浙江大学城市学院微积分Ⅱ乙练习册全部答案
微积分II真题含答案

微积分II真题含答案微积分II真题含答案一、填空题(每题3分,共30分)1、函数的定义域是____________. 2、设,则________________. 3、广义积分的敛散性为_____________. 4、____________ . 5、若 . 6、微分方程的通解是____. 7、级数的敛散性为 . 8、已知边际收益R/(x)=3x2+1000,R(0)=0,则总收益函数R(x)=____________. 9、交换的积分次序= . 10、微分方程的阶数为_____阶. 二、单选题(每题3分,共15分)1、下列级数收敛的是()A,B,C,D,2、,微分方程的通解为()A,B,C,D,3、设D为:,二重积分=()A, B, C, D,0 4、若A, B, C, D, 5、=()A, 0 B, 1 C, 2 D, 三、计算下列各题(本题共4小题,每小题8分,共32分)1.已知2. 求,其中D是由,x=1和x轴围成的区域。
3. 已知z=f(x,y)由方程确定,求4.判定级数的敛散性. 四、应用题(本题共2小题,每小题9分,共18分):1. 求由和x轴围成的图形的面积及该图形绕x轴旋转所得旋转体的体积。
2. 已知x表示劳动力,y表示资本,某生产商的生产函数为,劳动力的单位成本为200元,,每单位资本的成本为400元,总1/ 14预算为*****元,问生产商应如何确定x和y,使产量达到最大?。
五、证明题(5分)一、填空题(每小题3分,共30分)1, 2,3,发散4,0 5,6,y=cx 7,收敛8,R(x)=x3+1000x 9,10,2 二、单选题(每小题3分,共15分)1,B 2,B 3,C 4,C 5,D 三、计算题(每小题8分,共32分)1、解:令2、3、整理方程得:4、先用比值判别法判别的敛散性,(2分)收敛,所以绝对收敛。
(交错法不行就用比较法) (8分)四、应用题(每小题9分,共18分)1、解:2、解:约束条件为200x+400y-*****=0 (2分)构造拉格朗日函数,(4分),求一阶偏导数,(6分)得唯一解为:,(8分)根据实际意义,唯一的驻点就是最大值点,该厂获得最大产量时的x为40,y为230. (9分)五、证明题(5分)证明:设对等式两边积分,得:(2分)(4分)解得:题设结论得证。
微积分(2)练习题2_答案

《微积分(2)》练习题2答案一、求下列积分(4小题,每小题9分,共36分)3411(3)xx dx x+-⎰、 解:原式c xx x+++=34313ln 34122cos x xdx ⎰、 解:原式⎰+++=-=c x x x x x xdx x x x sin 2cos 2sin sin 2sin 22,13⎰、 解:令2t x =,原式)2ln 1(2)]1ln([2121010+=+-=+=⎰t t dt t t4134xx e dx ⎰、 解:原式)1(41|41411041044-===⎰e edx exx,二、求下列偏导数(3小题,每小题9分,共27分)45z 1sin(),z z x y x yδδδδ=+、 求, 解:)cos(4543y x x x z +=∂∂ )cos(5544y x y x z +=∂∂ 22z 2(,),z z f x y xy x yδδδδ=-、 求,解:y f x f xz 212'+'=∂∂x f y f xz 212'+'-=∂∂333z 3(,)x 31z z f x y y z xyz x yδδδδ=++-=、 由确定,求,解:两边对x 求偏导数: 0333322='--'+xx z xy yz z z x 得 xyzx yz xz 333322--=∂∂ 两边对y 求偏导数: 0333322='--'+y y z xy xz z z y 得 xyzy xz yz 333322--=∂∂三、解下列常微分方程(2小题,每小题9分,共18分) 21cos dx xdx =、 y 解:dx x dy y ⎰⎰=cos 2,c x y+=sin 313,224dy xy x dx+=、解:2)2(]4[22222+=+=⎰+⎰=--⎰x x x dx x dxx ce e c e dx e x c e y , 四、求曲线22y x =-与直线y x =围成的面积(9分) 解:2/9)2/3/2()2(1223212=--=----⎰x x x dx x x五、(,)z z x y =由F(x-y,y-z,z-x)=0确定,求z z xyδδδδ+(10分)解:32F F F z '+'-=',31F F F x '-'=',21F F F y '+'-=',1-=''+''=∂∂+∂∂z y z x F F F F yz xz ,注:第三题第1小题 xdx dxy cos 2= 应改为 xdx dy y cos 2=;第二题、第五题中所有yz xz δδδδ 中的符号 δ 都要改成 ∂ ;。
