设测速仪匀速扫描,P 1、P 2之间的时间间隔s 0.1=∆t ,超声波在空气中传播的速度是m/s 340=v ,若汽车是匀速行驶的,则根据图B 可知,汽车在接收到P 1、P 2两个信号的时间内前进的距离是_______m ,汽车的速度是_____m/s .解析 这是一道匀速直线运动的实际应用题.由图示可知,标尺每一小格对应时间为格秒/ 301,设汽车接收到P 1信号时距测速仪距离 s 1,信号反射回测速仪时间t 1,汽车在接收到P 2信号时距测速仪距离s 2,信号反向回测速仪时间t 2,则汽车在P 1、P 2两信号间前进距离m 17m )3093012(213402221=-⨯⨯=∆⋅-∆⋅=∆t v t v s . 汽车速度m/s 17m/s 117==∆=t s v .四、速度和时间的关系【速度-时间图象】在平面直角坐标系中,用纵轴表示速度v ,用横轴表示时间t ,质点的速度随时间变化的图象叫速度-时间图象(v -t 图象,简称速度图象).要点例说(1) 匀变速直线运动的速度图象是一条倾斜的直线,v /m ·s -1图1-4-1AP 1P 2n 1n 212345B 图1-3-3如图1-4-1所示,根据图象可以判断出:① 加速度的大小,图象直线的斜率值反映速度变化的快慢,即加速度的大小.在图2-2-3中,图线a 的斜率为20240=,则20=a a m/s 2,同理,0=b a 、5=c a m/s 2、10-=d a m/s 2.② 质点运动的性质的初速度,如图1-4-1中,a 、c 做初速度为零的匀加速直线运动,b 表示物体以30m/s 的速度做匀速直线运动,d 的负号表示加速度与a 、c 的加速度方向相反,即d 做初速度为40m/s 的匀减速直线运动.由此可见,根据图象还可以判断出物体是做匀加速直线运动还是做匀减速直线运动.③ 质点某时刻的瞬时速度或某瞬时速度所对应的时刻.④ 质点在某段时间内所发生的位移,位移的大小由速度图线与时间轴之间所围的面积表示,如图1-4-2所示,左图中的三角形面积值为4040221=⨯⨯,图线所表示物体做初速度00=v ,加速度20=a m/s 2的匀加速直线运动,其位移40212==at s m ,右图中的梯形面积值为402)1030(21=⨯+⨯m ,图线所表示物体做初速度400=v m/s 2,加速度10-=a m/s 2的匀减速直线运动,其位移40)10(230102222122=-⨯-=-=a v v s m .(2) 在计算物体的位移时,图象的“面积”有正负之分,在第一象限的“面积”为正,在第四象限的“面积”为负.例如,图1-4-3表示的是在离地面较高处竖直向上抛出物体的速度图象,抛出时的速度为40/s ,方向竖直向上,到4秒末物体到达最高点,速度为零,第一象限的带有斜线的三角形面积就表示该物体在4秒末时的位移.抛出物体在8秒末时回到抛出点,速度为-40m/s ,负号表示方向竖直向下,此图1-4-2时物体的位移为零,第四象限的面积表示的位移为负.到10秒末时,物体的速度为-60m/s,第四象限的面积为-180,大于第一象限的面积80,也就是说物体此时在离抛出点向下100m处.热点题型例12 (1994年全国高考试题) 将物体竖直向上抛出后,能正确表示其速率v随时间t变化关系的图线是图1-4-4中的精析这是一道对速度图象综合分析的问题.物体竖直向上抛出时,速率较大,选项A描述的是开始速率为零,A错;抛出后物体向上升做匀减速运动,直至速率为零,选项B中无速率为零处,B错;物体到达最高点瞬间速率为零,然后又开始向下做匀加速运动,速率逐渐增大,选项C速率为零后不再增大,C错;综上分析,选项D正确.例13 (1998年上海市高考试题) 有两个光滑固定斜面AB和BC,A和C两点在同一水平面上,斜面BC比斜面AB长(如图1-4-5)一个滑块自A点以v A上滑,到达B点时速度减小为零,紧接着沿BC滑下,设滑块从A点到C点的总时间是t C,那么图1-4-6四个图中,正确表示滑块速度的大小v随时间t变化规律的是vCCvCCvC CvCA B C D图1-4-6A C图1-4-5A B C D图1-4-4解析 速度图象中,直线的斜率表示做匀速运动物体的加速度,加速度越大,直线越陡,而物体从A 经B 到C 的整个过程中,由于无阻力做功,故A 、C 两点处物体应具有相等的速率,选项C 不正确.AB 和BC 两段上,平均速率相等,AB 段比BC 段运动时间短,选项A 不正确,选项B 正确.又因为AB 段加速度大于BC 段加速度,两段均做匀变速直线运动,AB 段和BC 段的速度图象为直线,选项D 为正确.例14 甲、乙两辆玩具汽车在同一直线上,同时由同一位置向同一方向运动.它们的速度图象如图1-4-7所示,下列说法中正确的是A .开始阶段乙跑在甲的前面,2s 后乙落在甲的后面B .2s 末乙追上甲,且甲、乙的速度相等C .4s 末追上甲D .在追上前,2s 末两物体相距最远精析 这是一道利用图象讨论追赶问题的题目.由图知甲车一开始就以1m/s 的速度做匀速直线运动,乙车做初速度为零的匀加速直线运动.甲、乙两车从同一位置同方向同时开始运动,在t <2s 时,甲车的速度大于乙车的速度,故甲车在前乙车在后,距离一直在增大;t =2s 时,甲乙两车的速度相等,此时两车相距最远;t >2s 时,乙车的大于甲车的速度,乙车在后逐渐靠近甲车,距离减小,这才是真正意义上的追赶.甲车的位移可用矩形面积表示,乙的位移可用速度图象下方的三角形面积表示,由图可知在4s 末,甲乙两车的位移相等,乙追上甲.综上所述,选项C 、D 正确.五、速度改变快慢的描述 加速度【加速度】加速度是表示速度改变快慢和方向的物理量.计算加速度的公式为 tv v a t 0-=在国际单位制中,加速度的单位是米每二次方秒,符号是m/s 2.图1-4-7。

高三物理最新教案-直线运动 精品

高三物理最新教案-直线运动 精品

专题一 直线运动第一节 直线运动知识点在物体的运动中,直线运动比曲线运动简单,而匀速直线运动和匀变速直线 运动又是直线运动中最简单的两种运动,这两种运动是运动学的主要组成部分,本专题就主要研究这两种运动。