微积分2参考答案

参考答案及提示第一章 函数习题一1、(1)-1、2、-3. (2)-4、23、.86443222-+--x x x x 、(3)有界. 2、略.3、解:∵362)(2-+=x x f x∴3623)(6)(2)(22--=--+-=-x x x x x f ∴64)]()([21)(2-=-+=x x f x f x ϕxx f x f x 12)]()([21)(=--=φ又∵)(646)(4)(22x x x x ϕϕ=-=--=-,即)(z ϕ是偶函数;)(6)(6)(x x x x ψψ-=-=-=-,即)(x ψ是奇函数.4、(1)解:由题知,设c bx ax x R ++=2)(且满足方程组:⎪⎪⎩⎪⎪⎨⎧==-=⇒⎪⎩⎪⎨⎧++=++==0421*******0c b a cb ac b a c∴.4212x Rx +-=(2)解:由题列方程组:⎪⎩⎪⎨⎧===⇒⎪⎩⎪⎨⎧⋅+=⋅+=⋅+=2510905030432c b a c b a c b a c b a即2510p Q ⋅+=.(3) 解:由题意有:⎩⎨⎧≤<⨯⨯-+⨯≤≤=10007009.0130)700(1307007000130x x x x R5、(1)解:∵Z k k x ∈≠+,+21ππ∴⎭⎬⎫⎩⎨⎧±±=-+≠ ,2,1,0,12|k k x x ππ.(2)∵131≤-≤-x ,∴]4,2[∈x .(3)∵⎩⎨⎧≠≥-03x x ,∴]3,0()0,(⋃-∞.(4)∵,0ln ≥x ∴1≥x ,∴),1(+∞∈x .*6、解:由题有x e x f x -==1))(()(2ϕϕ,∴).1,(,)1ln()(-∞∈-=x x x ϕ7、(1)uy =u = 3x-1. (2)2u y = u = lgv v = arccosw 2x w =(3)y=au 3v u = v=1+x. * (4)ua y =u=sinv wv =12+=x w8、(1)47-=x y . (2)1)1(2-+=x x y . (3)2arcsin31x y =. (4)21-=-e x y*9、略.第一章 单元测验题1、(1),8)2(,6)1(,4)0(πππ===g g g .2)2(,125)3(ππ=-=-g g2、解:由题知)3,2(]2,7[04913032⋃-∈⇒⎪⎩⎪⎨⎧≥-≠->-x x x x ,且342lg 1))7((+=-f f .3、解:令t x =ln ,即te x =,则ttee tf )1ln()(+=,∴ee xx x f )1ln()(+=.4、解:11)()(9333+=+=x x x f , 12)1()]([36232++=+=x x x x f .5、证明:∵)(loglogloglog)()1()1(1)1()1)(1()1)((222222x f x f x x ax x ax x x x x x ax x a-=-====-++++++++-++-+-∴)(x f 为奇函数.6、解:由题知:⎪⎩⎪⎨⎧>-=<=⎪⎪⎩⎪⎪⎨⎧>-=<=⎪⎩⎪⎨⎧>-=<=0100011110111)(11)(01)(1)]([x x x ee e x g x g x g x gf xx x , ⎪⎩⎪⎨⎧>=<=⎪⎩⎪⎨⎧>=<==--1||1||11||1||1||1||)]([1101)(x e x x e x e x e x e ex f g x f .第二章 极限与连续习题二1、(1)3231,1615,87,43,21 (2)⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛564534235432,,,,2(3)5sin 51,82,63,21,0π(4),!3)2)(1(,!2)1(,---m m m m m m !4)3)(2)(1(---m m m m ,!5)4)(3)(2)(1(----m m m m m2、(1)收敛 (2)收敛 (3)发散 (4)收敛3、(1)证明:对0>∀ε,]1[ε=∃N ,当Nn >时,ε<+=-+1111n n n ,则11lim =+∞→n n n ;(2)证明:对0>∀ε,]11[2+=∃εN ,当N n >时,ε<=-nn111,则01l i m=∞→nn .4、(1)2 (2)∞+ (3)∞- (4)∞ (5)∞+ (6)0 (7)∞ (8)0(9)不存在 (10)∞- (11)不存在 (12)不存在 (13)0 (14)∞ 5、提示:用左右极限来证. 