高考对匀速直线运动和匀变速直线运动的考查主要以选择、填空题为主,涉及v —t 图象及匀变速直线运动规律较多,近年出现了仅以本章知识单独命题的信息题。

本章知识的考查。

较多的是与牛顿运动定律、带电粒子的运动等知识结合起来进行考查。

自由落体运动和竖直上抛运动的性质皆属匀变速直线运动,可以作为匀变速直线运动的应用处理。

匀速运动的规律:⎪⎩⎪⎨⎧===恒值v a vt s 0 图象有:⎩⎨⎧t s t v ——图象。

匀速运动的平均速度等于中间时刻的瞬时速度,也等于各时刻的瞬时速度。

匀变速直线运动分为匀加速直线运动和匀减速直线运动,都遵循如下规律:1.相邻的相等时间间隔内的位移之差相等,即2aT s =∆。

它是判断匀变速直线运动的依据。

2.相同时间内速度的变化相同,这是判断匀变速直线运动的又一依据。

3.两个基本公式和一个推导公式:⎪⎪⎩⎪⎪⎨⎧=-+=+=asv v at t v s at v v t t 221202200。

在以上三个公式中,涉及的物理量有五个,其中t 是标量且总取正值。

v 0、a 、v t 是矢量,在公式中可取正,也可取负。

也可能为零。

4.在一段时间内。

中间时刻瞬时速度2t v 等于这一段时间内的平均速度__t v ,即:202t __t t v v t s v v +===。

5.初速度为零的匀加速直线运动的几个比例关系。

初速度为零的匀加速直线运动(设了为等分时间间隔):①t 秒末、2t 秒末、……nt 秒末的速度之比:n v v v n ::3:2:1:::21 =②前一个t 秒内、前二个t 秒内、……前N 个t 秒内的位移之比:23221::3:2:1:::N s s s N =③第一个t 秒内、第二个t 秒内、……-第n 个t 秒内的位移之比:)12(::5:3:1:::21-=n s s s n④前一个s 、前二个s 、……前n 个s 的位移所需时间之比:n t t t n ::3:2:1:::21 =⑤一个s 、第二个s 、……第n 个s 的位移所需时间之比:)1(::)23(:)12(:1:::21----=n n t t t n⑥一个s 末、第二个s 末、……第n 个s 末的速度之比:n v v v n ::3:2:1:::21 =以上特点中,特别是③、④两个应用比较广泛,应熟记。