证明:∵1lim lim==++→→x x x xx x ,1lim lim 0-=-=--→→xx x x x x∴xx xxx x -+→→≠0lim lim,即xx x 0lim →不存在.6、解: 1lim )(lim ,3)2(lim )(lim 1111-===-=++---→-→-→-→x x f x x f x x x x ,,3)(lim ,1)(lim 11==+-→→x f x f x x∵)(lim )(lim 11x f x f x x +-→→≠,∴)(lim 1x f x →不存在.7、(1)证明:对0>∀ε,01>=∃εM ,当M x >时,ε<=-xx101,则01lim=∞→xx ;(2)证明:对0>∀ε,0>=∃εδ,当δ<--)2(x 时,ε<+=--+-2)4(242x x x 成立则424lim22-=+--→x x x .8、(1)(2)(4)是无穷小. 9、(1)xsinx 是无穷小,x25是无穷大 (2)10,52x x-是无穷小,xex ),2lg(+是无穷大.10、当∞→→x x 或0时,f(x)是无穷大量,当21→x 时,f(x)是无穷小量.11、(1)∵1sin ≤n 为有界变量,且011lim =+∞→n n ,∴01sin lim=+∞→n n n .(2)∵2arctan π≤x 为有界变量,且01lim2=∞→xx ,∴0arctan lim2=∞→xx x .(3)∵当0→x 时,11cos ≤x为有界变量,且0lim 0=→x x ,∴01coslim 0=→x x x .(4)∵011lim1=+-→x x x ,∴∞=-+→11lim1x x x .12、(1)原式75342452=+⨯-⨯=; (2)原式213)1(4)1(212=--⨯+---=;(3)∵0123lim23=+-+-→x x x x ,∴原式∞=; (4)原式1lim 1)1(lim1221==--=→→t t t t t t ;(5)原式42221lim)22(lim)22()22)(22(lim-=+--=+--=+-+---=→→→t t t t t t t t t t t ;(6)原式=0; (7)原式=21;(8)原式=)23)(4(23lim)23)(4()23)(23(lim22222-+-+-=-+--+--→→x x x x x x x x x x x x x x161)23)(2()1(lim)23)(2)(2()1)(2(lim22=-++-=-++---=→→x x x x x x x x x x x x ;(9)原式323)131(lim)131)(131()131(lim=++=++-+++=→→x x x x x x x x x ;*(10)原式21)11(11lim)11(1)11)(11(lim-=+++-=++++++-=→→t t t t t t t t t .13、解:∵+∞==--→→21lim)(lim xx f x x ,0)2(lim )(lim 20=-=++→→x x x f x x∴0→x 时,f(x)极限不存在.又∵0)2(lim )(lim 222=-=--→→x x x f x x ,0)63(lim )(lim 22=-=++→→x x f x x∴2→x 时极限存在. 由题知,01lim)(lim 2==-∞→-∞→xx f x x ,)(lim x f x +∞→不存在.14、解:由题知,当3→x 时,→+-k x x 22k= -3.*15、解:∵左边011)()1(lim11lim222=+-++--=+----+=∞→∞→x bx b a x a x bax bx axx x x ,∴⎩⎨⎧-==⇒⎩⎨⎧=+=-11001b a b a a . 16、(1)原式2211211lim=--=∞→nn ;(2)原式21)221(lim =-+=∞→n n n .*17、证明:(1)∵1)22(lim 21=++-→x x x ,11lim 1=-→x ,∴由夹逼定理有1)(lim 1=-→x f x .(2)∵2222212111nn nnn n nnn<++⋅⋅⋅++++<+且1lim2=+∞→nn nn ,1lim2=∞→nn n ,∴由夹逼定理有,原式=1,得证.18、(1)原式1cos lim sin limcos sin lim===→→→x xx x xx x x x ;(2)原式2sin lim2sin sin 2lim2===→→xx xx xx x ;(3)原式xx xx n nn =⋅=∞→22sinlim; (4)原式353551sin513131sinlim=⋅⋅=∞→x x x x xxx .19、(1)原式222101)21(lim )21(lim ex x xx xx =+=+=⋅→→++; (2)原式22)11(lim e xx x =+=⋅∞→;(3)原式e x x x =++=-+∞→21212)1221(lim .20、(1)原式31111arccoslim arccoslim 2π=++=++=+∞→+∞→x xx x x x x ;(2)原式3ln 3113lnlim 313lnlim 2222=++=++=∞→∞→xxx x x x .21、(1)∵1lim )(lim 211==--→→x x f x x ,1)2(lim )(lim 11=-=++→→x x f x x ,∴1)(lim 1=→x f x .