高中物理直线动作教案模板

高中物理直线动作教案模板

高中物理直线动作教案模板教学科目:物理教学内容:直线运动教学目标:1. 了解直线运动的基本概念和公式,掌握直线运动的相关计算方法。

2. 能够应用直线运动的知识解决相关实际问题。

3. 培养学生分析和解决问题的能力。

教学重点:1. 直线运动的基本概念和公式。

2. 直线运动的速度、加速度、位移等相关计算方法。

教学难点:1. 能够灵活运用直线运动的知识解决实际问题。

2. 能够理解直线运动的物理意义。

教学准备:1. 教学课件。

2. 教学实验器材。

3. 相关教学资料。

教学过程:一、导入(5分钟)教师通过引入相关实例或问题,引起学生的兴趣,为学生介绍直线运动的概念以及其在生活中的应用。

二、讲解直线运动的基本概念(15分钟)1. 介绍直线运动的定义和相关公式。

2. 解释直线运动的速度、加速度、位移等概念。

三、实验实践(20分钟)教师带领学生进行直线运动的实验,让学生亲自操作测量速度、加速度等数据,并进行计算分析。

四、应用练习(15分钟)教师组织学生进行直线运动的相关计算练习,让学生熟练掌握直线运动的计算方法。

五、课堂讨论(10分钟)教师与学生一起讨论直线运动的物理意义,引导学生深入思考直线运动在实际生活中的应用。

六、总结(5分钟)教师总结本节课的重点内容,并提出下节课的预习任务。

教学反思:通过本节课的教学,学生对直线运动的概念和计算方法有了更深入的理解,实验实践和应用练习有助于提高学生的动手能力和解决问题的能力。

教师在教学过程中要注重引导学生思考,激发学生的学习兴趣,帮助学生建立起扎实的物理基础知识。

高一物理直线运动复习教案3

高一物理直线运动复习教案3

二、直线运动教学目标1.知识方面:使学生对匀速直线运动、匀变速直线运动的主要概念、规律有进一步的认识.2.能力方面:(1)培养学生运用方程组、图像等数学工具解决物理问题的能力;(2)通过一题多解培养发散思维.3.科学方法:(1)渗透物理思想方法的教育,如模型方法、等效方法等;(2)通过例题的分析,使学生形成解题思路,体会特殊解题技巧,即获得解决物理问题的认知策略.教学重点、难点分析通过复习应使学生熟练掌握匀变速直线运动的规律,形成解题思路.从高考试题看,把直线运动作为一个孤立的知识点单独进行考查的命题并不多,更多的是作为综合试题中一个知识点而加以体现.对能力的培养是本课时的重点,也是难点.高考将审题、画草图、建立物理图景…作为一种能力考查,学生往往忽视对物理过程的分析,以及一些特殊解题技巧,因此,能力的形成不是一蹴而就的.通过例题分析,使学生积极参与分析解题的思维过程,让他们亲自参与讨论、交流,在这过程中思维能力得到锻炼,同时获得解决问题的认知策略.教学过程设计教师活动一、引入力学中,只研究物体运动的描述及运动的规律叫运动学.这一章,我们复习直线运动.板书:直线运动二、复习基本概念本章的特点是概念多、公式多,还涉及到很多重要的物理研究方法,请大家总结:1.描述运动的基本概念有哪些?学生活动学生总结并做笔记:(独立总结后,讨论并交流)一、描述运动的基本概念1.机械运动:一个物体相对于另一个物体位置的改变叫机械运动,简称运动.包括平动、转动、振动等运动形式.2.参照物:为了研究物体的运动而假定为不动的那个物体叫参照物.通常以地球为参照物.3.质点:用来代替物体的有质量的点,是一个理想模型.4.时间和时刻:时刻指某一瞬时,时间是两时刻间的间隔.5.位移和路程:位移描述物体位置的变化,是从物体初位置指向末位置的矢量;路程是物体运动轨迹的长度,是标量.6.速度和加速度:速度是描述物体运动快慢的物理量,有平均速度、瞬时速度,是矢量;加速度是描述速度变化快慢的物理量,是矢量.2.涉及哪几种物理研究方法?二、物理方法1.模型方法.突出主要因素,忽略次要因素的研究方法,是一种理想化方法.如:研究一个物体运动时,如果物体的形状和大小属于次要因素,为使问题简化,忽略了次要因素,就用一个有质量的点来代替物体,叫质点.2.等效方法.(学生可能想不到)小结并点评:1.位移、速度、加速度是本章的重要概念,对速度、加速度两个物理量要从引入原因、定义方法、定义表达、单位、标矢量、物理意义等方面全面理解.2.模型方法.实际物理现象和过程一般都十分复杂,涉及到众多的因素,采用模型方法,能够排除非本质因素的干扰,突出反映事物的本质特征,从而使物理现象或过程得到简化.如;质点.3.等效方法.对于一些复杂的物理问题,我们往往从事物的等同效果出发,将其转化为简单的、易于研究的物理问题,这种方法称为等效代替的方法.如引入平均速度,就可把变速直线运动等效为匀速直线运动,从而把复杂的变速运动转化为简单的匀速运动来处理.这是物理学中两种重要的研究方法.大家应注意体会.1.下面关于质点的说法正确的是:[ ]A.地球很大,不能看作质点B.原子核很小,可以看作质点C.研究地球公转时可把地球看作质点D.研究地球自转时可把地球看作质点2.一小球从4m高处落下,被地面弹回,在1m高处被接住,则小球的路程和位移大小分别为:[ ]A.5m,5m B.4m,1mC.4m,3m D.5m,3m3.百米运动员起跑后,6s末的速度为9.3m/s,10s末到达终点时的速度为15.5m/s,他跑全程的平均速度为:[ ]A.12.2m/s B.11.8m/sC.10m/s D.10.2m/s4.关于速度、加速度正确的说法是:[ ]A.物体有加速度,速度就增加B.加速度增大,速度一定增大C.物体速度很大,加速度可能为零D.物体加速度值减小,速度可能增大学生自由发言:1.物体能否看作质点,不是根据物体大小.研究地球公转时,由于地球直径远远小于地球和太阳之间的距离,地球上各点相对于太阳的运动,差别极小,可以认为相同,即地球的大小形状可以忽略不计,而把地球看作质点;但研究地球公转时,地球的大小形状不能忽略,当然不能把地球看作质点.2.求平均速度应用定义式v=s/t,而v=(v1+v2)/2只适用于匀变速直线运动.3.速度、加速度是两个概念不同的物理量,加速度等于速度对时间的变化率,即a=△v/t,所以,加速度的大小与速度大小无关,它们之间并无必然联系.A.若物体作减速运动,有加速度,而速度在减小,此时加速度表示速度减小的快慢;同理B也不对;C.物体匀速运动时,就可能速度很大,而加速度为0;D.当物体作加速运动时,加速度减小,表示速度增加得越来越慢,但仍在增大.根据学生答题、发言情况简评.给出正确答案;1.C 2.D 3.C 4.C D三、复习基本规律本章我们学习了匀速直线运动和匀变速直线运动,请大家总结:1.这两种运动的特点、规律;学生总结并做笔记:(自己总结后可以相互交流)三、基本规律1.匀速直线运动:定义:在任意相等的时间里位移相等的直线运动特点:a=0,v=恒量规律:位移公式:s=vt图像:速度图像位移图像2.匀变速直线运动:定义:在相等的时间内速度的变化相等的直线运动. 特点:a=恒量规律:速度公式:v t =v 0+at位移公式:s=v 0t+21at 2图像:速度图像斜率=a ,面积=s2.涉及哪几种物理研究方法? (有的学生能总结出以下推论)1.匀变速:任意两个连续相等的时间T 内的位移之差为一恒量:即 A .△s=s 2-s 1=s 3-s 2=aT 2=恒量2.v 0=0 匀加速:A .在时间t 、2t 、3t …内位移之比为 s 1∶s 2∶s 3…∶sn=1∶22∶32…∶n 2B .