且==1)1(f )(lim 1x f x →,∴)(x f 在1=x 处连续.又∵)(x f 在其定义区间上均为初等函数,即)(x f 在 ]1,0[和]2,1(上连续,及)(x f 在]2,0[上连续.(2)∵1lim )(lim 1)(lim 111-==≠=++--→-→-→x x f x f x x x ,∴-1为)(x f 的其间断点.又∵)(lim 1lim )(lim 111x f x x f x x x +--→→→===,且1)1(=f ,∴)(x f 在1=x 处连续.又∵)(x f 在其定义区间上均为初等函数∴)(x f 在)1,(--∞与),1(+∞-内连续.22、解:∵22lim )(lim 11==--→→x x f x x ,d c d cx x f x x +=+=++→→)(lim )(lim 211且d c f +=)1(;dc d cxx f x x +=+=--→→4)(lim )(lim 222,84lim )(lim 22==++→→x x f x x 且d c f +=4)2(,又∵)(x f 在),(+∞-∞上连续,则⎩⎨⎧==⇒⎩⎨⎧=+=+02842d c d c d c .23、(1)∵)(x f 在1-=x 处无定义,∴1-=x 为)(x f 的间断点.(2)∵2)1(lim 11lim)(lim 1211-=-=+-=-→-→-→x x x x f x x x ,且)(lim 6)1(1x f f x -→≠=∴1-=x 是)(x f 的间断点. (3)∵-∞=--=→→))1(1lim()(lim 211x x f x x ,即极限不存在,∴1=x 为)(x f 的间断点.(4)∵1)1(lim )(lim 22-=-=--→→x x f x x ,0)2(lim )(lim 222=-=++→→x x x f x x ,∴)(lim 2x f x →不存在,即2=x 为)(x f 的间断点.24、(1)证明:令32)(45---=x x x x f . ∵075)3(,05)2(>=<-=f f ,∴由介值定理的推论,)(x f 在)3,2(中至少存在一个根. (2)证明:令1)(2+-=x x x f . ∵034)2(,021)1(>-=<-=f f∴. 由介值定理的推论,)(x f 在)2,1(中至少存在一个根.第二章 单元测验题1、(1)原式0cos 1sinlim lim sin lim 21cos sin 21sinlim0000=⋅⋅=⋅⋅=→→→→x xx x x x x x x x x x x x ;(2)原式211lim 2=++=+∞→xx x x ;(3)原式2121lim 1134322321lim=+=+⋅-⋅⋅⋅⋅⋅=∞→∞→n n n n n n n n . 2、解:∵55lim )(lim ,0lim )(lim 01a x a x f e x f x x x x x =+===++--→→→→∴由题知,要使)(x f 在整个数轴上连续,必须满足005=⇒=a a .3、解:∵01sin lim )(lim ,1ln )1ln(lim )(lim 01)1(1=-=-==-=++--→→--⋅-→→x x x f ex x f x x xx x∴)(lim 0x f x →不存在,0=x 是)(x f 的间断点.又∵∞=-=→→1sin lim)(lim 11x x x f x x ,即极限不存在,∴1=x 是)(x f 间断点.因此,)(x f 的连续区间为),1()1,0()0,(+∞⋃⋃-∞.4、解:∵111sinlim22=-+→axxx , ∴左边=aaxxx aaxaxx x x x 2)11(lim )sin (lim 1)11(sin lim220222=++⋅=++→→→,∴2=a .。
微积分(二)综合练习题1答案

故条件收敛。
5.判断级数 的敛散性。
解: 且 ∴交错级数收敛。
6.设D由x = 2, y = x, 及x y = 1围成,求。 解:
7.计算二重积分计算二重积分 ,其中 。
解:
8.求方程满足初始条件的特解。 解:特征方程为 ,所以特征根为,是两个相等实根,所以通解为
,满足初始条件的特解为。
四、应用题(本题8分): 某公司通过电视和报纸作广告.已知销售收入(万元)与电视广告费
五、证明题:(本题6分) 已知 (,求证: (1) 若收敛,则收敛。 (2) 若发散,则发散。 证明:(1) 若收敛,则也收敛, 由已知,得 即 由比较判别法知: 若收敛, 则也收敛,即收敛。 (大收则小收)
(2)由(1)得 由比较判别法知:若发散,则发散。(小发则大发)
二、单项选择(每小题2分,共10分):
1.若函数与分别为与的可微函数,且,则(D).