第一个t 内、第二个t 内、…位移之比为 s Ⅰ∶s Ⅱ∶s Ⅲ…∶s N =1∶3∶5…∶(2n-1)C .通过连续相等的位移所用时间之比为 321::t t t …:n t =巡回指导小结并补充分析,明确要求:1.物理方法:实际的直线运动通常都很复杂,一般我们都将其等效为匀速直线运动和匀变速直线运动处理,匀速直线运动和匀变速直线运动实际上是一种理想模型,这里用到了模型方法和等效的方法.另外,物理规律的表达除了用公式外,有的规律还用图像表达,优点是能形象、直观地反映物理量之间的函数关系,这也是物理中常用的一种方法.2.认知策略:对图像的要求可概括记为:“一轴二线三斜率四面积”.3.匀变速直线运动规律是本章重点,通过复习,要求大家达到熟练掌握.四、典型例题分析[例题1]火车紧急刹车后经7s停止,设火车作的是匀减速直线运动,它在最后1s内的位移是2m,则火车在刹车过程中通过的位移和开始刹车时的速度各是多少?分析:首先将火车视为质点,由题意画出草图:从题目已知条件分析,直接用匀变速直线运动基本公式求解有一定困难.大家能否用其它方法求解?(学生独立解答后相互交流)解法一:用基本公式、平均速度.质点在第7s内的平均速度为:则第6s末的速度:v6=4(m/s)求出加速度:a=(0-v6)/t=-4/1=-4(m/s2)求初速度:0=v0-at,v0=at=4×7=28(m/s)解法二:逆向思维,用推论.倒过来看,将匀减速的刹车过程看作初速度为0,末速度为28m/s,加速度大小为4m/s2的匀加速直线运动的逆过程.由推论:s1∶s7=1∶72=1∶49则7s内的位移:s7=49s1=49×2=98(m)v0=28(m/s)解法三:逆向思维,用推论.仍看作初速为0的逆过程,用另一推论:sⅠ∶sⅡ∶sⅢ∶…=1∶3∶5∶7∶9∶11∶13sⅠ=2(m)则总位移:s=2(1+3+5+7+9+11+13)=98(m)求v0同解法二.解法四:图像法作出质点的速度-时间图像质点第7s内的位移大小为阴影部分小三角形面积:小三角形与大三角形相似,有v6∶v0=1∶7,v0=28(m/s)总位移为大三角形面积:小结:1.逆向思维在物理解题中很有用.有些物理问题,若用常规的正向思维方法去思考,往往不易求解,若采用逆向思维去反面推敲,则可使问题得到简明的解答;2.熟悉推论并能灵活应用它们,即能开拓解题的思路,又能简化解题过程;3.图像法解题的特点是直观,有些问题借助图像只需简单的计算就能求解;4.一题多解能训练大家的发散思维,对能力有较高的要求.这些方法在其它内容上也有用,希望大家用心体会.[例题2]甲、乙、丙三辆汽车以相同的速度同时经过某一路标,从此时开始甲车一直做匀速直线运动,乙车先加速后减速,丙车先减速后加速,它们经过下个路标时速度又相同.则:[ ]A.甲车先通过下一个路标B.乙车先通过下一个路标C.丙车先通过下一个路标D.条件不足,无法判断点拨:直接分析难以得出答案,能否借助图像来分析?(学生讨论发言,有些学生可能会想到用图像.)解答:作出三辆汽车的速度-时间图像:甲、乙、丙三辆汽车的路程相同,即速度图线与t轴所围的面积相等,则由图像分析直接得出答案B.根据学生分析情况适当提示.[例题3](1999年高考题)一跳水运动员从离水面10m高的平台上向上跃起,举双臂直体离开台面,此时其重心位于从手到脚全长的中点,跃起后重心升高0.45m达到最高点,落水时身体竖直,手先入水(在此过程中运动员水平方向的运动忽略不计),从离开跳台到手触水面,他可用于完成空中动作的时间是______s.(计算时,可以把运动员看作全部质量集中在重心的一个质点.g取10m/s2,结果保留二位数字.)分析:首先,要将跳水这一实际问题转化为理想化的物理模型,将运动员看成一个质点,则运动员的跳水过程就抽象为质点的竖直上抛运动.作出示意图:巡回指导.适当点拨.学生解答:解法一:分段求解.上升阶段:初速度为v0,a=-g的匀减速直线运动由题意知质点上升的最大高度为:h=0.45m可求出质点上抛的初速度下落阶段:为自由落体运动,即初速度为0,a=g的匀加速直线运动.完成空中动作的时间是:t1+t2=0.3+1.45=1.75s解法二:整段求解.先求出上抛的初速度:v0=3m/s(方法同上)将竖直上抛运动的全过程看作统一的匀减速直线运动,设向上的初速度方向为正,加速度a=-g,从离开跳台到跃入水中,质点位移为-10m.求出:t=1.75s(舍去负值)通过计算,我们体会到跳水运动真可谓是瞬间的体育艺术,在短短的1.75s 内要完成多个转体和翻滚等高难度动作,充分展示优美舒展的姿势确实非常不易.[例题4]在平直公路上有甲、乙两辆车在同一地点向同一方向运动,甲车以10m/s的速度做匀速直线运动,乙车从静止开始以1.0m/s的加速度作匀加速直线运动,问:(1)甲、乙两车出发后何时再次相遇?(2)在再次相遇前两车何时相距最远?最远距离是多少?要求用多种方法求解.巡回指导.适当点拨.学生分析与解答:解法一:函数求解.出发后甲、乙的位移分别为s甲=vt=10t①两车相遇:s甲=s乙③解出相遇时间为:t=20s两车相距:△s=s甲-s乙=10t-0.5t2求函数极值:当t=10s时,△s有最大值,△s max=50m观察:△s的变化现象:当v乙<v甲时,△s增大当v乙>v甲时,△s减小当v乙=v甲时,△s最大根据学生分析情况适当提示.解法二:图像法.分别作出甲、乙的速度-时间图像当甲、乙两车相遇时,有s甲=s乙,由图像可看出:当甲图线与时间轴所围面积=乙图线与时间轴所围面积时,有:t=20s,即两车相遇的时间.当v乙=v甲时,△s最大.由图像可看出:△s max即为阴影部分的三角形面积,[例题5]球A从高H处自由下落,与此同时,在球A下方的地面上,B球以初速度v0竖直上抛,不计阻力,设v0=40m/s,g=10m/s2.试问:(1)若要在B球上升时两球相遇,或要在B球下落时两球相遇,则H的取值范围各是多少?(2)若要两球在空中相遇,则H的取值范围又是多少?示意图:图1-2-9.分析:若H很小,可能在B球上升时相遇;若H较大,可能在B球下落时相遇,但若H很大,就可能出现B球已落回原地,而A球仍在空中,即两球没有相遇.所以,要使两球在空中相遇.H要在一定的范围内.微机模拟(几何画板):v0=40m/s设定H取不同的值,观察两球在什么位置相遇、或不相遇:H=100m时,在B球上升时相遇H=200m时,在B球下落时相遇H=400m时,不相遇再改变几次H的值进行观察.微机模拟:H不变,改变v0当v0取不同的值,观察两球在什么位置相遇或不相遇.请同学们课后解答.学生解答:(1)算出B球上升到最高点的时间:t1=v0/g=40/10=4(s)则B球在最高点处两球相遇时:B球在落地前瞬间两球相遇时:所以:要在B球上升时两球相遇,则0<H<160m要在B球下落时两球相遇,则160m<H<320m.(2)由上可知,若要两球在空中相遇,则0<H<320m.题目变形:若H是定值,而v0不确定,试问:(1)若要在B球上升时两球相遇,或要在B球下落时两球相遇,v0应满足什么条件?(2)若要两球在空中相遇,v0应满足什么条件?五、小结1.物理方法?2.解决问题的策略?(即解题思路)3.特殊解题技巧?学生小结:1.物理方法:模型方法,等效方法.2.解题思路:(1)由题意建立物理模型;(2)画出草图,建立物理图景;(3)分析质点运动性质;(4)由已知条件选定规律列方程;(5)统一单位制,求解方程;(6)检验讨论结果;(7)想想别的解题方法.3.特殊解题技巧:逆向思维;用推论;图像法.根据学生小结情况简评。