(A)+
(B) +
(C)++ (D) +
2.若为区域,则=( C ).
(A) 4
(B) 15
(C) 60
(D) 84
3.在下列级数中,唯有( A )是发散的。
(A)
(B)
(C)
(D)
微积分(二)综合练习题2答案

《微积分》下册 综合练习题2参考答案一、填空题(每小题2分,共10分): 1.函数z =2{(,)|0,0,}D x y x y x y =≥≥≥。
2. 设()()2222,x y f x y x y e x y ++-=-,则f =22e 。
3.设y x z =,则1y z yx x -∂=∂,ln y zx x y∂=∂。
4. 设()22,f xy x y x y xy +=++,则(),f x y x∂=∂ - 1。
5. 函数z 是由方程0=-xyz e x 所确定的二元函数,则全微分edy dz -=)1,1(|.6. 若级数11(1)n n α∞=+∑α发散,则的取值范围是1α≤。
7.级数∑∞=-0)3(n nx 的和函数是01()(3)4nn S x x x∞==-=-∑,且收敛域是 (2,4) 。
8.设D 为1x y +≤, 则Ddxdy =⎰⎰___2__。
9. 若交换积分次序,则二重积分⎰-1010),(dy y x f dx x=110(,)ydy f x y dx -⎰⎰。
10.方程y dxdy x2-=的通解为 2Cy x =。
二、单项选择(每小题2分,共10分):1.已知a a n n =∞→lim ,则)(11-∞=-∑n n n a a ( C )。
(A )收敛于0 (B )收敛于a(C )收敛于0a a - (D )发散2.设生产函数为32313K L Q =,其中Q 为产品的产量,K 为资本投入,L 为劳动投入。
则当L = 27, K = 8时,资本投入K 的边际生产率为( D )。
(A )94 (B )836(C )3 (D )27363.设D 是圆122=+y x 所包围的在第一象限的区域,则在极坐标变换下,二重积分=⎰⎰Ddxdy y x f ),(( B )。
(A )⎰⎰100)sin ,cos (rdr r r f d θθθπ (B )⎰⎰1020)sin ,cos (rdr r r f d θθθπ(C )⎰⎰202)sin ,cos (rdr r r f d θθθπ (D )⎰⎰200)sin ,cos (rdr r r f d θθθπ 4.设D 由x 轴,e x x y ==,ln 围成,则=⎰⎰Ddxdy y x f ),(( A )。
微积分II-1答案Answer

∫ t 3 dt
∫ 1
p 1
t4 D 4
.1
t4/
1
2 d.1
t4/
1
D
.1 2
t
4
/
1 2
CC
D
1 2
1
1
Á1 2
p x4 1
x4 C C D 2x2 C C :
∫
∫
4. 原式 D
1
arctan x
dx
arctan x d x
1D
x 1 C .x 1/.x2 C 1/ .
令 .x
1 1/.x2 C 1/
1
1
1
arctan n
arctan n C 1 D
f .n C 1/ f .n/ D f 0. / D 1 C 2 ;
1
1
1
这里 2 .n; n C 1/. 于是 1 C .n C 1/2 < 1 C 2 < 1 C n2 . 代入上式即可证明所要求
的不等式。
2. 令 f .x/ D ex C sin x cos x 2x. 则 f 0.x/ D ex C cos x C sin x 2,f 00.x/ D ex sin x C cos x.