直线运动的图象及应用复习教案

直线运动的图象及应用复习教案

直线运动的图象及应用复习教案一、教学目标1. 回顾直线运动的图象,如v-t图象、s-t图象等,加深对图象的理解和应用。

2. 掌握如何从直线运动的图象中获取运动物体的速度、加速度、位移等信息。

3. 学会利用直线运动的图象解决实际问题,提高解决实际问题的能力。

二、教学内容1. 直线运动的图象类型及特点1.1 v-t图象1.2 s-t图象2. 从图象中获取运动信息2.1 速度的计算2.2 加速度的计算2.3 位移的计算三、教学过程1. 复习导入1.1 简要回顾直线运动的图象类型及特点1.2 引导学生思考如何从图象中获取运动信息2. 实例分析2.1 分析v-t图象,获取物体的速度信息2.2 分析s-t图象,获取物体的位移信息3. 练习与讨论3.1 学生自主完成练习题,巩固所学知识3.2 学生分组讨论,分享解题思路和经验四、教学评价1. 课堂练习1.1 针对本节课的内容,布置适量练习题,巩固学生对直线运动图象的理解和应用。

2. 小组讨论2.1 评价学生在讨论中的参与程度,以及对直线运动图象的理解和应用能力。

五、教学资源1. 教学PPT2. 练习题及答案3. 相关教学视频或图片,辅助学生理解直线运动的图象及应用六、教学拓展1. 直线运动图象的变换6.1 分析图象的平移、缩放等变换规律6.2 引导学生理解图象变换在实际问题中的应用2. 非直线运动图象的初步认识6.3 介绍非直线运动图象的特点及应用6.4 引导学生对比分析非直线运动图象与直线运动图象的差异七、实践操作1. 利用图象分析实际运动场景7.1 给学生展示实际运动场景的图片或视频7.2 引导学生利用所学知识分析运动物体的速度、加速度、位移等信息2. 学生自主设计运动场景7.3 学生分组设计不同的运动场景7.4 利用图象展示各组设计的运动场景,并分析运动物体的特性八、课堂小结1. 回顾本节课所学内容,总结直线运动图象的特点及应用2. 强调图象在解决实际问题中的重要性,激发学生对图象学习的兴趣九、课后作业1. 完成课后练习题,巩固对直线运动图象的理解和应用2. 结合生活实际,寻找有关直线运动图象的例子,并进行分析十、教学反思1. 教师对本节课的教学过程进行总结,反思教学方法的运用2. 针对学生的学习情况,调整教学策略,为下一节课的教学做好准备十一、综合练习1. 设计一份综合练习,涵盖直线运动图象的识别、分析和应用。

高中物理直线动作讲解教案

高中物理直线动作讲解教案

高中物理直线动作讲解教案教学目标:1. 了解直线运动的基本概念和特点;2. 掌握直线运动的相关物理量和公式;3. 能够应用直线运动的知识解决实际问题。

教学重点:1. 直线运动的基本概念;2. 直线运动的相关物理量和公式;3. 直线运动的实际应用。

教学难点:1. 直线运动的加速度概念的理解;2. 直线运动的速度、加速度和位移之间的关系。

教学准备:1. 教学用具:黑板、彩色粉笔、教学PPT、实验器材等;2. 教学资源:相关教材、教辅资料等。

教学过程:一、导入(5分钟)1. 导入直线运动的话题,引导学生思考“直线运动”的概念,并让学生讨论直线运动的例子。

二、讲解直线运动的基本概念(15分钟)1. 讲解直线运动的定义、特点和物理量;2. 介绍直线运动的速度、加速度和位移的概念;3. 解释直线运动的匀速运动和变速运动。

三、讲解直线运动的相关公式(20分钟)1. 讲解直线运动的速度公式:$v= \frac{s}{t}$;2. 讲解直线运动的加速度公式:$a= \frac{v-u}{t}$;3. 讲解直线运动的位移公式:$s= ut + \frac{1}{2}at^2$。