当 0 < x 6 2 时,f ".x/ > 1 sin x C cos x > cos x > 0;当 x > 2 时,因 2 > 1, 于是 f 00.x/ > e sin x C cos x > 2 sin x C cos x > 0.
总之,当 x > 0 时,都有 f 00.x/ > 0. 于是 f 0.x/ 在 Œ0; C1/ 上单调递增。 即当 x > 0 时,f 0.x/ > f 0.0/ D 0. 于是 f .x/ 也在 Œ0; C1/ 上单调递增。 即当 x > 0 时, f .x/ > f .0/ D 0. 由此可证明不等式。
微积分2答案完整版

知识点:积分收敛性,中。
4.
答案:C
学霸解析:
可微
可微
可微
知识点:二元函数可微性,中。
5.
答案:C
学霸解析
知识点:求原函数,中。
三、计算题(共8题,每题6分,满分48分)
1.答案:
学霸解析:令
则
知识点:求定积分,中。
2.答案:
学霸解析:
3.
解:
知识点:二重积分,中。
4.
答案:
学霸解析:
二 、
1答案:A
学霸解析: 为偶函数, 为奇函数,且 有意义,则 是偶函数。
知识点:组合函数,易。
2、
答案:B
学霸解析:若函数 在 处不可导,则 在 处一定不可微。
知识点:可导和可微积,易。
3、
答案:D
学霸解析:收益与成本的情况下,获得最大利润的必要条件是 .
知识点:二重求导,中。
4、
答案:B
学霸解析:
考查知识点:敛散性
(2)答案:
学霸解析:
考查知识点:级数收敛的函数
六、
答案:480
学霸解析:
考查知识点:求导运用
七、
答案:2/15
学霸解析:
考查知识点:双边求导
八、
1.答案:
右式
=左式
2.答案:
① 在(a,b)上恒成立
由于f(x)-x在(a,b)上连续
可知
故只能有f(x)=0
② 在(a,b)上恒成立
考查知识点:间断点
3.答案:B
学霸解析:可微的定义
考查知识点:可微的定义
4.答案:D
学霸解析:R(Q)导数减去C(Q)导数为0点为题目所求点
微积分II课后答案详解

2 4 4 4 = + + = )1,1,1( | z u + y u + x u ∴ 3 3 2 1
3
z + y + x +1 = zu z3
2 2
3
z + y + x +1 = yu y2
2
3
z + y + x +1 = x u �解 1
2
z
u + y u + x u求处� � 1 � 11 �点在 ,) 3 z + 2 y + x + 1(nl = u 设�3
z2
) yx (nl y 2 yx 2 y∂ = x. . 2 ]) yx (nl[ = 1 1 1− 1 z∂ ) yx (nl x 2 yx 2 x∂ = y . . 2 ]) yx (nl[ = �解 1 1 1− 1 z∂ y∂ x∂ , 求 , ) yx (nl = z ② z∂ z∂
2
yx 3 − 3 x =
�y + x � )y + x ( 2 )y + x ( y + x � x∂ y∂ y∂x∂ 2 � y∂ + + = = + = y x = ) ( n l ) ( y x−0 z∂ ∂ z2 ∂ 1 � x � ∂
)y + x ( 2 )y + x ( y + x x∂ y +x x∂ x∂ x∂ 2 = + =) + ) y + x (nl( = ) ( = 2 y2 + x x−y +x x ∂ z∂ ∂ z2 ∂ 1 y +x x∂ .x + ) y + x (nl = �解 z∂ 1 y∂x∂ 2 x∂ 求 ,) y + x (nl x = z ③ , ∂ z2 ∂
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 第八章 微分方程初步第一节 微分方程的概念1. 验证函数212y C x C x =+是否为微分方程2220yy y x x'''-+=的解.解:122y C C x y C '''=+=2, 2, 代入方程:()221212222222()0y y y C C C x C x C x x x x x'''-+=-⋅+++=22 因此是解。
2.验证由方程22x xy y C -+=所确定的函数为微分方程(2)2x y y x y '-=-的通解.解:对22x xy y C -+=两边求导,有2()20x y xy yy ''-++=,即有 (2)2x y y x y '-=-,是解有因为解中一个任意常数,任意常数个数与微分方程阶数相同, 因此是通解。
3.验证函数1212()(,xy C C x e C C -=+为任意常数)是微分方程20y y y '''++=的通解,并求满足初始条件004,2,x x y y =='==-的特解.解:2122122212212()(),()(2),x x x x x x y C e C C x e C C C x e y C e C C C x e C C C x e ------'=-+=--''=----=--- 将上式代入方程左边有:21221212(2)2()()0x x x C C C x e C C C x e C C x e ------+--++=,又因为解中2个独立的任意常数,且任意常数个数与微分方程阶数相同,因此是通解。