四、实例演练(15分钟)1. 给学生提供一些直线运动的例题,让学生通过公式求解;2. 引导学生分析实际问题,应用直线运动的知识解决问题。

五、课堂练习与讨论(10分钟)1. 让学生自主完成一些练习题,巩固直线运动的知识;2. 对学生的答案进行讨论,解答学生提出的问题。

六、课堂总结(5分钟)1. 总结本节课的重点知识,强调直线运动的基本概念和公式;2. 引导学生对直线运动的重点内容进行复习和巩固。

七、作业布置(5分钟)1. 布置相关的作业,巩固学生对直线运动的掌握;2. 提醒学生要及时复习,准备下节课的学习。

高一物理直线运动复习教案5

高一物理直线运动复习教案5

期末复习课(二)第二章直线运动、知识结构(粗略描述一亍过(蛊述某一瞬间程运动的快慳)运动的快慢?二、重点难点(一)理解位移和速度的矢量性在初中物理中我们已经学习过路程和速度, 的长短,初中的速度也只是描述物体单位时间内通过的路程的大小•而现在我们所学习的位移和速度与初中的路程和速度的意义不同. 例如,一个质点由A点沿一半径为R的圆运动半周到达B点,质点所经历的路程为s i=n R,若所用的时间为t •以机械运动的观点来考察在时间t内,质点的位置变化了S2=2R,即位移为2R,方向由A指向B,如右图所示•所以质点运动的速度为v=2R/t,方向与位移方向相同,也是由A 指向B.同样,若质点从A点出发,沿圆周运动一圈再回到A点,由于初、末位置相同,尽管[期末复习2]亚均速度殍时速度速度规律:卩产圧旨由落1$运动加速度速度位移关累:時=2前速度位務关系:V t3-P0Mt?J(描述某一过程运动娈化的快慢)路程指的是物体运动过程中所经历的路径其所经历的路程为S i=2 n R,而所通过的位移S2=0.可见,在研究质点运动时,质点的位置与时刻相对应,而质点的位移(即位置的变化)与一段时间(时间间隔)对应,其大小和方向与质点在这段时间内所经历的路径无关,只与质点在这段时间内的初、末位置有关.(二)加速度的物理意义加速度是描述质点在一段位移或一段时间内运动速度变化的方向和快慢的物理量,在数值上等于速度的变化量与所用时间的比值•在这里要特别注意加速度与质点运动的速度、速度变化量是不同的.速度描述的是质点运动的快慢,而加速度描述的是运动变化的快慢,若某个质点运动得很快,但速度保持不变(如匀速直线运动),则加速度为零;如某个质点运动得并不快,但速度变化很快(如突然启动的汽车),则加速度较大.速度变化量的大小是由初、末速度的差值确定的,与时间无关.如甲、乙两个质点,速度都是从0变化到10 m/s,它们的速度变化量相同,但甲只用了 1 s,而乙用了5 s,尽管速度变化量相等,但甲的速度比乙的变化得快.可见,速度变化快慢(即加速度的大小)是由速度变化的大小和发生这个变化所用时间共同决定的.另外,加速度是矢量,它的方向是速度变化的方向.对于做匀变速运动的质点,当质点的加速度与速度方向相同时,即速度变化与初速度同向,则表示质点正在做加速运动;当质点的加速度与速度方向相反时,即速度变化与初速度反向,则表示质点正在做减速运动.可见,加速度的方向反映了质点是在加速还是在减速.(三)运动学公式的矢量性在运用运动学公式时,要注意公式的矢量性,为此一般选取质点初速度方向为正方向,若质点做加速运动,则a>0;若物体做减速运动,则a<0 .在这样的规定下,运用运动学公式:v t=v0+at、s=v0t +iJat2' v t2- v02=2as,若解得v t、s为正值,则表明质点的末速度或位移与初速度方向相同;若解得w s为负值,则表明质点的末速度或位移与初速度方向相反.(四)质点运动规律的图象描述用图象表述物理规律是物理学中常用的一种处理方法,图象具有简明、直观等特点.对于物理图象需要从图象上的轴、点、线、面、斜率、截距等方面来理解它的物理意义,因为不同的物理函数图象中,这几方面所对应的物理意义不同,下表给出了s-t图和V—t 图在这几方面的具体物理意义.请同学们自己考虑上表中各s—t图和V —t图的物理意义.三、例题精讲【例1】火车紧急刹车后经7s停止,设火车作的是匀减速直线运动,它在最后1s内的位移是2m,则火车在刹车过程中通过的位移和开始刹车时的速度各是多少?分析:首先将火车视为质点,由题意画出草图:从题目已知条件分析,直接用匀变速直线运动基本公式求解有一定困难•大家能否用其它方法求解?(学生独立解答后相互交流)解法一:用基本公式、平均速度.质点在第7s内的平均速度为:g 1片=- = -(陀+0)=2 (m/s)则第6s末的速度:V6=4 ( m/s)求出加速度:a= (0-v6) /t=4/1=-4 (m/s2)求初速度:O=V o-at, v o=at=4 x 7=28 (m/s)求位移:s = v0t+|at a= 23X7-|x^|X49 = 98m解法二:逆向思维,用推论.4m/s2倒过来看,将匀减速的刹车过程看作初速度为0,末速度为28m/s,加速度大小为的匀加速直线运动的逆过程.由推论:® : S7=1 : 72=1 : 49则7s 内的位移:S7=49S I=49X 2=98 (m)求初逋度:£ = f (坯+叫)tv o=28 (m/s)解法三:逆向思维,用推论.仍看作初速为0的逆过程,用另一推论:s I : : s皿:…=1 : 3 : 5 : 7 : 9 : 11 : 13s i =2 (m)则总位移:s=2 (1+3+5+7+9+11+13 )=98 (m)求V0同解法二.解法四:图像法作出质点的速度-时间图像质点第7s内的位移大小为阴影部分小三角形面积:=- , % 二4 (m/s)小三角形与大三角形相似,有V6 : V o=l : 7, v o=28 (m/s)总位移为大三角形面积:“](7X28)=98 Cm)小结:1 •逆向思维在物理解题中很有用•有些物理问题,若用常规的正向思维方法去思考,往往不易求解,若采用逆向思维去反面推敲,则可使问题得到简明的解答;2 •熟悉推论并能灵活应用它们,即能开拓解题的思路,又能简化解题过程;3•图像法解题的特点是直观,有些问题借助图像只需简单的计算就能求解;4•一题多解能训练大家的发散思维,对能力有较高的要求.这些方法在其它内容上也有用,希望大家用心体会.【例2】(1999年高考题)一跳水运动员从离水面10m高的平台上向上跃起,举双臂直体离开台面,此时其重心位于从手到脚全长的中点,跃起后重心升高0.45m达到最高点,落水时身体竖直,手先入水(在此过程中运动员水平方向的运动忽略不计),从离开跳台到手触水面,他可用于完成空中动作的时间是___________________________ s.(计算时,可以把运动员看作全部质量集中在重心的一个质点. g取10m/s2,结果保留二位数字•)分析:首先,要将跳水这一实际问题转化为理想化的物理模型,将运动员看成一个质点,则运动员的跳水过程就抽象为质点的竖直上抛运动.作出示意图:巡回指导.适当点拨.学生解答:解法一:分段求解.上升阶段:初速度为V o, a=-g的匀减速直线运动由题意知质点上升的最大高度为:h=0.45m可求出质点上抛的初速度= J2X 10X0.45-3 (m/s)F落阶段:为自由落体运动,即初速度为0, a=g的匀加速直线运动.下落时间"戸严=完成空中动作的时间是:t i+t2=0.3+1.45=1.75s解法二:整段求解.先求出上抛的初速度:v o=3m/s (方法同上)将竖直上抛运动的全过程看作统一的匀减速直线运动,设向上的初速度方向为正,加速度a=-g,从离开跳台到跃入水中,质点位移为-10m.由位移公式;s= v o t + ^at^—-10 = 3t4xwxt32冲-3t -10 = 0求出:t=1.75s (舍去负值)通过计算,我们体会到跳水运动真可谓是瞬间的体育艺术,在短短的 1.75s内要完成多个转体和翻滚等高难度动作,充分展示优美舒展的姿势确实非常不易.四、反馈练习1•加速度不变的运动[ ]A. 一定是直线运动B. 可能是直线运动也可能是曲线运动C. 可能是匀速圆周运动D. 若初速度为零,一定是直线运动2.物体通过两个连续相等位移的平均速度分别为v i=10m/s, V2=15m/s,则物体在这整个运动过程中的平均速度是[ ]A. 13.75m/sB. 12.5m/sC. 12m/sD. 11.75m/s3•物体由A到B做匀变速直线运动,在中间位置的速度为v i,在中间时刻的速度为V2,贝U V i、V2的关系为[ ]A .当物体做匀加速运动时,V1> V2B. 当物体做匀加速运动时,V i< V2D.当物体做匀减速运动时,V1> V24. 一个物体做匀变速直线运动,某时刻速度大小为在这1s内该物体的[ ]A .位移的大小可能小于4mB. 位移的大小可能大于10mC. 加速度的大小可能小于4m/s2D. 加速度的大小可能大于10m/s25. 某物体沿x轴运动,它的x坐标与时刻t的函数关系为:x= (4t+2t2) m,则它的初速度和加速度分别是2A. 0, 4m/s2B. 4m/s, 2m/sC. 4m/s, 02D. 4m/s, 4m/sA .在t1时刻,乙物在前,甲物在后B. 在t1时刻,甲、乙两物体相遇C. 乙物的加速度大于甲物的加速度D. 在t2时刻,甲、乙两物体相遇7. —物体做自由落体运动,落地时速度是30m/s, g 取10m/s2,则它开始下落时的高度是______ ,它在前2s内的平均速度是___________ ,它在最后1s内下落的高度是 __________ .&一物体以1m/s2的加速度做匀减速直线运动至停止,则物体在停止运动前4s内的位移是_______4m/s,1s后速度大小变为10m/s,6. 如图表示甲、乙两物体由同一地点出发, 向同一方向运动的速度图线,其中t2=2t1,9.在15m 高的塔上以4m/s 的速度竖直上抛一个石子,则石子经过2s 后离地面的高度是______ .10. 气球以4m/s的速度匀速竖直上升,气球下面挂一重物.在升到12m高处时,系重物的绳子断了,从这时刻算起,重物落到地面的时间为多少?11. 汽车A在红绿灯前停止,绿灯亮时A开动,以a=0.4m/s2的加速度做匀加速运动,经t o=3Os后以该时刻的速度做匀速直线运动.在绿灯亮的同时,汽车B以v=8m/s的速度从A 车旁边驶过,之后B 车一直以相同的速度做匀速运动.问:从绿灯亮时开始计时,经多长时间后两车再次相遇?参考答案:1. BD2. C3. ACD4. AD5. D6. CD7. 45m 10m/s 25m8. 8m9. 3m10. 2s11. 45s。

高一物理第二章《直线运动》复习教案3旧人教版

高一物理第二章《直线运动》复习教案3旧人教版

《直线运动》复习一、全章知识脉络,知识体系图象位移-时间图象意义:表示位移随时间的变化规律应用:①判断运动性质〔匀速、变速、静止〕②判断运动方向〔正方向、负方向〕③比较运动速度-时间图象意义:表示速度随时间的变化规律应用:①确定某时刻的速度②求位移〔面积〕③判断运动性质④判断运动方向〔正方主要关系式:速度和时间的关系:匀变速直线运动的平均速度公式:位移和时间的关系:位移和速度的关系:atvv+=2vvv+=221attvx+=axvv222=-匀变速直自由落体定义:物体只在重力作用下从静止开始下落的运动特点:初速度为零、加速度为g的匀加速直线运动定义:在同一地点,一切物体在自由落体运动中的加速数值:在地球不同的地方g不相同,在通常的计算中,自由落体加速度〔g〕注意:匀变速直线运动的基本公式及推论都适用于自由落体运二、两种直线运动:1、匀速直线运动:1) 定义:2〕特征:速度的大小和方向都 ,加速度为 。

2、匀变速直线运动:1〕定义:3〕特征:速度的大小随时间 ,加速度的大小和方向4〕规律:设物体的初速度为v 0、t 秒末的速度为v t 、经过的位移为S 、加速度为a ,那么:at v v t +=0 2021at t v S += aS v v t 2202=- 202t t v v v v =+= 220222/)(t t s v v v v ≠+= 当初速度为零时:at v t = 221at S =aS v t 22= 5〕推论:A 初速度为零的匀加速直线运动的物体速度与时间成正比,即2121::t t v v =B 初速度为0的匀加速直线运动的的物体的位移与时间的平方成正比,即22211::t t S S =C 初速度为0的匀加速直线运动的物体在连续相等的时间内的位移之比为奇数比。

即....5:3:1....::321=S S SD 匀变速直线运动的物体在连续相等的时间内位移之差为常数,刚好等于加速度和时间间隔平方和的乘积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章直线运动复习讲义[一] 描述运动的基本概念一、知识点与方法1、机械运动:一个物体相对于另一个物体的位置改变叫机械运动,简称运动。

2、参考系:为了研究物体的运动而事先假定为不动的物体叫参考系。

对同一个物体的运动,所选择的参考系不同,对它的运动的描述就会不同。

通常以地球为参考系来研究物体的运动。

例1、某人站在甲船上看到乙船在运动,那么相对河岸不可能的是()A、甲船不动,乙船运动B、甲船运动,乙船不动C、甲、乙两船都在运动D、甲、乙两船都以相同的速度运动例2、甲、乙、丙三个各乘一架直升机,甲看到楼房匀速上升,乙看到甲机匀速上升,丙看到乙机匀速下降,甲看到丙机匀速上升,则甲、乙、丙相对地面的运动可能是()A、甲、乙匀速下降,V乙>V甲,丙机停在空中B、甲、乙匀速下降,V乙>V甲,丙机匀速上升C、甲、乙匀速下降,V乙>V甲,丙机匀速下降,V丙<V甲D、甲、乙匀速下降,V乙>V甲,丙机停在空中,V丙>V甲3、质点:研究一个物体的运动时,如果物体的形状和大小属于无关因素或次要因素,为使问题简化,就用一个有质量的点来代替物体。

用来代替物体的有质量的点叫做质点。

它是一种理想化模型。

例3、在研究下述运动时,能把物体看作质点的是()A、研究火车过桥的时间时的火车B、研究地球自转的周期时的地球C、研究汽车的重心时的汽车D、研究汽车从沈家门到杭州的时间时的汽车4、时刻与时间:时刻指的是某一瞬时,在时间轴上用一个点来表示,对应的是位置、速度、动量、动能等状态量;时间是两时刻间的间隔,也叫时间间隔,在时间轴上用一段长度来表示,对应的是位移、路程、冲量、功等过程量。

如:第4秒、4秒末,第5秒初(也为第4秒末)等均为时刻,4秒内(0到第4秒末)、第4秒(第3秒末到4秒末)、第2秒至第4秒内(第2秒末至4秒末)等均为时间。

5、位移和路程:位移描述物体位置的变化,是从物体运动的初位置指向末位置的矢量;路程是物体运动轨迹的长度,是标量。

位移与路程的区别与联系:一般情况下位移大小不等于路程,只有当物体做单向直线运动时,路程才等于位移的大小。

例4、下列关于路程和位移的说法,正确的是()A、物体做直线运动时通过的路程就是位移B、物体两次通过的路程不等,位移不可能相等C、物体通过一段路程,位移可能为零D、位移是矢量,既有大小,又有方向,路程是标量,有大小而无方向。

例5、质点沿半径R=20m的圆形跑道跑了5/4圈,在整个过程中通过的路程为M,位移的大小为M。

例6、一个皮球从5米高地方落下,碰撞地面后又反弹起1米,它通过的路程是米,该球经过一系列碰撞后,最终在地面上,在整个过程中皮球的位移为米。

6、 速度:是描述物体运动的方向和快慢的物理量。

用字母V 表示。

是矢量,其方向就是物体运动的方向。

(1)平均速度:在变速运动中,物体在某段时间内的位移与发生这段位移所用时间的比值叫做这段时间内的平均速度。

单位:m/s ,其方向与位移的方向相同。

它是对变速运动的粗略的描述。

对于一般的变速直线运动,只能根据定义式求平均速度,对于匀变速直线 运动可根据 求平均速度。

例7、在100m 竞赛中,测得某一运动员5s 末瞬时速度为10.4m/s,10s 末到达终点的瞬时速度为.10.2m/s. 则他在此竞赛中的平均速度为( )A.10m/sB.10.2m/sC.10.3m/sD.10.4m/s(2)瞬时速度:运动物体在某一时刻(或某一位置)的速度,方向沿轨迹上质点所在点的切线方向指向前进的一侧。

瞬时速度是对变速运动的精确描述,瞬时速度的大小叫速率,速率是标量。

速度与速率的区别:速度是位移与时间的比值,是矢量;速率是路程和时间的比值,是标量,二者大小之间亦无确定的关系;瞬时速度的大小等于瞬时速率,无往复的直线运动中,平均速度的大小等于平均速率,有往复的直线运动和一切曲线运动中,平均速度的大小都不等于平均速率。

例8、关于瞬时速度,下列说法中正确的是( )A.瞬时速度是物体在某一段时间内的速度B.瞬时速度是物体在某一段位移内的速度C.瞬时速度是物体在某一位置或某一时刻的速度D.瞬时速度与平均速度相等 例9、关于平均速度,下列说法中不正确的是( )A. 讲平均速度,必须说明是哪段时间内的平均速度B. 讲平均速度,必须说明是哪段位移内的平均速度C. 对于匀速直线运动,其平均速度与哪段时间或哪段位移无关D. 平均速度和瞬时速度都能精确的描述变速直线运动例10、物体沿直线A 到B, 前一半路程以速度v 1匀速运动,接着的后一半路程以速度v 2匀速运动, 则全程的平均速度是( ) A.2v v 21+ B.21v v C.2121v v v v + D.()()2121v v v v 2+ 7、★加速度:是描述速度变化的快慢和方向的物理量,是速度的变化和所用时间的比值。