由004,2,x x y y =='==-得: 124,2C C ==特解:(42)xy x e -=+第二节一阶微分方程1、求下列可分离变量微分方程的通解(或特解)(1)0 xydx=解:1,dyy= 11211,(1)ln, ln,,C Cdy x yyy Cy y e--=-==+==±⋅=⎰(20 +=解:,dx=,=()21,y=-arcsin,x C=即为通解(3)212,0x yxy xe y-='==解: 22,,x y y xdyxe e e dy xe dxdx-=⋅=()()22222222221,,211,,221111,ln,2224y x y xy x x y x xy x x x xe dy xe dx e xdee xe e dx e xe e dxe xe e C y xe e C===-=-⎛⎫⎛⎫=-+=-+⎪ ⎪⎝⎭⎝⎭⎰⎰⎰⎰⎰由12xy==,得1,C=211ln()122xy x e⎡⎤=-+⎢⎥⎣⎦(4)23(4),1xx x y y y='-==.解:22,,(4)(4)dy dx dy dxy x x y x x==--⎰⎰()411111ln,ln ln ln4,4441ln ln,,4444Cy dx y x x Cx xC xx xy C y ex x x=+=--+-=+=±⋅=---⎰ 由31xy==,得113C=,43(4)xyx=-。
23 2、求解下列齐次变量型微分方程 (1)tany xy y x x'-= 解: tan y y y x x '-= ,令,,yu y ux x== 即得: ()tan ux u u '-= , tan u x u u u '+-= tan ,,tan du dxu x u u x'== cos 1,sin ,sin sin u dx dx du d u u x u x==⎰⎰⎰⎰ 1ln sin ln ,u x C =+ 11sin sin ln ,C u uC e C x x==±= 即有 sin yCx x= .(2)220d , 1.d x y xy y x x y===- 解 222d ,d 1()yy xy x y x x y x==-- 令,,yu y ux x== 即 代入方程则为: 2,1uxu u u'+=- 32,1u xu u '=- 231,u dx du u x -=⎰⎰ 21ln ln ,2u u x C ---=+ 21ln ,2u ux C --=+化简可得2221,x y y C e -= 由10x y ==,得11C =,代入得特解: 222,x y y e-=3、求下列一阶线性微分方程的通解(或特解). (1) xy y e -'+=解:.dxdxxxxy ee edxC edxC ex C (2)sin ,1x dy y xy dx x xπ=+== 解:11ln ln sin sin xxdxdx xxxx yee dx C ee dx C xx1sin 1sin cos ,xx dx Cxdx Cx x xx C x由初始条件1x y π==,得1C π=- 特解为()11cos y x xπ=--4 (3) 2221x y y x x '-=+解:2222222ln(1)2ln(1)112222()(1)()(1)(arctan )1xxdxdxx x x x yex edx C ex edx C x x dxC x x x C x .所以,解为2(1)(arctan )y x x x C =+-+4、用适当的变量代换求解下列方程. (1)11y x y'=+- 令,u y x =-则u x y -=,此时 u y '-='1, 原方程变为 uu 1-=' , 此为可分离变量微分方程,易得此方程的通解为C x u +-=22, 从而原方程的通解为 ()C x y x +-=-22.(2)2x y y y'+=解:原方程即为22yy y x '+=,可得22dy y x dx,令 2y u =, 则原方程变为du ux dx,此为一阶线性微分方程,用公式法得通解为1dx dxxx xx xxu exe dx C exe dxCexe e C x Ce从而原方程的通解为 21x y x Ce .5 第三节 可降阶的二阶微分方程求下列微分方程的通解(或特解): 1.xy xe ''=;解 所给方程是 )(x f y ='' 型,只需对方程两边连续积分两次,即可得通解. 