定义式:a=ΔV/Δt ,(速度的变化率)。

其中:ΔV=V t -V 0 ΔV 叫做速度的变化单位:最常用的是m/s 2,加速度是矢量,它的方向与速度变化(ΔV )的方向相同。

(1)注意速度与加速度两个概念的区别,速度是描述物体运动快慢和方向的物理量,是位移和时间的比值;加速度是描述物体速度变化快慢和方向的物理量,是速度变化和时间的比值。

速度和加速度都是矢量,速度的方向就是物体运动的方向,而加速度的方向不是速度的方向,而是速度变化的方向,所以加速度方向和速度方向没有必然的联系,只有直线运动中,加速运动时加速度与速度方向一致;减速运动时加速度与速度方向相反。

另外,物体的速度大,加速度不一定大,例如空中匀速飞行的飞机,速度很大,加速度为零;物体的速度小,加速度不一定小,例如一个物体竖直向上抛出到最高点时速度为零,加速度却很大;还有在变速运动中加速度在减小而速度却在增大,以及加速度不为零而物体的速度大小却不变(匀速圆周运动)。

(2)加速度是表示速度(大小和方向)改变快慢的物理量,物体做变速直线运动时,其加速度方向与速度方向在同一直线上,该加速度表示速度大小改变的快慢,(3)加速度的定义式a=ΔV/Δt 不是加速度的决定式,在该式中,加速度并不是由速度变化量ΔV 和时间Δt 决定,不能由此得出a 与ΔV/成正比,与时间Δt 成反比的结论,加速度的决定式我们在第三章牛顿运动定律中会学到。

(4)物体做加速直线运动还是减速直线运动,判断的依据是加速度的方向和速度方向是相同还是相反,只要加速度方向跟速度方向相同,物体的速度一定增大;只要加速度方向跟速度方向相反,物体的速度一定减小。

例11、关于加速度的概念,下列说法是正确的是( )A 、物体的速度为零,加速度也一定为零B 、物体的速度改变量大,加速度一定大C 、物体的速度变化率大,加速度一定大D 、物体的速度越大,加速度也越大例12、飞机由静止开始运动,50s 内速度达到200m/s ,则这段时间内飞机的加速度大小是 m/s 2。

例13、下列说法正确的是( )A 、加速度增大,速度一定增大B 、速度变化量ΔV 越大,加速度就越大C 、物体有加速度,速度就增大D 、物体速度很大,加速度可能为零例14、一质点做直线运动,加速度方向始终与速度方向相同,但加速度大小逐渐减小至零,则在此过程中( )A.速度逐渐减小,当加速度减小至零时,速度达到最小值B.速度逐渐增大,当加速度减小至零时,速度达到最大值C.位移逐渐增大,当加速度减小至零时,位移将不再增大D.位移逐渐减小,当加速度减小至零时,位移达到最小值例15、一个物体从静止出发以加速度a 做匀加速直线运动.经过时间t 后,改作以t 时刻末的速度做匀速直线运动,则在2t 时间内的平均速度是( ) A.at 43 B.at 34 C.3at D.at 21 二、巩固练习题1、研究以下运动时,物体可以当作质点的是( )A.从高处自由落下的石块B.自转的地球C.被绳拉紧在竖直面上做圆周运动的小橡皮块D.在公路上行驶的汽车2、我国运动员王军霞在1996年第26届奥运会上创造了女子5000m 奥运会记录:14min59.88s,北京西站服务处有《旅客列车时刻表》出售,记录和表分别指的是( )A.时刻和时间间隔B.时间间隔和时刻C.都是时刻D.都是时间间隔3、质点沿半径为R 的圆周做圆周运动,其间最大位移为_______,最小位移为______,经过9/4周后的位移为_______.4、火车在两站间正常行驶时,一般可看做匀速运动,一位同学根据车轮通过两段铁轨交接处时发出的响声来估测火车的速度,他从车轮的某一次响声开始计时,并从此之后数着车轮响声的次数,他在一分半钟内共听到66次响声,已知每段铁轨长25m,你能估测出火车的速度是________。

5、足球运动员罚点球时,球获得30m/s的速度并做匀速直线运动,设脚与球作用时间为0.1s,球又在空中飞行0.3s后被守门员挡出,守门员双手与球接触时间为0.1s,且球被挡出后以10m/s沿原路反弹,求:(1)罚球瞬间,球的加速度多大?(2)接球瞬间,球的加速度多大?[2] 匀速直线运动、匀变速直线运动一、知识点与方法1、匀速直线运动定义:在任何相等的时间内的位移总相等的直线运动。

特点:a=0 v=恒量位移公式:s=vt2、匀变速直线运动定义:在任何相等的时间内速度变化相等的直线运动。

特点:a=恒量基本公式:v t=v0+at (速度公式) s=v0t+at2/2 (位移公式)导出公式:v t2+v02=2as (无t公式)s=(v0+v t)t/2 (无a公式)对上述四个公式的几点说明:(1)以上公式只适用于匀变速直线运动。

(2)四个公式中只有两个是独立的。

即由任意两式可推导出另外两式。

四个公式中有五个物理量,而两个独立方程只能解出两个未知数,所以解题时需要三个已知条件,才能有解。

(3)式中v t、v0、a、s均为矢量,应用时要规定正方向,凡与正方向相同者取正值,相反者取负值。

所求矢量为正值者,表示与正方向相同,为负值表示与正方向相反。

通常将v0的方向规定为正方向。

以v0的位置作为初始位置。

(4)以上各式给出了匀变速直线运动的普遍规律,一切匀变速直线运动的差异就在于它们各自的v0、a不完全相同。

例如:a=0时,是匀速直线运动。

以v0的方向为正方向,a>0时,为匀加速直线运动;a<0时,为匀减速直线运动;a=g,v0=0时,为自由落体运动。

a=g,v0≠0时,可为竖直上抛运动等。

例16、汽车刹车前的速度为10m/s,汽车获得加速度大小为0.5m/s2,求:(1)汽车刹车后25s内滑行的距离?(2)静止前4s内汽车滑行的距离。

例17、一个由静止出发做匀变速直线运动的物体,在第1秒内发生的位移为1m,那么它在前10秒内的位移是多少米?它在第12秒内的位移是多少米?例18、一个物体做匀变速直线运动,某时刻速度大小为4m/s2,经过1s末速度大小变为9m/s,求:在这1s内该物体的位移和加速度的可能值为多少?第二章直线运动复习讲义—2[三] 运动图像图像是描述物理规律的重要方法,它的优点是能够形象直观地反映出函数关系。

相关文档
最新文档