1x x x x x xyxe dx xde xe e dx xe e C ,1122xxxxyxe e C dx xe e C xC 2.211y x ''=+ 解 所给方程是 )(x f y ='' 型,只需对方程两边连续积分两次,即可得通解.12arctan 1C x x dxy +=+='⎰,()1111212arctan d arctan arctan arctan 1arctan 1arctan ln y x C x xdx C x x x xd x C x x x x dx C x x x x C x C =+=+=⋅-+=-⋅++=-+⎰⎰⎰⎰,3.2(1)20,x y xy '''+-= 116,6x x y y =='==解:所给方程是型0),,(='''y y x F ,令p y =',代入方程得:2(1)20,x p xp,220,1dpx p dxx222ln 1211111xdxx x pC eC eC x由 16x y ='= 得13C ,231p x ,即231yx 232313y x dxxx C ,由16x y ==得22C ,332y xx4. 00,0,1xx x y y e y y ==''''=+==解: 所给方程是型0),,(='''y y x F ,令p y =',代入方程并化简得:,x p p e '-=111dxdxx x x pee edxC e dxC e xC由00x y ==,01x y ='= 得 11C1x p e x ,即 1x y e x ,2x x xy xe e dx xe C由00x y ==,得 20Cx yxe6 5. 21y y '''=+ 解:所给方程是型0),,(='''y y x F ,令p y =',代入方程得: 21p p ,221,,1dp dpp dx dx p 12,arctan 1dpdx p x C p 1tan()p x C ,1tan()yx C11112sin()tan()cos()ln cos()x C y x C dx dxx C xC C所以 12ln cos()y x C C6. 221,2,2x x y y y y y y =='''''+===; 解:所给方程是型(,,)0F y y y ,令p y =',得dpypdy , 代入方程得: dpp ppy dy,1,dpy dx2111,(1)2py dy py C 由2212,2x x y y =='==得10C , 2211(1),(1),22p y y y 即 2212(1),,2(1)dy dy y dx dxy 22,(1)dydx y221x C y ,由22,x y == 得24C , 所以 64x y x.7 第四节二阶线性微分方程的解的结构、 第五节 二阶常系数齐次线性微分方程1、验证12cos sin y x y x ωω==及都是方程20y y ω''+=的解,并写出该方程的通解.解 :211sin ,cos y x y x ωωωω'''=-- =,222cos cos 0,y y x x ωωωωω''+=-+=因此1cos y x ω=是方程的解,同理可证1sin y x ω=是方程的解, 方程的通解:12cos sin y C x C x ωω=+2、若二阶非齐次线性方程的三个解为,,xxe x e --+2,xx e -+试写出该非齐次线性方程的通解(提示:非齐次线性方程的二个特解之差为对应的齐次线性方程的一个特解).解:由于,xxe x e --+是非齐次线性方程的二个特解,因此它们之差()xxx e ex --+-=也是对应的齐次线性方程的一个特解,同理 2x 也是对应的齐次线性方程的一个特解,对应的齐次线性方程的通解为:212Y C x C x =+;非齐次线性方程的通解为212xy C x C x e -=++3、求下列微分方程的通解(或特解): (1) 20y y y '''+-=;解:特征方程为: 220r r +-=特征解: 121,2r r ==- 方程的通解为212x xy C e C e -=+(2) 40y y '''+=,(0)2,(0)4y y '== 解:特征方程为: 240r r += 特征解: 120,4r r ==- 方程的通解为412xy C C e-=+424x y C e -'=-由(0)2,(0)4y y '==可得 123,1C C ==- 方程的特解为43xy e -=-8 (3) 20y y y '''-+=解:特征方程为: 2210r r -+= 特征解: 121r r == 方程的通解为()12xy C C x e =+(4) 450y y y '''-+=解:特征方程为: 2450r r -+=特征解:2,r i ==±方程的通解为()212cos sin xy e C x C x =+(5)430, (0)6, (0)10.y y y y y ''''-+===解:特征方程为: 2430r r -+=, 特征解: 121,3r r == 方程的通解为312x xy C e C e =+3123x x y C e C e '=+由(0)6, (0)10y y '==,可得 124,2C C == 方程的特解为342xxy e e =+(6) 试建立二阶常系数齐次线性微分方程。